Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Immunity ; 44(4): 755-68, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-26992565

ABSTRACT

Tissue-resident macrophages can derive from yolk sac macrophages (YS-Macs), fetal liver monocytes (FL-MOs), or adult bone-marrow monocytes (BM-MOs). The relative capacity of these precursors to colonize a niche, self-maintain, and perform tissue-specific functions is unknown. We simultaneously transferred traceable YS-Macs, FL-MOs, and BM-MOs into the empty alveolar macrophage (AM) niche of neonatal Csf2rb(-/-) mice. All subsets produced AMs, but in competition preferential outgrowth of FL-MOs was observed, correlating with their superior granulocyte macrophage-colony stimulating factor (GM-CSF) reactivity and proliferation capacity. When transferred separately, however, all precursors efficiently colonized the alveolar niche and generated AMs that were transcriptionally almost identical, self-maintained, and durably prevented alveolar proteinosis. Mature liver, peritoneal, or colon macrophages could not efficiently colonize the empty AM niche, whereas mature AMs could. Thus, precursor origin does not affect the development of functional self-maintaining tissue-resident macrophages and the plasticity of the mononuclear phagocyte system is largest at the precursor stage.


Subject(s)
Bone Marrow Cells/cytology , Cell Differentiation/immunology , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Liver/cytology , Macrophages, Alveolar/cytology , Yolk Sac/cytology , Animals , Cell Proliferation , Cytokine Receptor Common beta Subunit/genetics , Liver/embryology , Liver/immunology , Macrophages, Alveolar/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Transcriptome/immunology , Yolk Sac/immunology
2.
Immunity ; 45(3): 626-640, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27637148

ABSTRACT

Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the identity of terminally differentiated cells are designated "terminal selectors." Using BM chimeras, conditional Irf8(fl/fl) mice and various promotors to target Cre recombinase to different stages of monocyte and DC development, we have identified IRF8 as a terminal selector of the cDC1 lineage controlling survival. In monocytes, IRF8 was necessary during early but not late development. Complete or late deletion of IRF8 had no effect on pDC development or survival but altered their phenotype and gene-expression profile leading to increased T cell stimulatory function but decreased type 1 interferon production. Thus, IRF8 differentially controls the survival and function of terminally differentiated monocytes, cDC1s, and pDCs.


Subject(s)
Cell Differentiation/physiology , Dendritic Cells/metabolism , Dendritic Cells/physiology , Interferon Regulatory Factors/metabolism , Transcription Factors/metabolism , Animals , Interferon Type I/metabolism , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Monocytes/physiology , Promoter Regions, Genetic/physiology , T-Lymphocytes/metabolism , T-Lymphocytes/physiology
3.
Cytometry A ; 105(6): 464-473, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38456613

ABSTRACT

Over the past decade, the flow cytometry field has witnessed significant advancements in the number of fluorochromes that can be detected. This enables researchers to analyze more than 40 markers simultaneously on thousands of cells per second. However, with this increased complexity and multiplicity of markers, the manual dispensing of antibodies for flow cytometry experiments has become laborious, time-consuming, and prone to errors. An automated antibody dispensing system could provide a potential solution by enhancing the efficiency, and by improving data quality by faithfully dispensing the fluorochrome-conjugated antibodies and by enabling the easy addition of extra controls. In this study, a comprehensive comparison of different liquid handlers for dispensing fluorochrome-labeled antibodies was conducted for the preparation of flow cytometry stainings. The evaluation focused on key criteria including dispensing time, dead volume, and reliability of dispensing. After benchmarking, the I.DOT, a non-contact liquid handler, was selected and optimized in more detail. In the end, the I.DOT was able to prepare a 25-marker panel in 20 min, including the full stain, all FMOs and all single stain controls for cells and beads. Having all these controls improved the validation of the panel, visualization, and analysis of the data. Thus, automated antibody dispensing by dispensers such as the I.DOT reduces time and errors, enhances data quality, and can be easily integrated in an automated workflow to prepare samples for flow cytometry.


Subject(s)
Antibodies , Flow Cytometry , Fluorescent Dyes , Flow Cytometry/methods , Humans , Antibodies/immunology , Fluorescent Dyes/chemistry , Staining and Labeling/methods , High-Throughput Screening Assays/methods , Automation , Reproducibility of Results
4.
Cytometry A ; 105(2): 88-111, 2024 02.
Article in English | MEDLINE | ID: mdl-37941128

ABSTRACT

The purpose of this document is to provide guidance for establishing and maintaining growth and development of flow cytometry shared resource laboratories. While the best practices offered in this manuscript are not intended to be universal or exhaustive, they do outline key goals that should be prioritized to achieve operational excellence and meet the needs of the scientific community. Additionally, this document provides information on available technologies and software relevant to shared resource laboratories. This manuscript builds on the work of Barsky et al. 2016 published in Cytometry Part A and incorporates recent advancements in cytometric technology. A flow cytometer is a specialized piece of technology that require special care and consideration in its housing and operations. As with any scientific equipment, a thorough evaluation of the location, space requirements, auxiliary resources, and support is crucial for successful operation. This comprehensive resource has been written by past and present members of the International Society for Advancement of Cytometry (ISAC) Shared Resource Laboratory (SRL) Emerging Leaders Program https://isac-net.org/general/custom.asp?page=SRL-Emerging-Leaders with extensive expertise in managing flow cytometry SRLs from around the world in different settings including academia and industry. It is intended to assist in establishing a new flow cytometry SRL, re-purposing an existing space into such a facility, or adding a flow cytometer to an individual lab in academia or industry. This resource reviews the available cytometry technologies, the operational requirements, and best practices in SRL staffing and management.


Subject(s)
Laboratories , Software , Flow Cytometry
5.
Plant Physiol ; 191(2): 986-1001, 2023 02 12.
Article in English | MEDLINE | ID: mdl-36437711

ABSTRACT

Genomic imprinting promotes differential expression of parental alleles in the endosperm of flowering plants and is regulated by epigenetic modification such as DNA methylation and histone tail modifications in chromatin. After fertilization, the endosperm develops through a syncytial stage before it cellularizes and becomes a nutrient source for the growing embryo. Regional compartmentalization has been shown both in early and late endosperm development, and different transcriptional domains suggest divergent spatial and temporal regional functions. The analysis of the role of parent-of-origin allelic expression in the endosperm as a whole and the investigation of domain-specific functions have been hampered by the inaccessibility of the tissue for high-throughput transcriptome analyses and contamination from surrounding tissue. Here, we used fluorescence-activated nuclear sorting (FANS) of nuclear targeted GFP fluorescent genetic markers to capture parental-specific allelic expression from different developmental stages and specific endosperm domains. This approach allowed us to successfully identify differential genomic imprinting with temporal and spatial resolution. We used a systematic approach to report temporal regulation of imprinted genes in the endosperm, as well as region-specific imprinting in endosperm domains. Analysis of our data identified loci that are spatially differentially imprinted in one domain of the endosperm, while biparentally expressed in other domains. These findings suggest that the regulation of genomic imprinting is dynamic and challenge the canonical mechanisms for genomic imprinting.


Subject(s)
DNA Methylation , Endosperm , Endosperm/genetics , Endosperm/metabolism , Alleles , DNA Methylation/genetics , Genomic Imprinting/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant
7.
Plant Physiol ; 188(2): 898-918, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34687312

ABSTRACT

As the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue. To establish the single-cell transcriptomic landscape of these different leaf tissues, we performed high-throughput transcriptome sequencing of individual cells isolated from young leaves of Arabidopsis (Arabidopsis thaliana) seedlings grown in two different environmental conditions. The detection of approximately 19,000 different transcripts in over 1,800 high-quality leaf cells revealed 14 cell populations composing the young, differentiating leaf. Besides the cell populations comprising the core leaf tissues, we identified subpopulations with a distinct identity or metabolic activity. In addition, we proposed cell-type-specific markers for each of these populations. Finally, an intuitive web tool allows for browsing the presented dataset. Our data present insights on how the different cell populations constituting a developing leaf are connected via developmental, metabolic, or stress-related trajectories.


Subject(s)
Arabidopsis/metabolism , Plant Cells/metabolism , Plant Leaves/metabolism , Single-Cell Analysis , Transcriptome , Gene Expression Profiling
8.
Cytometry A ; 101(4): 325-338, 2022 04.
Article in English | MEDLINE | ID: mdl-34549881

ABSTRACT

In cytometry analysis, a large number of markers is measured for thousands or millions of cells, resulting in high-dimensional datasets. During the measurement of these samples, erroneous events can occur such as clogs, speed changes, slow uptake of the sample etc., which can influence the downstream analysis and can even lead to false discoveries. As these issues can be difficult to detect manually, an automated approach is recommended. In order to filter these erroneous events out, we created a novel quality control algorithm, Peak Extraction And Cleaning Oriented Quality Control (PeacoQC), that allows for automated cleaning of cytometry data. The algorithm will determine density peaks per channel on which it will remove low quality events based on their position in the isolation tree and on their mean absolute deviation distance to these density peaks. To evaluate PeacoQC's cleaning capability, it was compared to three other existing quality control algorithms (flowAI, flowClean and flowCut) on a wide variety of datasets. In comparison to the other algorithms, PeacoQC was able to filter out all different types of anomalies in flow, mass and spectral cytometry data, while the other methods struggled with at least one type. In the quantitative comparison, PeacoQC obtained the highest median balanced accuracy and a similar running time compared to the other algorithms while having a better scalability for large files. To ensure that the parameters chosen in the PeacoQC algorithm are robust, the cleaning tool was run on 16 public datasets. After inspection, only one sample was found where the parameters should be further optimized. The other 15 datasets were analyzed correctly indicating a robust parameter choice. Overall, we present a fast and accurate quality control algorithm that outperforms existing tools and ensures high-quality data that can be used for further downstream analysis. An R implementation is available.


Subject(s)
Algorithms , Data Accuracy , Flow Cytometry/methods , Quality Control
9.
Plant Cell ; 31(12): 2868-2887, 2019 12.
Article in English | MEDLINE | ID: mdl-31562216

ABSTRACT

Detailed functional analyses of many fundamentally important plant genes via conventional loss-of-function approaches are impeded by the severe pleiotropic phenotypes resulting from these losses. In particular, mutations in genes that are required for basic cellular functions and/or reproduction often interfere with the generation of homozygous mutant plants, precluding further functional studies. To overcome this limitation, we devised a clustered regularly interspaced short palindromic repeats (CRISPR)-based tissue-specific knockout system, CRISPR-TSKO, enabling the generation of somatic mutations in particular plant cell types, tissues, and organs. In Arabidopsis (Arabidopsis thaliana), CRISPR-TSKO mutations in essential genes caused well-defined, localized phenotypes in the root cap, stomatal lineage, or entire lateral roots. The modular cloning system developed in this study allows for the efficient selection, identification, and functional analysis of mutant lines directly in the first transgenic generation. The efficacy of CRISPR-TSKO opens avenues for discovering and analyzing gene functions in the spatial and temporal contexts of plant life while avoiding the pleiotropic effects of system-wide losses of gene function.


Subject(s)
Arabidopsis/genetics , CRISPR-Cas Systems/genetics , Cloning, Molecular/methods , Gene Knockout Techniques/methods , Mutagenesis , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Genetic Vectors , Organ Specificity/genetics , Phenotype , Plant Root Cap/genetics , Plant Roots/genetics , Plant Stomata/genetics , Promoter Regions, Genetic
10.
Plant Cell ; 30(10): 2330-2351, 2018 10.
Article in English | MEDLINE | ID: mdl-30115738

ABSTRACT

Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/physiology , Plant Roots/genetics , Polyploidy , Arabidopsis/cytology , Arabidopsis/genetics , Cell Size , DNA, Plant , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Cells/physiology , Plant Roots/growth & development , Plants, Genetically Modified , Reproducibility of Results , Spatio-Temporal Analysis , Stress, Physiological/genetics
11.
Plant Cell ; 26(6): 2633-2647, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24963053

ABSTRACT

In Arabidopsis thaliana, seven cyclin-dependent kinase (CDK) inhibitors have been identified, designated interactors of CDKs or Kip-related proteins (KRPs). Here, the function of KRP6 was investigated during cell cycle progression in roots infected by plant-parasitic root-knot nematodes. Contrary to expectations, analysis of Meloidogyne incognita-induced galls of KRP6-overexpressing lines revealed a role for this particular KRP as an activator of the mitotic cell cycle. In accordance, KRP6-overexpressing suspension cultures displayed accelerated entry into mitosis, but delayed mitotic progression. Likewise, phenotypic analysis of cultured cells and nematode-induced giant cells revealed a failure in mitotic exit, with the appearance of multinucleated cells as a consequence. Strong KRP6 expression upon nematode infection and the phenotypic resemblance between KRP6 overexpression cell cultures and root-knot morphology point toward the involvement of KRP6 in the multinucleate and acytokinetic state of giant cells. Along these lines, the parasite might have evolved to manipulate plant KRP6 transcription to the benefit of gall establishment.

12.
Plant Physiol ; 169(1): 194-208, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26041787

ABSTRACT

Upward leaf movement (hyponastic growth) is frequently observed in response to changing environmental conditions and can be induced by the phytohormone ethylene. Hyponasty results from differential growth (i.e. enhanced cell elongation at the proximal abaxial side of the petiole relative to the adaxial side). Here, we characterize Enhanced Hyponasty-d, an activation-tagged Arabidopsis (Arabidopsis thaliana) line with exaggerated hyponasty. This phenotype is associated with overexpression of the mitotic cyclin CYCLINA2;1 (CYCA2;1), which hints at a role for cell divisions in regulating hyponasty. Indeed, mathematical analysis suggested that the observed changes in abaxial cell elongation rates during ethylene treatment should result in a larger hyponastic amplitude than observed, unless a decrease in cell proliferation rate at the proximal abaxial side of the petiole relative to the adaxial side was implemented. Our model predicts that when this differential proliferation mechanism is disrupted by either ectopic overexpression or mutation of CYCA2;1, the hyponastic growth response becomes exaggerated. This is in accordance with experimental observations on CYCA2;1 overexpression lines and cyca2;1 knockouts. We therefore propose a bipartite mechanism controlling leaf movement: ethylene induces longitudinal cell expansion in the abaxial petiole epidermis to induce hyponasty and simultaneously affects its amplitude by controlling cell proliferation through CYCA2;1. Further corroborating the model, we found that ethylene treatment results in transcriptional down-regulation of A2-type CYCLINs and propose that this, and possibly other regulatory mechanisms affecting CYCA2;1, may contribute to this attenuation of hyponastic growth.


Subject(s)
Arabidopsis/physiology , Cyclin A2/metabolism , Ethylenes/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/radiation effects , Cell Proliferation , Cyclin A2/genetics , Down-Regulation , Hypocotyl/genetics , Hypocotyl/growth & development , Hypocotyl/physiology , Hypocotyl/radiation effects , Light , Models, Biological , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Leaves/radiation effects
13.
Acta Neuropathol ; 131(4): 505-23, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26744348

ABSTRACT

There is a growing appreciation that membrane-bound organelles in eukaryotic cells communicate directly with one another through direct membrane contact sites. Mitochondria-associated membranes are specialized subdomains of the endoplasmic reticulum that function as membrane contact sites between the endoplasmic reticulum and mitochondria. These sites have emerged as major players in lipid metabolism and calcium signaling. More recently also autophagy and mitochondrial dynamics have been found to be regulated at ER-mitochondria contact sites. Neurons critically depend on mitochondria-associated membranes as a means to exchange metabolites and signaling molecules between these organelles. This is underscored by the fact that genes affecting mitochondrial and endoplasmic reticulum homeostasis are clearly overrepresented in several hereditary neurodegenerative disorders. Conversely, the processes affected by the contact sites between the endoplasmic reticulum and mitochondria are widely implicated in neurodegeneration. This review will focus on the most recent data addressing the structural composition and function of the mitochondria-associated membranes. In addition, the 3D morphology of the contact sites as observed using volume electron microscopy is discussed. Finally, it will highlight the role of several key proteins associated with these contact sites that are involved not only in dementias, amyotrophic lateral sclerosis and Parkinson's disease, but also in axonopathies such as hereditary spastic paraplegia and Charcot-Marie-Tooth disease.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondrial Membranes/metabolism , Nerve Degeneration/pathology , Neurons/ultrastructure , Animals , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Humans , Nerve Degeneration/metabolism
14.
EMBO J ; 30(16): 3430-41, 2011 Jul 19.
Article in English | MEDLINE | ID: mdl-21772250

ABSTRACT

In multicellular organisms, morphogenesis relies on a strict coordination in time and space of cell proliferation and differentiation. In contrast to animals, plant development displays continuous organ formation and adaptive growth responses during their lifespan relying on a tight coordination of cell proliferation. How developmental signals interact with the plant cell-cycle machinery is largely unknown. Here, we characterize plant A2-type cyclins, a small gene family of mitotic cyclins, and show how they contribute to the fine-tuning of local proliferation during plant development. Moreover, the timely repression of CYCA2;3 expression in newly formed guard cells is shown to require the stomatal transcription factors FOUR LIPS/MYB124 and MYB88, providing a direct link between developmental programming and cell-cycle exit in plants. Thus, transcriptional downregulation of CYCA2s represents a critical mechanism to coordinate proliferation during plant development.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/cytology , Cyclin A2/physiology , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis Proteins/biosynthesis , Arabidopsis Proteins/genetics , Cell Cycle , Cell Division , Cyclin A2/biosynthesis , Cyclin A2/genetics , Down-Regulation , Morphogenesis , Organ Specificity , Plant Leaves/metabolism , Plant Roots/metabolism , Polyploidy , Transcription Factors/physiology
15.
Plant Physiol ; 165(3): 1105-1119, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24879433

ABSTRACT

Overall root architecture is the combined result of primary and lateral root growth and is influenced by both intrinsic genetic programs and external signals. One of the main questions for root biologists is how plants control the number of lateral root primordia and their emergence through the main root. We recently identified S-phase kinase-associated protein2 (SKP2B) as a new early marker for lateral root development. Here, we took advantage of its specific expression pattern in Arabidopsis (Arabidopsis thaliana) in a cell-sorting and transcriptomic approach to generate a lateral root-specific cell sorting SKP2B data set that represents the endogenous genetic developmental program. We first validated this data set by showing that many of the identified genes have a function during root growth or lateral root development. Importantly, genes encoding peroxidases were highly represented in our data set. Thus, we next focused on this class of enzymes and showed, using genetic and chemical inhibitor studies, that peroxidase activity and reactive oxygen species signaling are specifically required during lateral root emergence but, intriguingly, not for primordium specification itself.

16.
BMC Cancer ; 15: 391, 2015 May 10.
Article in English | MEDLINE | ID: mdl-25958384

ABSTRACT

BACKGROUND: NBPF1 (Neuroblastoma Breakpoint Family, member 1) was originally identified in a neuroblastoma patient on the basis of its disruption by a chromosomal translocation t(1;17)(p36.2;q11.2). Considering this genetic defect and the frequent genomic alterations of the NBPF1 locus in several cancer types, we hypothesized that NBPF1 is a tumor suppressor. Decreased expression of NBPF1 in neuroblastoma cell lines with loss of 1p36 heterozygosity and the marked decrease of anchorage-independent clonal growth of DLD1 colorectal carcinoma cells with induced NBPF1 expression further suggest that NBPF1 functions as tumor suppressor. However, little is known about the mechanisms involved. METHODS: Expression of NBPF was analyzed in human skin and human cervix by immunohistochemistry. The effects of NBPF1 on the cell cycle were evaluated by flow cytometry. We investigated by real-time quantitative RT-PCR the expression profile of a panel of genes important in cell cycle regulation. Protein levels of CDKN1A-encoded p21(CIP1/WAF1) were determined by western blotting and the importance of p53 was shown by immunofluorescence and by a loss-of-function approach. LC-MS/MS analysis was used to investigate the proteome of DLD1 colon cancer cells with induced NBPF1 expression. Possible biological interactions between the differentially regulated proteins were investigated with the Ingenuity Pathway Analysis tool. RESULTS: We show that NBPF is expressed in the non-proliferative suprabasal layers of squamous stratified epithelia of human skin and cervix. Forced expression of NBPF1 in HEK293T cells resulted in a G1 cell cycle arrest that was accompanied by upregulation of the cyclin-dependent kinase inhibitor p21(CIP1/WAF1) in a p53-dependent manner. Additionally, forced expression of NBPF1 in two p53-mutant neuroblastoma cell lines also resulted in a G1 cell cycle arrest and CDKN1A upregulation. However, CDKN1A upregulation by NBPF1 was not observed in the DLD1 cells, which demonstrates that NBPF1 exerts cell-specific effects. In addition, proteome analysis of NBPF1-overexpressing DLD1 cells identified 32 differentially expressed proteins, of which several are implicated in carcinogenesis. CONCLUSIONS: We demonstrated that NBPF1 exerts different tumor suppressive effects, depending on the cell line analyzed, and provide new clues into the molecular mechanism of the enigmatic NBPF proteins.


Subject(s)
Carrier Proteins/genetics , G1 Phase Cell Cycle Checkpoints/genetics , Neuroblastoma/genetics , Tumor Suppressor Proteins/genetics , Carrier Proteins/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Epithelium/metabolism , Epithelium/pathology , Gene Expression , Genes, Reporter , HEK293 Cells , Humans , Multigene Family , Neuroblastoma/metabolism , Proteome , Proteomics , Signal Transduction , Transfection , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism
17.
Plant Cell ; 23(4): 1435-48, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21498679

ABSTRACT

A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea. To understand the severe growth arrest of WEE1-deficient plants treated with hydroxyurea, a transcriptomics analysis was performed, indicating prolonged S-phase duration. A role for WEE1 during S phase was substantiated by its specific accumulation in replicating nuclei that suffered from DNA stress. Besides an extended replication phase, WEE1 knockout plants accumulated dead cells that were associated with premature vascular differentiation. Correspondingly, plants without functional WEE1 ectopically expressed the vascular differentiation marker VND7, and their vascular development was aberrant. We conclude that the growth arrest of WEE1-deficient plants is due to an extended cell cycle duration in combination with a premature onset of vascular cell differentiation. The latter implies that the plant WEE1 kinase acquired an indirect developmental function that is important for meristem maintenance upon replication stress.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , Cell Differentiation , DNA Replication , Plant Vascular Bundle/cytology , Protein Serine-Threonine Kinases/metabolism , Stress, Physiological , Arabidopsis/cytology , Arabidopsis/drug effects , Arabidopsis/genetics , Bleomycin/pharmacology , Cell Death/drug effects , Cell Differentiation/drug effects , Cluster Analysis , DNA Repair/drug effects , DNA Replication/drug effects , Enzyme Stability/drug effects , Gene Expression Regulation, Plant/drug effects , Genes, Plant/genetics , Hydroxyurea/pharmacology , Kinetics , Meristem/cytology , Meristem/drug effects , Oligonucleotide Array Sequence Analysis , Phenotype , Plant Vascular Bundle/drug effects , S Phase/drug effects , Stress, Physiological/drug effects , Time Factors
18.
Nat Nanotechnol ; 18(11): 1341-1350, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37430039

ABSTRACT

The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50-60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.


Subject(s)
Arthritis, Experimental , Liposomes , Animals , Humans , Liposomes/therapeutic use , Synovial Membrane/metabolism , Arthritis, Experimental/drug therapy , Myeloid Cells
19.
Nat Cell Biol ; 25(3): 467-480, 2023 03.
Article in English | MEDLINE | ID: mdl-36690850

ABSTRACT

Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.


Subject(s)
Heat-Shock Proteins, Small , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Molecular Chaperones/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
20.
Leukemia ; 37(12): 2404-2413, 2023 12.
Article in English | MEDLINE | ID: mdl-37794102

ABSTRACT

CRISPR-mediated simultaneous targeting of candidate tumor suppressor genes in Xenopus tropicalis allows fast functional assessment of co-driver genes for various solid tumors. Genotyping of tumors that emerge in the mosaic mutant animals rapidly exposes the gene mutations under positive selection for tumor establishment. However, applying this simple approach to the blood lineage has not been attempted. Multiple hematologic malignancies have mutations in EZH2, encoding the catalytic subunit of the Polycomb Repressive Complex 2. Interestingly, EZH2 can act as an oncogene or a tumor suppressor, depending on cellular context and disease stage. We show here that mosaic CRISPR/Cas9 mediated ezh2 disruption in the blood lineage resulted in early and penetrant acute myeloid leukemia (AML) induction. While animals were co-targeted with an sgRNA that induces notch1 gain-of-function mutations, sequencing of leukemias revealed positive selection towards biallelic ezh2 mutations regardless of notch1 mutational status. Co-targeting dnm2, recurrently mutated in T/ETP-ALL, induced a switch from myeloid towards acute T-cell leukemia. Both myeloid and T-cell leukemias engrafted in immunocompromised hosts. These data underline the potential of Xenopus tropicalis for modeling human leukemia, where mosaic gene disruption, combined with deep amplicon sequencing of the targeted genomic regions, can rapidly and efficiently expose co-operating driver gene mutations.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Guide, CRISPR-Cas Systems , Animals , Humans , Histone Methyltransferases/genetics , Xenopus/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL