Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Ann Neurol ; 2024 Oct 28.
Article in English | MEDLINE | ID: mdl-39467011

ABSTRACT

OBJECTIVE: X-linked adrenoleukodystrophy (ALD) is caused by mutations in ABCD1, a peroxisomal gene. More than half of males with an ABCD1 mutation develop inflammatory cerebral demyelination (cALD), but underlying mechanisms remain unknown and therapies are limited. We sought to develop and characterize a mouse model of cALD to facilitate study of disease mechanisms and therapy development. METHODS: We used immunoassays and immunohistochemistry to assess novel (interleukin 18 [IL-18]) and established molecular markers in cerebrospinal fluid (CSF) and postmortem brain tissue from cALD patients. We generated a cALD phenotype in Abcd1-knockout mice using a 2-hit method that combines cuprizone and experimental autoimmune encephalomyelitis models. We then used magnetic resonance imaging (MRI) and immunohistochemistry to assess the fidelity of cALD molecular markers in the mice. RESULTS: Human and mouse cALD lesions shared histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-knockout mice displayed more cerebral demyelination, blood-brain barrier disruption, and perivascular immune cell infiltration. This enhanced inflammatory response was associated with higher levels of fibrin deposition, oxidative stress, demyelination, and axonal injury. IL-18 immunoreactivity co-localized with perivascular monocytes/macrophages in both human and mouse brain tissue. In cALD patients, CSF IL-18 levels correlated with MRI lesion severity. INTERPRETATION: Our results suggest loss of Abcd1 function in mice predisposes to more severe blood-brain barrier disruption, cerebral inflammation driven by the infiltration of peripheral immune cells, demyelination, and axonal damage, replicating human cALD features. This novel mouse model could shed light on cALD mechanisms and accelerate cALD therapy development. ANN NEUROL 2024.

2.
Mol Genet Metab ; 142(1): 108453, 2024 May.
Article in English | MEDLINE | ID: mdl-38522179

ABSTRACT

Growing interest in therapeutic development for rare diseases necessitate a systematic approach to the collection and curation of natural history data that can be applied consistently across this group of heterogenous rare diseases. In this study, we discuss the challenges facing natural history studies for leukodystrophies and detail a novel standardized approach to creating a longitudinal natural history study using existing medical records. Prospective studies are uniquely challenging for rare diseases. Delays in diagnosis and overall rarity limit the timely collection of natural history data. When feasible, prospective studies are often cross-sectional rather than longitudinal and are unlikely to capture pre- or early- symptomatic disease trajectories, limiting their utility in characterizing the full natural history of the disease. Therapeutic development in leukodystrophies is subject to these same obstacles. The Global Leukodystrophy Initiative Clinical Trials Network (GLIA-CTN) comprises of a network of research institutions across the United States, supported by a multi-center biorepository protocol, to map the longitudinal clinical course of disease across leukodystrophies. As part of GLIA-CTN, we developed Standard Operating Procedures (SOPs) that delineated all study processes related to staff training, source documentation, and data sharing. Additionally, the SOP detailed the standardized approach to data extraction including diagnosis, clinical presentation, and medical events, such as age at gastrostomy tube placement. The key variables for extraction were selected through face validity, and common electronic case report forms (eCRF) across leukodystrophies were created to collect analyzable data. To enhance the depth of the data, clinical notes are extracted into "original" and "imputed" encounters, with imputed encounter referring to a historic event (e.g., loss of ambulation 3 months prior). Retrospective Functional Assessments were assigned by child neurologists, using a blinded dual-rater approach and score discrepancies were adjudicated by a third rater. Upon completion of extraction, data source verification is performed. Data missingness was evaluated using statistics. The proposed methodology will enable us to leverage existing medical records to address the persistent gap in natural history data within this unique disease group, allow for assessment of clinical trajectory both pre- and post-formal diagnosis, and promote recruitment of larger cohorts.


Subject(s)
Rare Diseases , Humans , Rare Diseases/diagnosis , Rare Diseases/therapy , Rare Diseases/epidemiology , Longitudinal Studies , United States , Prospective Studies
3.
Mol Genet Metab ; 143(1-2): 108578, 2024.
Article in English | MEDLINE | ID: mdl-39332260

ABSTRACT

OBJECTIVE: Aicardi Goutières Syndrome (AGS) is a rare genetic interferonopathy associated with diverse multisystemic complications. A critical gap exists in our understanding of its longitudinal, systemic disease burden, complicated by delayed diagnosis. To address this need, real-world data extracted from existing medical records were used to characterize the longitudinal disease burden. METHODS: All subjects (n = 167) with genetically confirmed AGS enrolled in the Myelin Disorders Biorepository Project (MDBP) were included. As available in medical records, information was collected on subject demographics, age of onset, and disease complications. Information from published cases of AGS (2007-2022; n = 129) with individual-level data was also collected. Neurologic severity at the last available encounter was determined by retrospectively assigning the AGS Severity Scale [severe (0-3), moderate (4-8), and mild (9-11)]. RESULTS: The genotype frequency in the natural history cohort was TREX1 (n = 26, 15.6 %), RNASEH2B (n = 50, 29.9 %), RNASEH2C (n = 3, 1.8 %), RNASEH2A (n = 7, 4.2 %), SAMHD1 (n = 25, 15.0 %), ADAR (n = 34, 20.4 %), IFIH1 (n = 19, 11.4 %), and RNU7-1 (n = 3, 1.8 %). The median age of systemic onset was 0.15 years [IQR = 0.67 years; median range by genotype: 0 (TREX1) - 0.62 (ADAR) years], while the median neurological onset was 0.33 years [IQR = 0.82 years; median range by genotype: 0.08 (TREX1) - 0.90 (ADAR) year]. The most common early systemic complications were gastrointestinal, including dysphagia or feeding intolerance (n = 124) and liver abnormalities (n = 67). Among postnatal complications, thrombocytopenia appeared earliest (n = 29, median 0.06 years). Tone abnormalities (axial hypotonia: n = 145, 86.8 %; dystonia: n = 123, 73.7 %), irritability (n = 115, 68.9 %), and gross motor delay (n = 112, 7.1 %) emerged as the most prevalent neurological symptoms. Previously published case reports demonstrated similar patterns. The median AGS score for the entire cohort was 4 (IQR = 7). The most severe neurologic phenotype occurred in TREX1-related AGS (n = 19, median AGS severity score 2, IQR = 2). Time to feeding tube placement, chilblains, early gross motor delay, early cognitive delay, and motor regression were significantly associated with genotype (Fleming-Harrington log-rank: p = 0.0002, p < 0.0001, p = 0.0038, p < 0.0001, p = 0.0001, respectively). Microcephaly, feeding tube placement, and seizures were associated with lower AGS scores (All: Wilcoxon rank sum test, p < 0.0001). Among the qualifying case reports (n = 129), tone abnormalities were the most prevalent disease feature, with spastic quadriplegia reported in 37 of 96 cases (38.5 %) and dystonia in 30 of 96 cases (31.2 %). CONCLUSIONS: AGS is a heterogeneous disease with multi-organ system dysfunction that compounds throughout the clinical course, resulting in profound neurological and extra-neurological disease impact. Systemic symptoms precede neurologic disease features in most cases. Disease onset before the age of one year, microcephaly, feeding tube placement, and seizures were associated with worse neurological outcomes. This work will inform evidence-based clinical monitoring guidelines and clinical trial design.


Subject(s)
Autoimmune Diseases of the Nervous System , Nervous System Malformations , Humans , Nervous System Malformations/genetics , Nervous System Malformations/complications , Nervous System Malformations/epidemiology , Female , Male , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/complications , Child, Preschool , Infant , Child , Phosphoproteins/genetics , Exodeoxyribonucleases/genetics , Retrospective Studies , Adolescent , Ribonuclease H/genetics , SAM Domain and HD Domain-Containing Protein 1/genetics , Genotype , Severity of Illness Index , Mutation , Interferon-Induced Helicase, IFIH1/genetics
4.
Mol Genet Metab ; 142(4): 108521, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964050

ABSTRACT

OBJECTIVE: Metachromatic leukodystrophy (MLD) is a rare neurodegenerative disorder. Emerging therapies are most effective in the presymptomatic phase, and thus defining this window is critical. We hypothesize that early development delay may precede developmental plateau. With the advent of presymptomatic screening platforms and transformative therapies, it is essential to define the onset of neurologic disease. METHODS: The specific ages of gain and loss of developmental milestones were captured from the medical records of individuals affected by MLD. Milestone acquisition was characterized as: on target (obtained before the age limit of 90th percentile plus 2 standard deviations compared to a normative dataset), delayed (obtained after 90th percentile plus 2 standard deviations), or plateau (skills never gained). Regression was defined as the age at which skills were lost. LI-MLD was defined by age at onset before 2.5 years. RESULTS: Across an international cohort, 351 subjects were included (n = 194 LI-MLD subcohort). The median age at presentation of the LI-MLD cohort was 1.4 years (25th-75th %ile: 1.0-1.5). Within the LI-MLD cohort, 75/194 (39%) had developmental delay (or plateau) prior to MLD clinical presentation. Among the LI-MLD cohort with a minimum of 1.5 years of follow-up (n = 187), 73 (39.0%) subjects never attained independent ambulation. Within LI-MLD + delay subcohort, the median time between first missed milestone target to MLD decline was 0.60 years (maximum distance from delay to onset: 1.9 years). INTERPRETATION: Early developmental delay precedes regression in a subset of children affected by LI-MLD, defining the onset of neurologic dysfunction earlier than previously appreciated. The use of realworld data prior to diagnosis revealed an early deviation from typical development. Close monitoring for early developmental delay in presymptomatic individuals may help in earlier diagnosis with important consequences for treatment decisions.


Subject(s)
Age of Onset , Developmental Disabilities , Leukodystrophy, Metachromatic , Humans , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/pathology , Leukodystrophy, Metachromatic/genetics , Developmental Disabilities/diagnosis , Male , Female , Child, Preschool , Infant , Child , Adolescent , Cohort Studies , Disease Progression
5.
Cytotherapy ; 26(7): 739-748, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38613540

ABSTRACT

Metachromatic leukodystrophy (MLD) is a fatal, progressive neurodegenerative disorder caused by biallelic pathogenic mutations in the ARSA (Arylsulfatase A) gene. With the advent of presymptomatic diagnosis and the availability of therapies with a narrow window for intervention, it is critical to define a standardized approach to diagnosis, presymptomatic monitoring, and clinical care. To meet the needs of the MLD community, a panel of MLD experts was established to develop disease-specific guidelines based on healthcare resources in the United States. This group developed a consensus opinion for best-practice recommendations, as follows: (i) Diagnosis should include both genetic and biochemical testing; (ii) Early diagnosis and treatment for MLD is associated with improved clinical outcomes; (iii) The panel supported the development of newborn screening to accelerate the time to diagnosis and treatment; (iv) Clinical management of MLD should include specialists familiar with the disease who are able to follow patients longitudinally; (v) In early onset MLD, including late infantile and early juvenile subtypes, ex vivo gene therapy should be considered for presymptomatic patients where available; (vi) In late-onset MLD, including late juvenile and adult subtypes, hematopoietic cell transplant (HCT) should be considered for patients with no or minimal disease involvement. This document summarizes current guidance on the presymptomatic monitoring of children affected by MLD as well as the clinical management of symptomatic patients. Future data-driven evidence and evolution of these recommendations will be important to stratify clinical treatment options and improve clinical care.


Subject(s)
Leukodystrophy, Metachromatic , Humans , Infant, Newborn , Cerebroside-Sulfatase/genetics , Consensus , Genetic Therapy/methods , Leukodystrophy, Metachromatic/therapy , Leukodystrophy, Metachromatic/diagnosis , Leukodystrophy, Metachromatic/genetics , Neonatal Screening/methods , United States
6.
J Neurosci Res ; 101(7): 1086-1097, 2023 07.
Article in English | MEDLINE | ID: mdl-36967233

ABSTRACT

One-third of boys with X-linked adrenoleukodystrophy (ALD) develop inflammatory demyelinating lesions, typically at the splenium. These lesions share similarities with multiple sclerosis, including cerebral hypoperfusion and links to vitamin D insufficiency. We hypothesized that increasing vitamin D levels would increase cerebral blood flow (CBF) in ALD boys. We conducted an exploratory analysis of vitamin D supplementation and CBF using all available data from participants enrolled in a recent single-arm interventional study of vitamin D supplementation in boys with ALD. We measured whole brain and splenium CBF using arterial spin labeling (ASL) from three study time points (baseline, 6 months, and 12 months). We used linear generalized estimating equations to evaluate CBF changes between time points and to test for an association between CBF and vitamin D. ASL data were available for 16 participants, aged 2-22 years. Mean vitamin D levels increased by 72.7% (p < .001) after 6 months and 88.6% (p < .01) after 12 months. Relative to baseline measures, mean CBF of the whole brain (6 months: +2.5%, p = .57; 12 months: +6.1%, p = .18) and splenium (6 months: +1.2%, p = .80; 12 months: +7.4%, p = .058) were not significantly changed. Vitamin D levels were positively correlated with CBF in the splenium (slope = .59, p < .001). In this exploratory analysis, we observed a correlation between vitamin D levels and splenial CBF in ALD boys. We confirm the feasibility of measuring CBF in this brain region and population, but further work is needed to establish a causal role for vitamin D in modulating CBF.


Subject(s)
Adrenoleukodystrophy , Humans , Male , Adrenoleukodystrophy/drug therapy , Brain/diagnostic imaging , Brain/blood supply , Cerebrovascular Circulation/physiology , Spin Labels , Vitamin D , Dietary Supplements , Magnetic Resonance Imaging
7.
Lancet ; 397(10271): 334-346, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33357469

ABSTRACT

Acute flaccid myelitis (AFM) is a disabling, polio-like illness mainly affecting children. Outbreaks of AFM have occurred across multiple global regions since 2012, and the disease appears to be caused by non-polio enterovirus infection, posing a major public health challenge. The clinical presentation of flaccid and often profound muscle weakness (which can invoke respiratory failure and other critical complications) can mimic several other acute neurological illnesses. There is no single sensitive and specific test for AFM, and the diagnosis relies on identification of several important clinical, neuroimaging, and cerebrospinal fluid characteristics. Following the acute phase of AFM, patients typically have substantial residual disability and unique long-term rehabilitation needs. In this Review we describe the epidemiology, clinical features, course, and outcomes of AFM to help to guide diagnosis, management, and rehabilitation. Future research directions include further studies evaluating host and pathogen factors, including investigations into genetic, viral, and immunological features of affected patients, host-virus interactions, and investigations of targeted therapeutic approaches to improve the long-term outcomes in this population.


Subject(s)
Central Nervous System Viral Diseases/diagnostic imaging , Central Nervous System Viral Diseases/rehabilitation , Enterovirus Infections/epidemiology , Muscle Hypotonia , Muscle Weakness , Myelitis/diagnostic imaging , Myelitis/rehabilitation , Neuromuscular Diseases/diagnostic imaging , Neuromuscular Diseases/rehabilitation , Central Nervous System Viral Diseases/cerebrospinal fluid , Central Nervous System Viral Diseases/virology , Child , Enterovirus Infections/cerebrospinal fluid , Enterovirus Infections/complications , Global Health , Humans , Magnetic Resonance Imaging , Muscle Hypotonia/etiology , Muscle Weakness/etiology , Myelitis/cerebrospinal fluid , Myelitis/virology , Neuromuscular Diseases/cerebrospinal fluid , Neuromuscular Diseases/virology , Patient Outcome Assessment
8.
J Pediatr ; 248: 122-125, 2022 09.
Article in English | MEDLINE | ID: mdl-35605645

ABSTRACT

Detailed accounts of long-term respiratory complications among children with acute flaccid myelitis have not been reported systematically. We describe respiratory complications and outcomes in a single-center cohort of 19 children with acute flaccid myelitis. Significantly, 3 of the 19 children had a prolonged course of nocturnal hypoventilation that required intervention.


Subject(s)
Enterovirus D, Human , Enterovirus Infections , Myelitis , Neuromuscular Diseases , Central Nervous System Viral Diseases , Child , Humans , Hypoventilation/complications , Hypoventilation/etiology , Myelitis/diagnosis , Myelitis/etiology , Neuromuscular Diseases/complications
9.
Ann Neurol ; 88(2): 264-273, 2020 08.
Article in English | MEDLINE | ID: mdl-32342562

ABSTRACT

OBJECTIVE: Genome sequencing (GS) is promising for unsolved leukodystrophies, but its efficacy has not been prospectively studied. METHODS: A prospective time-delayed crossover design trial of GS to assess the efficacy of GS as a first-line diagnostic tool for genetic white matter disorders took place between December 1, 2015 and September 27, 2017. Patients were randomized to receive GS immediately with concurrent standard of care (SoC) testing, or to receive SoC testing for 4 months followed by GS. RESULTS: Thirty-four individuals were assessed at interim review. The genetic origin of 2 patient's leukoencephalopathy was resolved before randomization. Nine patients were stratified to the immediate intervention group and 23 patients to the delayed-GS arm. The efficacy of GS was significant relative to SoC in the immediate (5/9 [56%] vs 0/9 [0%]; Wild-Seber, p < 0.005) and delayed (control) arms (14/23 [61%] vs 5/23 [22%]; Wild-Seber, p < 0.005). The time to diagnosis was significantly shorter in the immediate-GS group (log-rank test, p = 0.04). The overall diagnostic efficacy of combined GS and SoC approaches was 26 of 34 (76.5%, 95% confidence interval = 58.8-89.3%) in <4 months, greater than historical norms of <50% over 5 years. Owing to loss of clinical equipoise, the trial design was altered to a single-arm observational study. INTERPRETATION: In this study, first-line GS provided earlier and greater diagnostic efficacy in white matter disorders. We provide an evidence-based diagnostic testing algorithm to enable appropriate clinical GS utilization in this population. ANN NEUROL 2020;88:264-273.


Subject(s)
Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Sequence Analysis, DNA/methods , Child , Child, Preschool , Cross-Over Studies , Female , Humans , Infant , Male , Prospective Studies , White Matter/pathology
10.
J Inherit Metab Dis ; 44(3): 728-739, 2021 05.
Article in English | MEDLINE | ID: mdl-33373467

ABSTRACT

BACKGROUND: Among boys with X-Linked adrenoleukodystrophy, a subset will develop childhood cerebral adrenoleukodystrophy (CCALD). CCALD is typically lethal without hematopoietic stem cell transplant before or soon after symptom onset. We sought to establish evidence-based guidelines detailing the neuroimaging surveillance of boys with neurologically asymptomatic adrenoleukodystrophy. METHODS: To establish the most frequent age and diagnostic neuroimaging modality for CCALD, we completed a meta-analysis of relevant studies published between January 1, 1970 and September 10, 2019. We used the consensus development conference method to incorporate the resulting data into guidelines to inform the timing and techniques for neuroimaging surveillance. Final guideline agreement was defined as >80% consensus. RESULTS: One hundred twenty-three studies met inclusion criteria yielding 1285 patients. The overall mean age of CCALD diagnosis is 7.91 years old. The median age of CCALD diagnosis calculated from individual patient data is 7.0 years old (IQR: 6.0-9.5, n = 349). Ninety percent of patients were diagnosed between 3 and 12. Conventional MRI was most frequently reported, comprised most often of T2-weighted and contrast-enhanced T1-weighted MRI. The expert panel achieved 95.7% consensus on the following surveillance parameters: (a) Obtain an MRI between 12 and 18 months old. (b) Obtain a second MRI 1 year after baseline. (c) Between 3 and 12 years old, obtain a contrast-enhanced MRI every 6 months. (d) After 12 years, obtain an annual MRI. CONCLUSION: Boys with adrenoleukodystrophy identified early in life should be monitored with serial brain MRIs during the period of highest risk for conversion to CCALD.


Subject(s)
Adrenoleukodystrophy/diagnosis , Magnetic Resonance Imaging , Child , Child, Preschool , Consensus Development Conferences as Topic , Humans , Infant , Infant, Newborn , Male , Neonatal Screening/methods
11.
Brain ; 143(2): 503-511, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31840744

ABSTRACT

Adult-onset leukoencephalopathy with spheroids and pigmented glia (ALSP) is an autosomal dominant leukoencephalopathy caused by mutations in colony stimulating factor 1 receptor (CSF1R). Here we report clinical and imaging outcomes following allogeneic haematopoietic stem cell transplantation (HSCT) in two patients with ALSP at the University of California, San Francisco between January 2016 and December 2017. Patient 1 proceeded to transplantation at age 53 with a haplo-identical sibling donor. Patient 2, whose sister and mother had died of the disease, proceeded to transplantation at age 49 with a 12/12 human leukocyte antigen-matched unrelated donor. Both patients received reduced intensity conditioning regimens. At 28 and 26 months post-HSCT, respectively, both patients were alive, without evidence of graft-versus-host disease, with major infection at 1 year in one and new-onset seizures in the other. In both cases, neurological worsening continued post-HSCT; however, the progression in cognitive deficits, overall functional status and gait impairment gradually stabilized. There was continued progression of parkinsonism in both patients. On brain MRI, within 1 year there was stabilization of T2/FLAIR abnormalities, and after 2 years there was complete resolution of abnormal multifocal reduced diffusion. In summary, after >2 years of follow-up, allogeneic HSCT in ALSP led to interval resolution of diffusion MRI abnormalities, stabilization of T2/FLAIR MRI abnormalities, and partial clinical stabilization, supportive of treatment response. Allogeneic HSCT may be beneficial in ALSP by providing a supply of bone marrow-derived brain-engrafting myeloid cells with donor wild-type CSF1R to repopulate the microglial niche.


Subject(s)
Brain/physiopathology , Leukoencephalopathies/genetics , Microglia/pathology , Neuroglia/cytology , Cognition Disorders/pathology , Cognition Disorders/physiopathology , Disease Progression , Female , Humans , Leukoencephalopathies/therapy , Male , Middle Aged , Mutation/genetics , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
12.
Mol Genet Metab ; 122(3): 134-139, 2017 11.
Article in English | MEDLINE | ID: mdl-28739201

ABSTRACT

BACKGROUND: Aicardi Goutières Syndrome (AGS) is a heritable interferonopathy associated with systemic autoinflammation causing interferon (IFN) elevation, central nervous system calcifications, leukodystrophy and severe neurologic sequelae. An infant with TREX1 mutations was recently found to have abnormal C26:0 lysophosphatidylcholine (C26:0 Lyso-PC) in a newborn screening platform for X-linked adrenoleukodystrophy, prompting analysis of this analyte in retrospectively collected samples from individuals affected by AGS. METHODS: In this study, we explored C26:0 Lyso-PC levels and IFN signatures in newborn blood spots and post-natal blood samples in 19 children with a molecular and clinical diagnosis of AGS and in the blood spots of 22 healthy newborns. We used Nanostring nCounter™ for IFN-induced gene analysis and a high-performance liquid chromatography with tandem mass spectrometry (HPLC MS/MS) newborn screening platform for C26:0 Lyso-PC analysis. RESULTS: Newborn screening cards from patients across six AGS associated genes were collected, with a median disease presentation of 2months. Thirteen out of 19 (68%) children with AGS had elevations of first tier C26:0 Lyso-PC (>0.4µM), that would have resulted in a second screen being performed in a two tier screening system for X-linked adrenoleukodystrophy (X-ALD). The median (95%CI) of first tier C26:0 Lyso-PC values in AGS individuals (0.43µM [0.37-0.48]) was higher than that seen in controls (0.21µM [0.21-0.21]), but lower than X-ALD individuals (0.72µM [0.59-0.84])(p<0.001). Fourteen of 19 children had elevated expression of IFN signaling on blood cards relative to controls (Sensitivity 73.7%, 95%CI 51-88%, Specificity 95%, 95% CI 78-99%) including an individual with delayed disease presentation (36months of age). All five AGS patients with negative IFN signature at birth had RNASEH2B mutations. Consistency of agreement between IFN signature in neonatal and post-natal samples was high (0.85). CONCLUSION: This suggests that inflammatory markers in AGS can be identified in the newborn period, before symptom onset. Additionally, since C26:0 Lyso-PC screening is currently used in X-ALD newborn screening panels, clinicians should be alert to the fact that AGS infants may present as false positives during X-ALD screening.


Subject(s)
Autoimmune Diseases of the Nervous System/blood , Autoimmune Diseases of the Nervous System/diagnosis , Interferons/blood , Lysophosphatidylcholines/blood , Neonatal Screening/methods , Nervous System Malformations/blood , Nervous System Malformations/diagnosis , Autoimmune Diseases of the Nervous System/genetics , Autoimmune Diseases of the Nervous System/physiopathology , Child, Preschool , Chromatography, High Pressure Liquid , Chromatography, Liquid , Dried Blood Spot Testing/methods , Exodeoxyribonucleases/genetics , Female , Humans , Infant , Infant, Newborn , Inflammation/blood , Inflammation/genetics , Interferons/genetics , Male , Mutation , Nervous System Malformations/genetics , Nervous System Malformations/physiopathology , Phosphoproteins/genetics , Retrospective Studies , Sensitivity and Specificity , Tandem Mass Spectrometry , Transcriptome/immunology
13.
Mol Genet Metab ; 122(1-2): 18-32, 2017 09.
Article in English | MEDLINE | ID: mdl-28863857

ABSTRACT

Leukodystrophies are a broad class of genetic disorders that result in disruption or destruction of central myelination. Although the mechanisms underlying these disorders are heterogeneous, there are many common symptoms that affect patients irrespective of the genetic diagnosis. The comfort and quality of life of these children is a primary goal that can complement efforts directed at curative therapies. Contained within this report is a systems-based approach to management of complications that result from leukodystrophies. We discuss the initial evaluation, identification of common medical issues, and management options to establish a comprehensive, standardized care approach. We will also address clinical topics relevant to select leukodystrophies, such as gallbladder pathology and adrenal insufficiency. The recommendations within this review rely on existing studies and consensus opinions and underscore the need for future research on evidence-based outcomes to better treat the manifestations of this unique set of genetic disorders.


Subject(s)
Demyelinating Diseases/therapy , Hereditary Central Nervous System Demyelinating Diseases/therapy , Leukoencephalopathies/therapy , Lysosomal Storage Diseases/prevention & control , Lysosomal Storage Diseases/therapy , Adrenal Insufficiency/therapy , Adult , Child , Demyelinating Diseases/congenital , Female , Gallbladder/pathology , Genetic Predisposition to Disease , Humans , Leukoencephalopathies/congenital , Male , Quality of Life
14.
Ann Neurol ; 80(3): 326-38, 2016 09.
Article in English | MEDLINE | ID: mdl-27422805

ABSTRACT

This review highlights clinical features of the increasing cases of acute flaccid paralysis associated with anterior myelitis noted in the United States from 2012 to 2015. Acute flaccid myelitis refers to acute flaccid limb weakness with spinal cord gray matter lesions on imaging or evidence of spinal cord motor neuron injury on electrodiagnostic testing. Although some individuals demonstrated improvement in motor weakness and functional deficits, most have residual weakness a year or more after onset. Epidemiological evidence and biological plausibility support an association between enterovirus D68 and the recent increase in acute flaccid myelitis cases in the United States. Ann Neurol 2016;80:326-338.


Subject(s)
Enterovirus D, Human/pathogenicity , Enterovirus Infections/complications , Motor Neurons , Myelitis , Paralysis , Child , Humans , Motor Neurons/pathology , Myelitis/diagnostic imaging , Myelitis/etiology , Myelitis/physiopathology , Paralysis/diagnostic imaging , Paralysis/etiology , Paralysis/physiopathology , United States
15.
Ann Neurol ; 79(3): 379-86, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26642834

ABSTRACT

OBJECTIVE: Succinate dehydrogenase-deficient leukoencephalopathy is a complex II-related mitochondrial disorder for which the clinical phenotype, neuroimaging pattern, and genetic findings have not been comprehensively reviewed. METHODS: Nineteen individuals with succinate dehydrogenase deficiency-related leukoencephalopathy were reviewed for neuroradiological, clinical, and genetic findings as part of institutional review board-approved studies at Children's National Health System (Washington, DC) and VU University Medical Center (Amsterdam, the Netherlands). RESULTS: All individuals had signal abnormalities in the central corticospinal tracts and spinal cord where imaging was available. Other typical findings were involvement of the cerebral hemispheric white matter with sparing of the U fibers, the corpus callosum with sparing of the outer blades, the basis pontis, middle cerebellar peduncles, and cerebellar white matter, and elevated succinate on magnetic resonance spectroscopy (MRS). The thalamus was involved in most studies, with a predilection for the anterior nucleus, pulvinar, and geniculate bodies. Clinically, infantile onset neurological regression with partial recovery and subsequent stabilization was typical. All individuals had mutations in SDHA, SDHB, or SDHAF1, or proven biochemical defect. INTERPRETATION: Succinate dehydrogenase deficiency is a rare leukoencephalopathy, for which improved recognition by magnetic resonance imaging (MRI) in combination with advanced sequencing technologies allows noninvasive diagnostic confirmation. The MRI pattern is characterized by cerebral hemispheric white matter abnormalities with sparing of the U fibers, corpus callosum involvement with sparing of the outer blades, and involvement of corticospinal tracts, thalami, and spinal cord. In individuals with infantile regression and this pattern of MRI abnormalities, the differential diagnosis should include succinate dehydrogenase deficiency, in particular if MRS shows elevated succinate.


Subject(s)
Leukoencephalopathies/enzymology , Leukoencephalopathies/pathology , Magnetic Resonance Imaging/methods , Spinal Cord/pathology , Succinate Dehydrogenase/deficiency , Thalamus/pathology , Female , Humans , Infant , Infant, Newborn , Male , Pyramidal Tracts/enzymology , Pyramidal Tracts/pathology , Spinal Cord/enzymology , Thalamus/enzymology
16.
Hum Mutat ; 36(1): 69-78, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25265257

ABSTRACT

KIF1A is a neuron-specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type-2. Here, we report 11 heterozygous de novo missense mutations (p.S58L, p.T99M, p.G102D, p.V144F, p.R167C, p.A202P, p.S215R, p.R216P, p.L249Q, p.E253K, and p.R316W) in KIF1A in 14 individuals, including two monozygotic twins. Two mutations (p.T99M and p.E253K) were recurrent, each being found in unrelated cases. All these de novo mutations are located in the motor domain (MD) of KIF1A. Structural modeling revealed that they alter conserved residues that are critical for the structure and function of the MD. Transfection studies suggested that at least five of these mutations affect the transport of the MD along axons. Individuals with de novo mutations in KIF1A display a phenotype characterized by cognitive impairment and variable presence of cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, and epilepsy. Our findings thus indicate that de novo missense mutations in the MD of KIF1A cause a phenotype that overlaps with, while being more severe, than that associated with recessive mutations in the same gene.


Subject(s)
Cognition Disorders/genetics , Kinesins/chemistry , Kinesins/genetics , Nervous System Diseases/genetics , Paraparesis, Spastic/genetics , Adolescent , Adult , Child , Child, Preschool , Cognition Disorders/pathology , Epilepsy/genetics , Epilepsy/pathology , Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Male , Models, Molecular , Mutation, Missense , Nervous System Diseases/pathology , Paraparesis, Spastic/pathology , Peripheral Nervous System Diseases/genetics , Peripheral Nervous System Diseases/pathology , Protein Structure, Tertiary , Young Adult
17.
Mol Genet Metab ; 114(4): 516-26, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25577286

ABSTRACT

Leukodystrophies are inherited disorders whose primary pathophysiology consists of abnormal deposition or progressive disruption of brain myelin. Leukodystrophy patients manifest many of the same symptoms and medical complications despite the wide spectrum of genetic origins. Although no definitive cures exist, all of these conditions are treatable. This report provides the first expert consensus on the recognition and treatment of medical and psychosocial complications associated with leukodystrophies. We include a discussion of serious and potentially preventable medical complications and propose several preventive care strategies. We also outline the need for future research to prioritize clinical needs and subsequently develop, validate, and optimize specific care strategies.


Subject(s)
Demyelinating Diseases , Leukoencephalopathies , Demyelinating Diseases/diagnosis , Demyelinating Diseases/therapy , Disease Management , Humans , Leukoencephalopathies/diagnosis , Leukoencephalopathies/therapy , Myelin Sheath/physiology
18.
Mol Genet Metab ; 114(4): 527-36, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25684057

ABSTRACT

Leukodystrophies are a heterogeneous, often progressive group of disorders manifesting a wide range of symptoms and complications. Most of these disorders have historically had no etiologic or disease specific therapeutic approaches. Recently, a greater understanding of the pathologic mechanisms associated with leukodystrophies has allowed clinicians and researchers to prioritize treatment strategies and advance research in therapies for specific disorders, some of which are on the verge of pilot or Phase I/II clinical trials. This shifts the care of leukodystrophy patients from the management of the complex array of symptoms and sequelae alone to targeted therapeutics. The unmet needs of leukodystrophy patients still remain an overwhelming burden. While the overwhelming consensus is that these disorders collectively are symptomatically treatable, leukodystrophy patients are in need of advanced therapies and if possible, a cure.


Subject(s)
Demyelinating Diseases/therapy , Hereditary Central Nervous System Demyelinating Diseases/therapy , Leukodystrophy, Metachromatic/therapy , Leukoencephalopathies/therapy , Brain Diseases/prevention & control , Brain Diseases/therapy , Demyelinating Diseases/prevention & control , Hereditary Central Nervous System Demyelinating Diseases/prevention & control , Humans , Leukodystrophy, Metachromatic/prevention & control , Leukoencephalopathies/prevention & control
19.
JAMA ; 314(24): 2663-71, 2015.
Article in English | MEDLINE | ID: mdl-26720027

ABSTRACT

IMPORTANCE: There has been limited surveillance for acute flaccid paralysis in North America since the regional eradication of poliovirus. In 2012, the California Department of Public Health received several reports of acute flaccid paralysis cases of unknown etiology. OBJECTIVE: To quantify disease incidence and identify potential etiologies of acute flaccid paralysis cases with evidence of spinal motor neuron injury. DESIGN, SETTING, AND PARTICIPANTS: Case series of acute flaccid paralysis in patients with radiological or neurophysiological findings suggestive of spinal motor neuron involvement reported to the California Department of Public Health with symptom onset between June 2012 and July 2015. Patients meeting diagnostic criteria for other acute flaccid paralysis etiologies were excluded. Cerebrospinal fluid, serum samples, nasopharyngeal swab specimens, and stool specimens were submitted to the state laboratory for infectious agent testing. MAIN OUTCOMES AND MEASURES: Case incidence and infectious agent association. RESULTS: Fifty-nine cases were identified. Median age was 9 years (interquartile range [IQR], 4-14 years; 50 of the cases were younger than 21 years). Symptoms that preceded or were concurrent included respiratory or gastrointestinal illness (n = 54), fever (n = 47), and limb myalgia (n = 41). Fifty-six patients had T2 hyperintensity of spinal gray matter on magnetic resonance imaging and 43 patients had cerebrospinal fluid pleocytosis. During the course of the initial hospitalization, 42 patients received intravenous steroids; 43, intravenous immunoglobulin; and 13, plasma exchange; or a combination of these treatments. Among 45 patients with follow-up data, 38 had persistent weakness at a median follow-up of 9 months (IQR, 3-12 months). Two patients, both immunocompromised adults, died within 60 days of symptom onset. Enteroviruses were the most frequently detected pathogen in either nasopharynx swab specimens, stool specimens, serum samples (15 of 45 patients tested). No pathogens were isolated from the cerebrospinal fluid. The incidence of reported cases was significantly higher during a national enterovirus D68 outbreak occurring from August 2014 through January 2015 (0.16 cases per 100,000 person-years) compared with other monitoring periods (0.028 cases per 100,000 person-years; P <.001). CONCLUSIONS AND RELEVANCE: In this series of patients identified in California from June 2012 through July 2015, clinical manifestations indicated a rare but distinct syndrome of acute flaccid paralysis with evidence of spinal motor neuron involvement. The etiology remains undetermined, most patients were children and young adults, and motor weakness was prolonged.


Subject(s)
Motor Neurons , Muscle Hypotonia/epidemiology , Myelitis/epidemiology , Adolescent , Age Distribution , California/epidemiology , Child , Child, Preschool , Electromyography , Female , Humans , Immunoglobulins, Intravenous/therapeutic use , Incidence , Injections, Intravenous/statistics & numerical data , Magnetic Resonance Imaging/methods , Male , Muscle Hypotonia/cerebrospinal fluid , Muscle Hypotonia/therapy , Myelitis/cerebrospinal fluid , Myelitis/etiology , Myelitis/therapy , Plasma Exchange/statistics & numerical data , Recovery of Function , Retrospective Studies , Sex Distribution , Steroids/administration & dosage , Young Adult
20.
MMWR Morb Mortal Wkly Rep ; 63(40): 903-6, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25299608

ABSTRACT

In August 2012, the California Department of Public Health (CDPH) was contacted by a San Francisco Bay area clinician who requested poliovirus testing for an unvaccinated man aged 29 years with acute flaccid paralysis (AFP) associated with anterior myelitis (i.e., evidence of inflammation of the spinal cord involving the grey matter including anterior horn cell bodies) and no history of international travel during the month before symptom onset. Within 2 weeks, CDPH had received reports of two additional cases of AFP with anterior myelitis of unknown etiology. Testing at CDPH's Viral and Rickettsial Disease Laboratory for stool, nasopharyngeal swab, and cerebrospinal fluid (CSF) did not detect the presence of an enterovirus (EV), the genus of the family Picornaviridae that includes poliovirus. Additional laboratory testing for infectious diseases conducted at the CDPH Viral and Rickettsial Disease Laboratory did not identify a causative agent to explain the observed clinical syndrome reported among the patients. To identify other cases of AFP with anterior myelitis and elucidate possible common etiologies, CDPH posted alerts in official communications for California local health departments during December 2012, July 2013, and February 2014. Reports of cases of neurologic illness received by CDPH were investigated throughout this period, and clinicians were encouraged to submit clinical samples for testing. A total of 23 cases of AFP with anterior myelitis of unknown etiology were identified. Epidemiologic and laboratory investigation did not identify poliovirus infection as a possible cause for the observed cases. No common etiology was identified to explain the reported cases, although EV-D68 was identified in upper respiratory tract specimens of two patients. EV infection, including poliovirus infection, should be considered in the differential diagnosis in cases of AFP with anterior myelitis and testing performed per CDC guidelines.


Subject(s)
Anterior Horn Cells , Myelitis/diagnosis , Paralysis/diagnosis , Acute Disease , Adolescent , Adult , Aged , California/epidemiology , Child , Child, Preschool , Diagnosis, Differential , Female , Humans , Infant , Male , Middle Aged , Muscle Hypotonia , Myelitis/epidemiology , Paralysis/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL