Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Eur J Immunol ; : e2350955, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587967

ABSTRACT

Type I interferons (IFN-Is) are key in fighting viral infections, but also serve major roles beyond antiviral immunity. Crucial is the tight regulation of IFN-I responses, while excessive levels are harmful to the cells. In essence, immune responses are generated by single cells making their own decisions, which are based on the signals they perceive. Additionally, immune cells must anticipate the future state of their environment, thereby weighing the costs and benefits of each possible outcome, in the presence of other potentially competitive decision makers (i.e., IFN-I producing cells). A rather new cellular communication mechanism called quorum sensing describes the effect of cell density on cellular secretory behaviors, which fits well with matching the right amount of IFN-Is produced to fight an infection. More competitive decision makers must contribute relatively less and vice versa. Intrigued by this concept, we assessed the effects of immune quorum sensing in pDCs, specialized immune cells known for their ability to mass produce IFN-Is. Using conventional microwell assays and droplet-based microfluidics assays, we were able the characterize the effect of quorum sensing in human primary immune cells in vitro. These insights open new avenues to manipulate IFN-I response dynamics in pathological conditions affected by aberrant IFN-I signaling.

2.
Trends Immunol ; 42(9): 824-839, 2021 09.
Article in English | MEDLINE | ID: mdl-34364820

ABSTRACT

Type I Interferon (IFN-I) responses were first recognized for their role in antiviral immunity, but it is now widely appreciated that IFN-Is have many immunomodulatory functions, influencing antitumor responses, autoimmune manifestations, and antimicrobial defenses. Given these pivotal roles, it may be surprising that multilayered stochastic events create highly heterogeneous, but tightly regulated, all-or-nothing cellular decisions. Recently, mathematical models have provided crucial insights into the stochastic nature of antiviral IFN-I responses, which we critically evaluate in this review. In this context, we emphasize the need for innovative single-cell technologies combined with mathematical models to further reveal, understand, and predict the complexity of the IFN-I system in physiological and pathological conditions that may be relevant to a plethora of diseases.


Subject(s)
Interferon Type I , Virus Diseases/immunology , Immunity , Interferon Type I/immunology
3.
Eur J Immunol ; 52(12): 1889-1897, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36250412

ABSTRACT

Moving from the optimalization of single-cell technologies to the interpretation of the multi-complex single-cell data, the field of immunoengineering is granted with numerous important insights into the coordination of immune cell activation and how to modulate it for therapeutic purposes. However, insights come with additional follow-up questions that challenge our perception on how immune responses are generated and fine-tuned to fight a wide array of pathogens in ever-changing and often unpredictable microenvironments. Are immune responses really either being tightly regulated by molecular determinants, or highly flexible attributed to stochasticity? What exactly makes up the basic rules by which single cells cooperate to establish tissue-level immunity? Taking the type I IFN system and its newest insights as a main example throughout this review, we revise the basic concepts of (single) immune cell coordination, redefine the concepts of noise, stochasticity and determinism, and highlight the importance of single-cell variation in immunology and beyond.

4.
Front Immunol ; 15: 1322814, 2024.
Article in English | MEDLINE | ID: mdl-38596672

ABSTRACT

Introduction: The innate immune system serves the crucial first line of defense against a wide variety of potential threats, during which the production of pro-inflammatory cytokines IFN-I and TNFα are key. This astonishing power to fight invaders, however, comes at the cost of risking IFN-I-related pathologies, such as observed during autoimmune diseases, during which IFN-I and TNFα response dynamics are dysregulated. Therefore, these response dynamics must be tightly regulated, and precisely matched with the potential threat. This regulation is currently far from understood. Methods: Using droplet-based microfluidics and ODE modeling, we studied the fundamentals of single-cell decision-making upon TLR signaling in human primary immune cells (n = 23). Next, using biologicals used for treating autoimmune diseases [i.e., anti-TNFα, and JAK inhibitors], we unraveled the crosstalk between IFN-I and TNFα signaling dynamics. Finally, we studied primary immune cells isolated from SLE patients (n = 8) to provide insights into SLE pathophysiology. Results: single-cell IFN-I and TNFα response dynamics display remarkable differences, yet both being highly heterogeneous. Blocking TNFα signaling increases the percentage of IFN-I-producing cells, while blocking IFN-I signaling decreases the percentage of TNFα-producing cells. Single-cell decision-making in SLE patients is dysregulated, pointing towards a dysregulated crosstalk between IFN-I and TNFα response dynamics. Discussion: We provide a solid droplet-based microfluidic platform to study inherent immune secretory behaviors, substantiated by ODE modeling, which can challenge the conceptualization within and between different immune signaling systems. These insights will build towards an improved fundamental understanding on single-cell decision-making in health and disease.


Subject(s)
Autoimmune Diseases , Interferon Type I , Lupus Erythematosus, Systemic , Humans , Tumor Necrosis Factor-alpha , Signal Transduction
5.
Elife ; 122023 01 11.
Article in English | MEDLINE | ID: mdl-36629318

ABSTRACT

Type I interferon (IFN-I)-mediated antiviral responses are central to host defense against viral infections. Crucial is the tight and well-orchestrated control of cellular decision-making leading to the production of IFN-Is. Innovative single-cell approaches revealed that the initiation of IFN-I production is limited to only fractions of 1-3% of the total population, both found in vitro, in vivo, and across cell types, which were thought to be stochastically regulated. To challenge this dogma, we addressed the influence of various stochastic and deterministic host-intrinsic factors on dictating early IFN-I responses, using a murine fibroblast reporter model. Epigenetic drugs influenced the percentage of responding cells. Next, with the classical Luria-Delbrück fluctuation test, we provided evidence for transient heritability driving responder fates, which was verified with mathematical modeling. Finally, while studying varying cell densities, we substantiated an important role for cell density in dictating responsiveness, similar to the phenomenon of quorum sensing. Together, this systems immunology approach opens up new avenues to progress the fundamental understanding on cellular decision-making during early IFN-I responses, which can be translated to other (immune) signaling systems.


When we start to develop a cold, influenza or another viral infection, some of our cells produce signaling molecules known as type I interferons (or IFN-Is for short). These early IFN-I signals establish defenses against viruses in both infected and as yet uninfected cells. If the cells produce too much IFN-Is, however, it can result in uncontrolled inflammation that may harm the body and cause life threatening illness. Individual cells need to tightly control how much IFN-Is they produce and match this with the course of the viral infection. They also need to assess how much IFN-I their neighbors are producing and adjust their behavior accordingly. Cells have evolved a myriad of mechanisms to ensure the right amounts of IFN-Is are produced in different circumstances. Broadly, these mechanisms can be divided into two categories: stochastic regulation and deterministic regulation. Stochastic regulation occurs when individual cells receive the exact same information, but this leads to different outcomes, such as, different cells producing various quantities of IFN-Is. In contrast, deterministic regulation causes the same outcome in different cells independent on the information they receive. It was thought that stochastic regulation is the main driver of early IFN-1 responses, but recently a handful of studies have reported deterministic regulation being primarily responsible, instead. Here, Van Eyndhoven et al. explored the roles of both types of regulation in the early IFN-I responses of mouse cells. Van Eyndhoven et al. used genetic approaches and mathematical modelling to show that the fraction of cells that initiate early IFN-I responses can be considered deterministic. Moreover, this deterministic feature turned out to be heritable, such that the fate to produce IFN-I gets passed on for several generations of cells. Additionally, the experiments suggest that cell density, that is, how tightly packed together the cells are, plays an important role in controlling how many cells make IFN-I, with a lower cell density resulting in a higher fraction of cells producing IFN-Is. The findings of Van Eyndhoven et al. add to a growing body of evidence reporting heritable states that can guide decision-making in individual cells. Furthermore, it revises our view on how individual immune cells coordinate population-wide responses.


Subject(s)
Interferon Type I , Virus Diseases , Mice , Animals , Quorum Sensing/genetics , Interferon Type I/metabolism , Antiviral Agents , Signal Transduction
6.
Adv Biol (Weinh) ; 7(4): e2200207, 2023 04.
Article in English | MEDLINE | ID: mdl-36517083

ABSTRACT

Increasing evidence suggests that natural killer (NK) cells are composed of distinct functional subsets. This multifunctional role has made them an attractive choice for anticancer immunotherapy. A functional NK cell repertoire is generated through cellular education, resulting in a heterogeneous NK cell population with distinct capabilities responding to different stimuli. The application of a high-throughput droplet-based microfluidic platform allows monitoring of NK cell-target cell interactions at the single-cell level and in real-time. A variable response of single NK cells toward different target cells is observed, and a distinct population of NK cells (serial killers) capable of inducing multiple target lysis is identified. By assessing the cytotoxic dynamics, it is shown that single umbilical cord blood-derived CD34+ hematopoietic progenitor (HPC)-NK cells display superior antitumor cytotoxicity. With an integrated analysis of cytotoxicity and cytokine secretion, it is shown that target cell interactions augment cytotoxic as well as secretory behavior of NK cells. By providing an integrated assessment of NK cell functions by microfluidics, this study paves the way to further functionally characterize NK cells ultimately aimed to improve cancer immunotherapy.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural , Humans , Cells, Cultured , Cell Differentiation , Antigens, CD34
7.
Front Immunol ; 12: 672729, 2021.
Article in English | MEDLINE | ID: mdl-33995415

ABSTRACT

Plasmacytoid dendritic cells (pDCs) are a rare type of highly versatile immune cells that besides their specialized function of massive type I interferon (IFN-I) production are able to exert cytotoxic effector functions. However, diversification upon toll like receptor (TLR)-induced activation leads to highly heterogeneous responses that have not been fully characterized yet. Using droplet-based microfluidics, we showed that upon TLR7/8 and TLR9-induced single-cell activation only 1-3% secretes IFNα, and only small fractions upregulate cytotoxicity markers. Interestingly, this 1-3% of early IFN-producing pDCs, also known as first responders, express high levels of programmed death-ligand 1 (PD-L1) and TNF-related apoptosis-inducing ligand (TRAIL), which makes these hybrid cells similar to earlier described IFN-I producing killer pDCs (IKpDCs). IFN-I priming increases the numbers of IFNα producing cells up to 40%, but does not significantly upregulate the cytotoxicity markers. Besides, these so-called second responders do not show a cytotoxic phenotype as potent as observed for the first responders. Overall, our results indicate that the first responders are the key drivers orchestrating population wide IFN-I responses and possess high cytotoxic potential.


Subject(s)
Cytotoxicity, Immunologic/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon-alpha/biosynthesis , Microfluidic Analytical Techniques/methods , Humans , Phenotype
8.
Sci Rep ; 11(1): 17084, 2021 08 24.
Article in English | MEDLINE | ID: mdl-34429486

ABSTRACT

Cytotoxicity is a vital effector mechanism used by immune cells to combat pathogens and cancer cells. While conventional cytotoxicity assays rely on averaged end-point measures, crucial insights on the dynamics and heterogeneity of effector and target cell interactions cannot be extracted, emphasizing the need for dynamic single-cell analysis. Here, we present a fully automated droplet-based microfluidic platform that allowed the real-time monitoring of effector-target cell interactions and killing, allowing the screening of over 60,000 droplets identifying 2000 individual cellular interactions monitored over 10 h. During the course of incubation, we observed that the dynamics of cytotoxicity within the Natural Killer (NK) cell population varies significantly over the time. Around 20% of the total NK cells in droplets showed positive cytotoxicity against paired K562 cells, most of which was exhibited within first 4 h of cellular interaction. Using our single cell analysis platform, we demonstrated that the population of NK cells is composed of individual cells with different strength in their effector functions, a behavior masked in conventional studies. Moreover, the versatility of our platform will allow the dynamic and resolved study of interactions between immune cell types and the finding and characterization of functional sub-populations, opening novel ways towards both fundamental and translational research.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , Lab-On-A-Chip Devices , Microfluidics/methods , Single-Cell Analysis/methods , Automation, Laboratory/methods , Cells, Cultured , Humans , K562 Cells
SELECTION OF CITATIONS
SEARCH DETAIL