Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Pathol ; 262(4): 395-409, 2024 04.
Article in English | MEDLINE | ID: mdl-38332730

ABSTRACT

Splicing is controlled by a large set of regulatory elements (SREs) including splicing enhancers and silencers, which are involved in exon recognition. Variants at these motifs may dysregulate splicing and trigger loss-of-function transcripts associated with disease. Our goal here was to study the alternatively spliced exons 8 and 10 of the breast cancer susceptibility gene CHEK2. For this purpose, we used a previously published minigene with exons 6-10 that produced the expected minigene full-length transcript and replicated the naturally occurring events of exon 8 [Δ(E8)] and exon 10 [Δ(E10)] skipping. We then introduced 12 internal microdeletions of exons 8 and 10 by mutagenesis in order to map SRE-rich intervals by splicing assays in MCF-7 cells. We identified three minimal (10-, 11-, 15-nt) regions essential for exon recognition: c.863_877del [ex8, Δ(E8): 75%] and c.1073_1083del and c.1083_1092del [ex10, Δ(E10): 97% and 62%, respectively]. Then 87 variants found within these intervals were introduced into the wild-type minigene and tested functionally. Thirty-eight of them (44%) impaired splicing, four of which (c.883G>A, c.883G>T, c.884A>T, and c.1080G>T) induced negligible amounts (<5%) of the minigene full-length transcript. Another six variants (c.886G>A, c.886G>T, c.1075G>A, c.1075G>T, c.1076A>T, and c.1078G>T) showed significantly strong impacts (20-50% of the minigene full-length transcript). Thirty-three of the 38 spliceogenic variants were annotated as missense, three as nonsense, and two as synonymous, underlying the fact that any exonic change is capable of disrupting splicing. Moreover, c.883G>A, c.883G>T, and c.884A>T were classified as pathogenic/likely pathogenic variants according to ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based criteria. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Alternative Splicing , RNA Splicing , Humans , RNA Splicing/genetics , Exons/genetics , United Kingdom , Checkpoint Kinase 2/genetics
2.
Clin Chem ; 70(1): 319-338, 2024 01 04.
Article in English | MEDLINE | ID: mdl-37725924

ABSTRACT

BACKGROUND: Disrupted pre-mRNA splicing is a frequent deleterious mechanism in hereditary cancer. We aimed to functionally analyze candidate spliceogenic variants of the breast cancer susceptibility gene CHEK2 by splicing reporter minigenes. METHODS: A total of 128 CHEK2 splice-site variants identified in the Breast Cancer After Diagnostic Gene Sequencing (BRIDGES) project (https://cordis.europa.eu/project/id/634935) were analyzed with MaxEntScan and subsetted to 52 variants predicted to impact splicing. Three CHEK2 minigenes, which span all 15 exons, were constructed and validated. The 52 selected variants were then genetically engineered into the minigenes and assayed in MCF-7 (human breast adenocarcinoma) cells. RESULTS: Of 52 variants, 46 (88.5%) impaired splicing. Some of them led to complex splicing patterns with up to 11 different transcripts. Thirty-four variants induced splicing anomalies without any trace or negligible amounts of the full-length transcript. A total of 89 different transcripts were annotated, which derived from different events: single- or multi-exon skipping, alternative site-usage, mutually exclusive exon inclusion, intron retention or combinations of the abovementioned events. Fifty-nine transcripts were predicted to introduce premature termination codons, 7 kept the original open-reading frame, 5 removed the translation start codon, 6 affected the 5'UTR (Untranslated Region), and 2 included missense variations. Analysis of variant c.684-2A > G revealed the activation of a non-canonical TG-acceptor site and exon 6 sequences critical for its recognition. CONCLUSIONS: Incorporation of minigene read-outs into an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme allowed us to classify 32 CHEK2 variants (27 pathogenic/likely pathogenic and 5 likely benign). However, 20 variants (38%) remained of uncertain significance, reflecting in part the complex splicing patterns of this gene.


Subject(s)
Alternative Splicing , Breast Neoplasms , Humans , Female , RNA Splicing , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Exons , Introns , RNA Splice Sites/genetics , Checkpoint Kinase 2/genetics
3.
J Pathol ; 258(1): 83-101, 2022 09.
Article in English | MEDLINE | ID: mdl-35716007

ABSTRACT

The ataxia telangiectasia-mutated (ATM) protein is a major coordinator of the DNA damage response pathway. ATM loss-of-function variants are associated with 2-fold increased breast cancer risk. We aimed at identifying and classifying spliceogenic ATM variants detected in subjects of the large-scale sequencing project BRIDGES. A total of 381 variants at the intron-exon boundaries were identified, 128 of which were predicted to be spliceogenic. After further filtering, we ended up selecting 56 variants for splicing analysis. Four functional minigenes (mgATM) spanning exons 4-9, 11-17, 25-29, and 49-52 were constructed in the splicing plasmid pSAD. Selected variants were genetically engineered into the four constructs and assayed in MCF-7/HeLa cells. Forty-eight variants (85.7%) impaired splicing, 32 of which did not show any trace of the full-length (FL) transcript. A total of 43 transcripts were identified where the most prevalent event was exon/multi-exon skipping. Twenty-seven transcripts were predicted to truncate the ATM protein. A tentative ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme that integrates mgATM data allowed us to classify 29 ATM variants as pathogenic/likely pathogenic and seven variants as likely benign. Interestingly, the likely pathogenic variant c.1898+2T>G generated 13% of the minigene FL-transcript due to the use of a noncanonical GG-5'-splice-site (0.014% of human donor sites). Circumstantial evidence in three ATM variants (leakiness uncovered by our mgATM analysis together with clinical data) provides some support for a dosage-sensitive expression model in which variants producing ≥30% of FL-transcripts would be predicted benign, while variants producing ≤13% of FL-transcripts might be pathogenic. © 2022 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Ataxia Telangiectasia Mutated Proteins , Ataxia Telangiectasia , RNA Splicing , Humans , Alternative Splicing/genetics , Ataxia Telangiectasia/classification , Ataxia Telangiectasia/genetics , Ataxia Telangiectasia Mutated Proteins/genetics , HeLa Cells , MCF-7 Cells , RNA Splicing/genetics
4.
J Pathol ; 256(3): 321-334, 2022 03.
Article in English | MEDLINE | ID: mdl-34846068

ABSTRACT

PALB2 loss-of-function variants confer high risk of developing breast cancer. Here we present a systematic functional analysis of PALB2 splice-site variants detected in approximately 113,000 women in the large-scale sequencing project Breast Cancer After Diagnostic Gene Sequencing (BRIDGES; https://bridges-research.eu/). Eighty-two PALB2 variants at the intron-exon boundaries were analyzed with MaxEntScan. Forty-two variants were selected for the subsequent splicing functional assays. For this purpose, three splicing reporter minigenes comprising exons 1-12 were constructed. The 42 potential spliceogenic variants were introduced into the minigenes by site-directed mutagenesis and assayed in MCF-7/MDA-MB-231 cells. Splicing anomalies were observed in 35 variants, 23 of which showed no traces or minimal amounts of the expected full-length transcripts of each minigene. More than 30 different variant-induced transcripts were characterized, 23 of which were predicted to truncate the PALB2 protein. The pathogenicity of all variants was interpreted according to an in-house adaptation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG-AMP) variant classification scheme. Up to 23 variants were classified as pathogenic/likely pathogenic. Remarkably, three ±1,2 variants (c.49-2A>T, c.108+2T>C, and c.211+1G>A) were classified as variants of unknown significance, as they produced significant amounts of either in-frame transcripts of unknown impact on the PALB2 protein function or the minigene full-length transcripts. In conclusion, we have significantly contributed to the ongoing effort of identifying spliceogenic variants in the clinically relevant PALB2 cancer susceptibility gene. Moreover, we suggest some approaches to classify the findings in accordance with the ACMG-AMP rationale. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Alternative Splicing , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Fanconi Anemia Complementation Group N Protein/genetics , RNA Splice Sites , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Case-Control Studies , Databases, Genetic , Exons , Fanconi Anemia Complementation Group N Protein/metabolism , Female , Humans , MCF-7 Cells , Protein Isoforms
5.
J Pathol ; 248(4): 409-420, 2019 08.
Article in English | MEDLINE | ID: mdl-30883759

ABSTRACT

Splicing disruption is a common mechanism of gene inactivation associated with germline variants of susceptibility genes. To study the role of BRCA2 mis-splicing in hereditary breast/ovarian cancer (HBOC), we performed a comprehensive analysis of variants from BRCA2 exons 2-9, as well as the initial characterization of the regulatory mechanisms of such exons. A pSAD-based minigene with exons 2-9 was constructed and validated in MCF-7 cells, producing the expected transcript (1016-nt/V1-BRCA2_exons_2-9-V2). DNA variants from mutational databases were analyzed by NNSplice and Human Splicing Finder softwares. To refine ESE-variant prediction, we mapped the regulatory regions through a functional strategy whereby 26 exonic microdeletions were introduced into the minigene and tested in MCF-7 cells. Thus, we identified nine spliceogenic ESE-rich intervals where ESE-variants may be located. Combining bioinformatics and microdeletion assays, 83 variants were selected and genetically engineered in the minigene. Fifty-three changes impaired splicing: 28 variants disrupted the canonical sites, four created new ones, 10 abrogated enhancers, eight created silencers and three caused a double-effect. Notably, nine spliceogenic-ESE variants were located within ESE-containing intervals. Capillary electrophoresis and sequencing revealed more than 23 aberrant transcripts, where exon skipping was the most common event. Interestingly, variant c.67G>A triggered the usage of a noncanonical GC-donor 4-nt upstream. Thirty-six variants that induced severe anomalies (>60% aberrant transcripts) were analyzed according to the ACMG guidelines. Thus, 28 variants were classified as pathogenic, five as likely pathogenic and three as variants of uncertain significance. Interestingly, 13 VUS were reclassified as pathogenic or likely pathogenic variants. In conclusion, a large fraction of BRCA2 variants (∼64%) provoked splicing anomalies lending further support to the high prevalence of this disease-mechanism. The low accuracy of ESE-prediction algorithms may be circumvented by functional ESE-mapping that represents an optimal strategy to identify spliceogenic ESE-variants. Finally, systematic functional assays by minigenes depict a valuable tool for the initial characterization of splicing anomalies and the clinical interpretation of variants. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
BRCA2 Protein/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Gene Deletion , Genes, BRCA2 , Hereditary Breast and Ovarian Cancer Syndrome/genetics , RNA Splicing , BRCA2 Protein/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Computational Biology , Exons , Female , Hereditary Breast and Ovarian Cancer Syndrome/metabolism , Hereditary Breast and Ovarian Cancer Syndrome/pathology , Humans
6.
J Med Genet ; 56(7): 453-460, 2019 07.
Article in English | MEDLINE | ID: mdl-30890586

ABSTRACT

BACKGROUND: PALB2 monoallelic loss-of-function germ-line variants confer a breast cancer risk comparable to the average BRCA2 pathogenic variant. Recommendations for risk reduction strategies in carriers are similar. Elaborating robust criteria to identify loss-of-function variants in PALB2-without incurring overprediction-is thus of paramount clinical relevance. Towards this aim, we have performed a comprehensive characterisation of alternative splicing in PALB2, analysing its relevance for the classification of truncating and splice site variants according to the 2015 American College of Medical Genetics and Genomics-Association for Molecular Pathology guidelines. METHODS: Alternative splicing was characterised in RNAs extracted from blood, breast and fimbriae/ovary-related human specimens (n=112). RNAseq, RT-PCR/CE and CloneSeq experiments were performed by five contributing laboratories. Centralised revision/curation was performed to assure high-quality annotations. Additional splicing analyses were performed in PALB2 c.212-1G>A, c.1684+1G>A, c.2748+2T>G, c.3113+5G>A, c.3350+1G>A, c.3350+4A>C and c.3350+5G>A carriers. The impact of the findings on PVS1 status was evaluated for truncating and splice site variant. RESULTS: We identified 88 naturally occurring alternative splicing events (81 newly described), including 4 in-frame events predicted relevant to evaluate PVS1 status of splice site variants. We did not identify tissue-specific alternate gene transcripts in breast or ovarian-related samples, supporting the clinical relevance of blood-based splicing studies. CONCLUSIONS: PVS1 is not necessarily warranted for splice site variants targeting four PALB2 acceptor sites (exons 2, 5, 7 and 10). As a result, rare variants at these splice sites cannot be assumed pathogenic/likely pathogenic without further evidences. Our study puts a warning in up to five PALB2 genetic variants that are currently reported as pathogenic/likely pathogenic in ClinVar.


Subject(s)
Alternative Splicing , Fanconi Anemia Complementation Group N Protein/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Alleles , Gene Expression Profiling , Genetic Association Studies/methods , Germ-Line Mutation , Humans , Mutation , Neoplasms/diagnosis , Neoplasms/genetics , Nonsense Mediated mRNA Decay , RNA Splice Sites
7.
Breast Cancer Res Treat ; 171(1): 53-63, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29766361

ABSTRACT

PURPOSE: Promoter mutations may affect transcription and can be associated with human diseases. However, the promoters of the breast cancer (BC) genes are not regularly screened. Our goal was to investigate the BRCA2 promoter in order to study a possible correlation between impaired transcription and disease. METHODS: The proximal and core promoter of the BRCA2 gene was sequenced in 95 high-risk BC patients. A BRCA2-promoter insert [- 938 to + 312 from the transcription start site (TSS)] was generated and cloned into the firefly luciferase vector pGL4.10. Promoter variants and deletions were introduced by site-directed mutagenesis and quantified by Dual-Luciferase assays and semi-quantitative RT-PCR. RESULTS: Three different variants were detected in high-risk BC patients: rs3092989, rs206118, and rs563971900. Functional mapping of 13 overlapping deletions revealed four down-regulating segments (TSS positions): -59_-10del/µdel3 (16% of activity of the wild-type construct), -104_-55del/µdel4 (62%), -239_-190del/µdel7 (39%), -464_-415/µdel12 (78%), suggesting the presence therein of putative transcriptional activator motifs. Additionally, six microdeletions rendered luciferase overexpression: +32_+81del/µdel1 (356%), -14_+36del/µdel2 (180%), -194_-145del/µdel6 (154%), -284_-235del/µdel8 (168%), -329_-280del/µdel9 (111%), and -509_-460del/µdel13 (139%), which is indicative of repressor elements. Functional assays of 15 promoter variants (including those detected in patients) showed that ten of them significantly altered expression with seven up-regulating (113-163%) and three down-regulating (rs551887850_G, rs570548398_T, rs55880202_T; 72-83%) SNPs. Eight of them were located in an ENCODE-DNase Hypersensitive Cluster (TSS - 185 to + 105) where most active transcriptional motifs are known to be placed. CONCLUSIONS: BRCA2 expression is highly sensitive to promoter variations as most of them induced relevant changes. Moreover, we mapped critical regions of the BRCA2 promoter that may constitute potential targets for regulatory variants. Three SNPs moderately decreased luciferase activity, but confirmation of its potential pathogenicity requires further analysis. These data reinforce the need to screen the promoter regions of breast cancer genes with a view to discovering novel deleterious mutations.


Subject(s)
BRCA2 Protein/genetics , Genetic Variation , Promoter Regions, Genetic , Alleles , Female , Gene Expression Regulation , Gene Order , Genes, Reporter , Genetic Predisposition to Disease , Genetic Vectors , Humans , Mutation , Polymorphism, Single Nucleotide , Transcription, Genetic
8.
Cancers (Basel) ; 14(12)2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35740625

ABSTRACT

RAD51C loss-of-function variants are associated with an increased risk of breast and ovarian cancers. Likewise, splicing disruptions are a frequent mechanism of gene inactivation. Taking advantage of a previous splicing-reporter minigene with exons 2-8 (mgR51C_ex2-8), we proceeded to check its impact on the splicing of candidate ClinVar variants. A total of 141 RAD51C variants at the intron/exon boundaries were analyzed with MaxEntScan. Twenty variants were selected and genetically engineered into the wild-type minigene. All the variants disrupted splicing, and 18 induced major splicing anomalies without any trace or minimal amounts (<2.4%) of the minigene full-length (FL) transcript. Twenty-seven transcripts (including the wild-type and r.904A FL transcripts) were identified by fluorescent fragment electrophoresis; of these, 14 were predicted to truncate the RAD51C protein, 3 kept the reading frame, and 8 minor isoforms (1.1−4.7% of the overall expression) could not be characterized. Finally, we performed a tentative interpretation of the variants according to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, classifying 16 variants as likely pathogenic. Minigene assays have been proven as valuable tools for the initial characterization of potential spliceogenic variants. Hence, minigene mgR51C_ex2-8 provided useful splicing data for 40 RAD51C variants.

9.
Cancers (Basel) ; 14(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36139699

ABSTRACT

PALB2 loss-of-function variants are associated with significant increased risk of breast cancer as well as other types of tumors. Likewise, splicing disruptions are a common mechanism of disease susceptibility. Indeed, we previously showed, by minigene assays, that 35 out of 42 PALB2 variants impaired splicing. Taking advantage of one of these constructs (mgPALB2_ex1-3), we proceeded to analyze other variants at exons 1 to 3 reported at the ClinVar database. Thirty-one variants were bioinformatically analyzed with MaxEntScan and SpliceAI. Then, 16 variants were selected for subsequent RNA assays. We identified a total of 12 spliceogenic variants, 11 of which did not produce any trace of the expected minigene full-length transcript. Interestingly, variant c.49-1G > A mimicked previous outcomes in patient RNA (transcript ∆(E2p6)), supporting the reproducibility of the minigene approach. A total of eight variant-induced transcripts were characterized, three of which (∆(E1q17), ∆(E3p11), and ∆(E3)) were predicted to introduce a premature termination codon and to undergo nonsense-mediated decay, and five (▼(E1q9), ∆(E2p6), ∆(E2), ▼(E3q48)-a, and ▼(E3q48)-b) maintained the reading frame. According to an ACMG/AMP (American College of Medical Genetics and Genomics/Association for Molecular Pathology)-based classification scheme, which integrates mgPALB2 data, six PALB2 variants were classified as pathogenic/likely pathogenic, five as VUS, and five as likely benign. Furthermore, five ±1,2 variants were catalogued as VUS because they produced significant proportions of in-frame transcripts of unknown impact on protein function.

10.
Cancers (Basel) ; 13(11)2021 Jun 07.
Article in English | MEDLINE | ID: mdl-34200360

ABSTRACT

RAD51D loss-of-function variants increase lifetime risk of breast and ovarian cancer. Splicing disruption is a frequent pathogenic mechanism associated with variants in susceptibility genes. Herein, we have assessed the splicing and clinical impact of splice-site and exonic splicing enhancer (ESE) variants identified through the study of ~113,000 women of the BRIDGES cohort. A RAD51D minigene with exons 2-9 was constructed in splicing vector pSAD. Eleven BRIDGES splice-site variants (selected by MaxEntScan) were introduced into the minigene by site-directed mutagenesis and tested in MCF-7 cells. The 11 variants disrupted splicing, collectively generating 25 different aberrant transcripts. All variants but one produced negligible levels (<3.4%) of the full-length (FL) transcript. In addition, ESE elements of the alternative exon 3 were mapped by testing four overlapping exonic microdeletions (≥30-bp), revealing an ESE-rich interval (c.202_235del) with critical sequences for exon 3 recognition that might have been affected by germline variants. Next, 26 BRIDGES variants and 16 artificial exon 3 single-nucleotide substitutions were also assayed. Thirty variants impaired splicing with variable amounts (0-65.1%) of the FL transcript, although only c.202G>A demonstrated a complete aberrant splicing pattern without the FL transcript. On the other hand, c.214T>C increased efficiency of exon 3 recognition, so only the FL transcript was detected (100%). In conclusion, 41 RAD51D spliceogenic variants (28 of which were from the BRIDGES cohort) were identified by minigene assays. We show that minigene-based mapping of ESEs is a powerful approach for identifying ESE hotspots and ESE-disrupting variants. Finally, we have classified nine variants as likely pathogenic according to ACMG/AMP-based guidelines, highlighting the complex relationship between splicing alterations and variant interpretation.

11.
Front Genet ; 11: 169, 2020.
Article in English | MEDLINE | ID: mdl-32211025

ABSTRACT

A large fraction of DNA variants impairs pre-mRNA splicing in human hereditary disorders. Crigler-Najjar syndrome (CNS) is characterized by a severe unconjugated hyperbilirubinemia caused by variants in the UGT1A1 gene. We previously reported one CNS-type II patient with two splice-site variants in trans (c.864+5G>T and c.996+2_996+5del). According to MaxEntScan, both disrupt their corresponding donor sites (c.864+5G>T: 6.99 → 2.28; c.996+2_996+5del: 5.96 → -11.02), so they were selected for subsequent functional tests. Given the unavailability of patient RNA, we constructed an UGT1A1 splicing-reporter minigene with exons 1-4 to characterize the underlying splicing anomaly. The variant c.996+2_996+5del generated two aberrant transcripts, Δ(E2) (exon 2 skipping/64%) and ▼(E2q135) (intron retention of 135-nt/36%), which lead to the loss of 18 conserved amino-acids and the gain of 45 new ones of a critical functional domain, respectively. The c.864+5G>T variant mainly produced the aberrant transcript Δ(E1q141) (141-nt deletion/70.4%) and the full-length isoform (29.6%). Δ(E1q141) would provoke the loss of 47 amino-acids of the N-terminal domain that encodes for substrate specificity. Thus, the three anomalous transcripts are likely to inactivate UGT1A1. Moreover, this patient is also homozygous for the promoter variant A(TA)7TAA that decreases UGT1A1 expression by 70%, so the full-length transcript produced by c.864+5G>T would be even more reduced (<9%), thus supporting the diagnosis of CNS-type II. Therefore, minigenes represent valuable tools for the functional and clinical classifications of genetic variants.

12.
Cancers (Basel) ; 12(12)2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33333735

ABSTRACT

Hereditary breast and/or ovarian cancer is a highly heterogeneous disease with more than 10 known disease-associated genes. In the framework of the BRIDGES project (Breast Cancer Risk after Diagnostic Gene Sequencing), the RAD51C gene has been sequenced in 60,466 breast cancer patients and 53,461 controls. We aimed at functionally characterizing all the identified genetic variants that are predicted to disrupt the splicing process. Forty RAD51C variants of the intron-exon boundaries were bioinformatically analyzed, 20 of which were selected for splicing functional assays. To test them, a splicing reporter minigene with exons 2 to 8 was designed and constructed. This minigene generated a full-length transcript of the expected size (1062 nucleotides), sequence, and structure (Vector exon V1- RAD51C exons_2-8- Vector exon V2). The 20 candidate variants were genetically engineered into the wild type minigene and functionally assayed in MCF-7 cells. Nineteen variants (95%) impaired splicing, while 18 of them produced severe splicing anomalies. At least 35 transcripts were generated by the mutant minigenes: 16 protein-truncating, 6 in-frame, and 13 minor uncharacterized isoforms. According to ACMG/AMP-based standards, 15 variants could be classified as pathogenic or likely pathogenic variants: c.404G > A, c.405-6T > A, c.571 + 4A > G, c.571 + 5G > A, c.572-1G > T, c.705G > T, c.706-2A > C, c.706-2A > G, c.837 + 2T > C, c.905-3C > G, c.905-2A > C, c.905-2_905-1del, c.965 + 5G > A, c.1026 + 5_1026 + 7del, and c.1026 + 5G > T.

13.
Front Genet ; 10: 503, 2019.
Article in English | MEDLINE | ID: mdl-31191615

ABSTRACT

A relevant fraction of BRCA2 variants is associated with splicing alterations and with an increased risk of hereditary breast and ovarian cancer (HBOC). In this work, we have carried out a thorough study of variants from BRCA2 exons 14 and 15 reported at mutation databases. A total of 294 variants from exons 14 and 15 and flanking intronic sequences were analyzed with the online splicing tools NNSplice and Human Splicing Finder. Fifty-three out of these 294 variants were selected as candidate splicing variants. All variants but one, were introduced into the minigene MGBR2_ex14-20 (with exons 14-20) by site-directed mutagenesis and assayed in MCF-7 cells. Twelve of the remaining 52 variants (23.1%) impaired splicing at different degrees, yielding from 5 to 100% of aberrant transcripts. Nine variants affected the natural acceptor or donor sites of both exons and three affected putative enhancers or silencers. Fluorescent capillary electrophoresis revealed at least 10 different anomalous transcripts: (E14q5), Δ (E14p10), Δ(E14p246), Δ(E14q256), Δ(E14), Δ(E15p12), Δ(E15p13), Δ(E15p83), Δ(E15) and a 942-nt fragment of unknown structure. All transcripts, except for Δ(E14q256) and Δ(E15p12), are expected to truncate the BRCA2 protein. Nine variants induced severe splicing aberrations with more than 90% of abnormal transcripts. Thus, according to the guidelines of the American College of Medical Genetics and Genomics, eight variants should be classified as pathogenic (c.7008-2A > T, c.7008-1G > A, c.7435+1G > C, c.7436-2A > T, c.7436-2A > G, c.7617+1G > A, c.7617+1G > T, and c.7617+2T > G), one as likely pathogenic (c.7008-3C > G) and three remain as variants of uncertain clinical significance or VUS (c.7177A > G, c.7447A > G and c.7501C > T). In conclusion, functional assays by minigenes constitute a valuable strategy to primarily check the splicing impact of DNA variants and their clinical interpretation. While bioinformatics predictions of splice site variants were accurate, those of enhancer or silencer variants were poor (only 3/23 spliceogenic variants) which showed weak impacts on splicing (∼5-16% of aberrant isoforms). So, the Exonic Splicing Enhancer and Silencer (ESE and ESS, respectively) prediction algorithms require further improvement.

14.
Front Genet ; 9: 188, 2018.
Article in English | MEDLINE | ID: mdl-29881398

ABSTRACT

Genetic testing of BRCA1 and BRCA2 identifies a large number of variants of uncertain clinical significance whose functional and clinical interpretations pose a challenge for genetic counseling. Interestingly, a relevant fraction of DNA variants can disrupt the splicing process in cancer susceptibility genes. We have tested more than 200 variants throughout 19 BRCA2 exons mostly by minigene assays, 54% of which displayed aberrant splicing, thus confirming the utility of this assay to check genetic variants in the absence of patient RNA. Our goal was to investigate BRCA2 exon 16 with a view to characterizing spliceogenic variants recorded at the mutational databases. Seventy-two different BIC and UMD variants were analyzed with NNSplice and Human Splicing Finder, 12 of which were selected because they were predicted to disrupt essential splice motifs: canonical splice sites (ss; eight variants) and exonic/intronic splicing enhancers (four variants). These 12 candidate variants were introduced into the BRCA2 minigene with seven exons (14-20) by site-directed mutagenesis and then transfected into MCF-7 cells. Seven variants (six intronic and one missense) induced complete abnormal splicing patterns: c.7618-2A>T, c.7618-2A>G, c.7618-1G>C, c.7618-1G>A, c.7805G>C, c.7805+1G>A, and c.7805+3A>C, as well as a partial anomalous outcome by c.7802A>G. They generated at least 10 different transcripts: Δ16p44 (alternative 3'ss 44-nt downstream; acceptor variants), Δ16 (exon 16-skipping; donor variants), Δ16p55 (alternative 3'ss 55-nt downstream), Δ16q4 (alternative 5'ss 4-nt upstream), Δ16q100 (alternative 5'ss 4-nt upstream), ▾16q20 (alternative 5'ss 20-nt downstream), as well as minor (Δ16p93 and Δ16,17p69) and uncharacterized transcripts of 893 and 954 nucleotides. Isoforms Δ16p44, Δ16, Δ16p55, Δ16q4, Δ16q100, and ▾16q20 introduced premature termination codons which presumably inactivate BRCA2. According to the guidelines the American College of Medical Genetics and Genomics these eight variants could be classified as pathogenic or likely pathogenic whereas the Evidence-based Network for the Interpretation of Germline Mutant Alleles rules suggested seven class 4 and one class 3 variants. In conclusion, our study highlights the relevance of splicing functional assays by hybrid minigenes for the clinical classification of genetic variations. Hence, we provide new data about spliceogenic variants of BRCA2 exon 16 that are directly correlated with breast cancer susceptibility.

SELECTION OF CITATIONS
SEARCH DETAIL