Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
J Food Sci Technol ; 56(8): 3940-3950, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31413419

ABSTRACT

Starch chemical modification can be used in order to obtain modified starches (MS) with low affinity to water. Acetylated and succinylated starches whose applications as food ingredient depend upon their degree of substitution (DS) may be produced by esterifying starch through the extrusion process (EP). The Food and Drug Administration recommends a DS of 0.2 and 0.05 for acetylated and succinylated starches, respectively. The objective of this study was to find mathematical models to obtain the optimum values of DS, Water absorption Index (WAI) and Water Solubility Index (WSI) for MS with safe-for-food-use DS and low affinity to water, modifying the starches by acetylation and succinylation using EP. The process variables were Barrel Temperature (BT, 80-160 °C), Screw Speed (SS, 100-200 rpm) and Reactant Concentration (RC, Acetylation, 0-13% and Succinylation, 0-3%). The best conditions to obtain acetylated starches were RC = 7.88%, BT = 80 °C and SS = 100 rpm, presenting values of DS = 0.2, WAI = 7.67 g/g and WSI = 6.15%. On the other hand, the optimum conditions to obtain succinylated starches were RC = 1.12%, BT = 80 °C and SS = 126 rpm, obtaining values of DS = 0.05, WAI = 3.40 g/g and WSI = 7.92%. These results showed that it is possible to obtain acetylated and succinylated MS with safe-for-food-use levels of DS and with low affinity to water, using EP.

2.
Nat Commun ; 14(1): 276, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36650165

ABSTRACT

Ultraviolet A light is commonly emitted by UV-nail polish dryers with recent reports suggesting that long-term use may increase the risk for developing skin cancer. However, no experimental evaluation has been conducted to reveal the effect of radiation emitted by UV-nail polish dryers on mammalian cells. Here, we show that irradiation by a UV-nail polish dryer causes high levels of reactive oxygen species, consistent with 8-oxo-7,8-dihydroguanine damage and mitochondrial dysfunction. Analysis of somatic mutations reveals a dose-dependent increase of C:G>A:T substitutions in irradiated samples with mutagenic patterns similar to mutational signatures previously attributed to reactive oxygen species. In summary, this study demonstrates that radiation emitted by UV-nail polish dryers can both damage DNA and permanently engrave mutations on the genomes of primary mouse embryonic fibroblasts, human foreskin fibroblasts, and human epidermal keratinocytes.


Subject(s)
DNA Damage , Fibroblasts , Ultraviolet Rays , Animals , Humans , Mice , Keratinocytes/radiation effects , Mammals , Mutation/radiation effects , Reactive Oxygen Species/metabolism , Ultraviolet Rays/adverse effects , Nails
3.
Carbohydr Polym ; 219: 378-386, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31151537

ABSTRACT

Fiber-reinforced starch-based biocomposites provide an environmentally friendly alternative to replace petroleum-based plastics. Nevertheless, these materials present structural stability problems owing to their hydrophilicity. Therefore, a chemical modification is usually necessary. Hence, the aim of this research is to obtain biocomposites based on acetylated corn starch (AS), acetylated sugarcane fiber (AcSF) and glycerol. Also, to assess the AcSF content (FC, 0.0-20.0%) and glycerol content (GC, 20.0-30.0%) on their physical, mechanical and microstructural properties. A single-screw extruder and central composite rotatable design were employed. Due to acetylation and possible interaction between matrix-fiber, there was an improvement in water resistance; while the mechanical properties were enhanced by increasing FC up to 12.0%. Biodegradability recorded a range of 24.2-39.3%. Microstructural analysis evidenced the extrusion process effect, chemical modification and new interactions formation. It was found that an optimum blend was of FC = 12.0% and GC = 24.0%. The acetylation of both sugarcane fiber and corn starch allowed us to obtain eco-friendly materials with good mechanical properties and water resistance.

5.
J Food Sci ; 81(9): E2224-32, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27550869

ABSTRACT

Starch edible films (EFs) have been widely studied due to their potential in food preservation; however, their application is limited because of their poor mechanical and barrier properties. Because of that, the aim of this work was to use the extrusion technology (Ex T) as a pretreatment of casting technique to change the starch structure in order to obtain EFs with improved physicochemical properties. To this, corn starch and a mixture of plasticizers (sorbitol and glycerol, in different ratios) were processed in a twin screw extruder to generate the starch modification and subsequently casting technique was used for EFs formation. The best conditions of the Ex T and plasticizers concentration were obtained using response surface methodology. All the response variables evaluated, were affected significatively by the Plasticizers Ratio (Sorbitol:Glycerol) (PR (S:G)) and Extrusion Temperature (ET), while the Screw Speed (SS) did not show significant effect on any of these variables. The optimization study showed that the appropriate conditions to obtain EFs with the best mechanical and barrier properties were ET = 89 °C, SS = 66 rpm and PR (S:G) = 79.7:20.3. Once the best conditions were obtained, the optimal treatment was characterized according to its microstructural properties (X-ray diffraction, Scanning Electron Microscopy and Atomic Force Microscopy) to determine the damage caused in the starch during Ex T and casting technique. In conclusion, with the combination of Ex T and casting technique were obtained EFs with greater breaking strength and deformation, as well as lower water vapor permeability than those reported in the literature.


Subject(s)
Food Packaging/methods , Food Preservation/methods , Polymers/analysis , Starch/chemistry , Zea mays/chemistry , Glycerol/chemistry , Humans , Microscopy, Electron, Scanning , Permeability , Plasticizers/chemistry , Sorbitol/chemistry , Steam , Temperature , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL