Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cereb Cortex ; 34(13): 50-62, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696596

ABSTRACT

Associations between maternal immune dysregulation (including autoimmunity and skewed cytokine/chemokine profiles) and offspring neurodevelopmental disorders such as autism have been reported. In maternal autoantibody-related autism, specific maternally derived autoantibodies can access the fetal compartment to target eight proteins critical for neurodevelopment. We examined the relationship between maternal autoantibodies to the eight maternal autoantibody-related autism proteins and cytokine/chemokine profiles in the second trimester of pregnancy in mothers of children later diagnosed with autism and their neonates' cytokine/chemokine profiles. Using banked maternal serum samples from 15 to 19 weeks of gestation from the Early Markers for Autism Study and corresponding banked newborn bloodspots, we identified three maternal/offspring groups based on maternal autoantibody status: (1) mothers with autoantibodies to one or more of the eight maternal autoantibody-related autismassociated proteins but not a maternal autoantibody-related autism-specific pattern, (2) mothers with a known maternal autoantibody-related autism pattern, and (3) mothers without autoantibodies to any of the eight maternal autoantibody-related autism proteins. Using a multiplex platform, we measured maternal second trimester and neonatal cytokine/chemokine levels. This combined analysis aimed to determine potential associations between maternal autoantibodies and the maternal and neonatal cytokine/chemokine profiles, each of which has been shown to have implications on offspring neurodevelopment independently.


Subject(s)
Autistic Disorder , Autoantibodies , Chemokines , Cytokines , Humans , Female , Autoantibodies/blood , Autoantibodies/immunology , Pregnancy , Cytokines/blood , Infant, Newborn , Autistic Disorder/immunology , Autistic Disorder/blood , Adult , Chemokines/blood , Chemokines/immunology , Male , Pregnancy Trimester, Second/immunology , Pregnancy Trimester, Second/blood
2.
Infect Immun ; 92(3): e0036023, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38299826

ABSTRACT

Malaria is strongly predisposed to bacteremia, which is associated with increased gastrointestinal permeability and a poor clinical prognosis. We previously identified mast cells (MCs) as mediators of intestinal permeability in malaria and described multiple cytokines that rise with parasitemia, including interleukin (IL)-10, which could protect the host from an inflammatory response and alter parasite transmission to Anopheles mosquitoes. Here, we used the Cre-loxP system and non-lethal Plasmodium yoelii yoelii 17XNL to study the roles of MC-derived IL-10 in malaria immunity and transmission. Our data suggest a sex-biased and local inflammatory response mediated by MC-derived IL-10, supported by early increased number and activation of MCs in females relative to males. Increased parasitemia in female MC IL-10 (-) mice was associated with increased ileal levels of chemokines and plasma myeloperoxidase (MPO). We also observed increased intestinal permeability in female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice but no differences in blood bacterial 16S DNA levels. Transmission success of P. yoelii to A. stephensi was higher in female relative to male mice and from female and male MC IL-10 (-) mice relative to MC IL-10 (+) mice. These patterns were associated with increased plasma levels of pro-inflammatory cytokines in female MC IL-10 (-) mice and increased plasma levels of chemokines and markers of neutrophil activation in male MC IL-10 (-) mice. Overall, these data suggest that MC-derived IL-10 protects intestinal barrier integrity, regulates parasite transmission, and controls local and systemic host immune responses during malaria, with a female bias.


Subject(s)
Anopheles , Malaria , Parasites , Plasmodium yoelii , Animals , Male , Female , Mice , Interleukin-10/genetics , Anopheles/parasitology , Mast Cells , Parasitemia , Cytokines , Chemokines , Immunity
3.
Mol Psychiatry ; 28(10): 4185-4194, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37582858

ABSTRACT

Maternal infection has emerged as an important environmental risk factor for neurodevelopmental disorders, including schizophrenia and autism spectrum disorders. Animal model systems of maternal immune activation (MIA) suggest that the maternal immune response plays a significant role in the offspring's neurodevelopment and behavioral outcomes. Extracellular free water is a measure of freely diffusing water in the brain that may be associated with neuroinflammation and impacted by MIA. The present study evaluates the brain diffusion characteristics of male rhesus monkeys (Macaca mulatta) born to MIA-exposed dams (n = 14) treated with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the end of the first trimester (n = 10) or were untreated (n = 4). Offspring underwent diffusion MRI scans at 6, 12, 24, 36, and 45 months. Offspring born to MIA-exposed dams showed significantly increased extracellular free water in cingulate cortex gray matter starting as early as 6 months of age and persisting through 45 months. In addition, offspring gray matter free water in this region was significantly correlated with the magnitude of the maternal IL-6 response in the MIA-exposed dams. Significant correlations between brain volume and extracellular free water in the MIA-exposed offspring also indicate converging, multimodal evidence of the impact of MIA on brain development. These findings provide strong evidence for the construct validity of the nonhuman primate MIA model as a system of relevance for investigating the pathophysiology of human neurodevelopmental psychiatric disorders. Elevated free water in individuals exposed to immune activation in utero could represent an early marker of a perturbed or vulnerable neurodevelopmental trajectory.


Subject(s)
Prenatal Exposure Delayed Effects , Schizophrenia , Female , Animals , Humans , Male , Cytokines , Brain , Disease Models, Animal , Primates , Behavior, Animal/physiology
4.
Mol Psychiatry ; 28(5): 2136-2147, 2023 05.
Article in English | MEDLINE | ID: mdl-36973347

ABSTRACT

Maternal immune dysregulation is a prenatal risk factor for autism spectrum disorder (ASD). Importantly, a clinically relevant connection exists between inflammation and metabolic stress that can result in aberrant cytokine signaling and autoimmunity. In this study we examined the potential for maternal autoantibodies (aAbs) to disrupt metabolic signaling and induce neuroanatomical changes in the brains of exposed offspring. To accomplish this, we developed a model of maternal aAb exposure in rats based on the clinical phenomenon of maternal autoantibody-related ASD (MAR-ASD). Following confirmation of aAb production in rat dams and antigen-specific immunoglobulin G (IgG) transfer to offspring, we assessed offspring behavior and brain structure longitudinally. MAR-ASD rat offspring displayed a reduction in pup ultrasonic vocalizations and a pronounced deficit in social play behavior when allowed to freely interact with a novel partner. Additionally, longitudinal in vivo structural magnetic resonance imaging (sMRI) at postnatal day 30 (PND30) and PND70, conducted in a separate cohort of animals, revealed sex-specific differences in total and regional brain volume. Treatment-specific effects by region appeared to converge on midbrain and cerebellar structures in MAR-ASD offspring. Simultaneously, in vivo 1H magnetic resonance spectroscopy (1H-MRS) data were collected to examine brain metabolite levels in the medial prefrontal cortex. Results showed that MAR-ASD offspring displayed decreased levels of choline-containing compounds and glutathione, accompanied by increased taurine compared to control animals. Overall, we found that rats exposed to MAR-ASD aAbs present with alterations in behavior, brain structure, and neurometabolites; reminiscent of findings observed in clinical ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Prenatal Exposure Delayed Effects , Humans , Male , Pregnancy , Female , Rats , Animals , Autistic Disorder/metabolism , Autism Spectrum Disorder/metabolism , Autoantibodies , Prenatal Exposure Delayed Effects/metabolism , Brain/metabolism , Maternal Exposure
5.
Brain Behav Immun ; 109: 92-101, 2023 03.
Article in English | MEDLINE | ID: mdl-36610487

ABSTRACT

Women who contract a viral or bacterial infection during pregnancy have an increased risk of giving birth to a child with a neurodevelopmental or psychiatric disorder. The effects of maternal infection are likely mediated by the maternal immune response, as preclinical animal models have confirmed that maternal immune activation (MIA) leads to long lasting changes in offspring brain and behavior development. The present study sought to determine the impact of MIA-exposure during the first or second trimester on neuronal morphology in dorsolateral prefrontal cortex (DLPFC) and hippocampus from brain tissue obtained from MIA-exposed and control male rhesus monkey (Macaca mulatta) during late adolescence. MIA-exposed offspring display increased neuronal dendritic branching in pyramidal cells in DLPFC infra- and supragranular layers relative to controls, with no significant differences observed between offspring exposed to maternal infection in the first and second trimester. In addition, the diameter of apical dendrites in DLPFC infragranular layer is significantly decreased in MIA-exposed offspring relative to controls, irrespective of trimester exposure. In contrast, alterations in hippocampal neuronal morphology of MIA-exposed offspring were not evident. These findings demonstrate that a maternal immune challenge during pregnancy has long-term consequences for primate offspring dendritic structure, selectively in a brain region vital for socioemotional and cognitive development.


Subject(s)
Mental Disorders , Prenatal Exposure Delayed Effects , Humans , Animals , Pregnancy , Male , Female , Dorsolateral Prefrontal Cortex , Maternal Exposure , Brain , Disease Models, Animal , Poly I-C/pharmacology , Behavior, Animal/physiology , Prefrontal Cortex
6.
Brain Behav Immun ; 111: 328-333, 2023 07.
Article in English | MEDLINE | ID: mdl-37164311

ABSTRACT

Immune dysregulation, including aberrant peripheral cytokine/chemokine levels, is implicated in neurodevelopmental disorders (NDD) such as autism spectrum disorder (ASD). While the diagnosis of ASD is more common in males compared to females, sex effects in immune dysregulation related to neurodevelopment remain understudied. The aim of this exploratory study was to determine whether there are sex-specific effects in neonatal immune dysregulation with respect to an ASD or delayed development (DD) diagnosis. We utilized the data from the Early Markers for Autism study, a population based case-control study of prenatal and neonatal biomarkers of ASD. The immune profile of newborns later diagnosed with ASD (n = 482, 91 females), DD (n = 140, 61 females) and sex-matched general population controls (GP; n = 378, 67 females) were analyzed using neonatal bloodspots (NBS) via 42-plex multiplex assay. Multiple linear regression analysis was performed to identify whether sex was associated with differences in cytokine/chemokine levels of children with ASD, DD, and GP. A sex by diagnosis interaction effect was observed only for the chemokine macrophage migration inhibitory factor (MIF), with males displaying higher levels of NBS MIF than females in the GP control group (p = 0.02), but not in ASD (p = 0.52) or DD (p = 0.29) groups. We found that regardless of child diagnosis, newborn bloodspot eluates from females had a significantly higher concentration than males with the same diagnosis of the chemokines granulocyte chemotactic protein 2 (GCP-2; p < 0.0001), macrophage inflammatory protein 2-alpha (GROß; p = 0.002), interferon-inducible t-cell alpha chemoattractant (I-TAC; p < 0.0001), stromal cell-derived factor 1 alpha and beta (SDF-1α-ß; p = 0.03), innate inflammatory chemokines interferon-gamma induced protein 10 (IP-10; p = 0.02), macrophage inflammatory protein 1-alpha (MIP-1α; p = 0.02), and Th1-related pro-inflammatory cytokine interleukin-12 active heterodimer (IL-12p70; p = 0.002). In contrast, males had a higher concentration than females of secondary lymphoid-tissue chemokine (6CKINE; p = 0.02), monocyte chemotactic protein 1 (MCP-1; p = 0.005) and myeloid progenitor inhibitory factor 1 (MPIF-1; p = 0.03). Results were similar when analyses were restricted to NBS from DD and ASD further classified as ASD with intellectual disability (ID), ASD without ID, and DD (GCP-2, p = 0.007; I-TAC, p = 0.001; IP-10, p = 0.005; IL-12p70, p = 0.03 higher in females; MPIF-1, p = 0.03 higher in male). This study is the first to examine sex differences in neonatal cytokine/chemokine concentrations, and whether these differences are associated with neurodevelopmental outcomes. Results highlight the importance of considering sex as a critical factor in understanding the immune system as it relates to child development.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Macrophage Migration-Inhibitory Factors , Sex Factors , Female , Humans , Infant, Newborn , Male , Pregnancy , Case-Control Studies , Chemokine CXCL10 , Interleukin-12 , Intramolecular Oxidoreductases , Neurodevelopmental Disorders
7.
Mol Psychiatry ; 27(9): 3760-3767, 2022 09.
Article in English | MEDLINE | ID: mdl-35618885

ABSTRACT

Maternal autoantibody-related ASD (MAR ASD) is a subtype of autism in which pathogenic maternal autoantibodies (IgG) cross the placenta, access the developing brain, and cause neurodevelopmental alterations and behaviors associated with autism in the exposed offspring. We previously reported maternal IgG response to eight proteins (CRMP1, CRMP2, GDA LDHA, LDHB, NSE, STIP1, and YBOX) and that reactivity to nine specific combinations of these proteins (MAR ASD patterns) was predictive of ASD risk. The aim of the current study was to validate the previously identified MAR ASD patterns (CRMP1 + GDA, CRMP1 + CRMP2, NSE + STIP1, CRMP2 + STIP1, LDHA + YBOX, LDHB + YBOX, GDA + YBOX, STIP1 + YBOX, and CRMP1 + STIP1) and their accuracy in predicting ASD risk in a prospective cohort employing maternal samples collected prior to parturition. We used prenatal plasma from mothers of autistic children with or without co-occurring intellectual disability (ASD = 540), intellectual disability without autism (ID = 184) and general population controls (GP = 420) collected by the Early Markers for Autism (EMA) study. We found reactivity to one or more of the nine previously identified MAR ASD patterns in 10% of the ASD group compared with 4% of the ID group and 1% of the GP controls (ASD vs GP: Odds Ratio (OR) = 7.81, 95% Confidence Interval (CI) 3.32 to 22.43; ASD vs ID: OR = 2.77, 95% CI (1.19-7.47)) demonstrating that the MAR ASD patterns are strongly associated with the ASD group and could be used to assess ASD risk prior to symptom onset. The pattern most strongly associated with ASD was CRMP1 + CRMP2 and increased the odds for an ASD diagnosis 16-fold (3.32 to >999.99). In addition, we found that several of these specific MAR ASD patterns were strongly associated with ASD with intellectual disability (ASD + ID) and others associated with ASD without ID (ASD-no ID). Prenatal screening for these MAR patterns may lead to earlier identification of ASD and facilitate access to the appropriate early intervention services based on each child's needs.


Subject(s)
Autism Spectrum Disorder , Intellectual Disability , Child , Pregnancy , Female , Humans , Intellectual Disability/etiology , Prospective Studies , Autism Spectrum Disorder/etiology , Autoantibodies , Biomarkers , Immunoglobulin G
8.
J Neurosci ; 41(48): 9971-9987, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34607967

ABSTRACT

Human epidemiological studies implicate exposure to infection during gestation in the etiology of neurodevelopmental disorders. Animal models of maternal immune activation (MIA) have identified the maternal immune response as the critical link between maternal infection and aberrant offspring brain and behavior development. Here we evaluate neurodevelopment of male rhesus monkeys (Macaca mulatta) born to MIA-treated dams (n = 14) injected with a modified form of the viral mimic polyinosinic:polycytidylic acid at the end of the first trimester. Control dams received saline injections at the same gestational time points (n = 10) or were untreated (n = 4). MIA-treated dams exhibited a strong immune response as indexed by transient increases in sickness behavior, temperature, and inflammatory cytokines. Although offspring born to control or MIA-treated dams did not differ on measures of physical growth and early developmental milestones, the MIA-treated animals exhibited subtle changes in cognitive development and deviated from species-typical brain growth trajectories. Longitudinal MRI revealed significant gray matter volume reductions in the prefrontal and frontal cortices of MIA-treated offspring at 6 months that persisted through the final time point at 45 months along with smaller frontal white matter volumes in MIA-treated animals at 36 and 45 months. These findings provide the first evidence of early postnatal changes in brain development in MIA-exposed nonhuman primates and establish a translationally relevant model system to explore the neurodevelopmental trajectory of risk associated with prenatal immune challenge from birth through late adolescence.SIGNIFICANCE STATEMENT Women exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder. Preclinical maternal immune activation (MIA) models have demonstrated that the effects of maternal infection on fetal brain development are mediated by maternal immune response. Since the majority of MIA models are conducted in rodents, the nonhuman primate provides a unique system to evaluate the MIA hypothesis in a species closely related to humans. Here we report the first longitudinal study conducted in a nonhuman primate MIA model. MIA-exposed offspring demonstrate subtle changes in cognitive development paired with marked reductions in frontal gray and white matter, further supporting the association between prenatal immune challenge and alterations in offspring neurodevelopment.


Subject(s)
Brain/pathology , Disease Models, Animal , Neurodevelopmental Disorders/etiology , Pregnancy Complications, Infectious , Prenatal Exposure Delayed Effects/pathology , Animals , Female , Interferon Inducers/toxicity , Macaca mulatta , Male , Neurodevelopmental Disorders/pathology , Neurogenesis/physiology , Poly I-C/toxicity , Pregnancy , Pregnancy Complications, Infectious/chemically induced , Prenatal Exposure Delayed Effects/chemically induced
9.
Brain Behav Immun ; 100: 121-133, 2022 02.
Article in English | MEDLINE | ID: mdl-34808292

ABSTRACT

Immune dysregulation has been found to be related to a diagnosis of autism spectrum disorder (ASD). However, investigations in very early childhood examining immunological abnormalities such as altered neonatal cytokine/chemokine profiles in association with an aberrant developmental trajectory, are sparse. We assessed neonatal blood spots from 398 children, including 171 with ASD, which were subdivided according to severity (121 severe, 50 mild/moderate) and cognitive/adaptive levels (144 low-functioning, 27 typical to high-functioning). The remainder were 69 children with developmental delay (DD), and 158 with typical development (TD), who served as controls in the Childhood Autism Risks from Genetics and the Environment (CHARGE) study. Exploratory analysis suggested that, in comparisons with TD and DD, CTACK (CCL27) and MPIF-1 (CCL23), respectively, were independently associated with ASD. Higher neonatal levels of CTACK were associated with decreased odds of ASD compared to TD (odds ratio [OR] = 0.40, 95% confidence interval [Cl] 0.21, 0.77), whereas higher levels of MPIF-1 were associated with increased odds of ASD (OR = 2.38, 95% Cl 1.42, 3.98) compared to DD but not to TD. MPIF-1 was positively associated with better scores in several developmental domains. Dysregulation of chemokine levels in early life can impede normal immune and neurobehavioral development, which can lead to diagnosis of ASD or DD. This study collectively suggests that certain peripheral chemokines at birth are associated with ASD progression during childhood and that children with ASD and DD have distinct neonatal chemokine profiles that can differentiate their diagnoses.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/diagnosis , Case-Control Studies , Chemokines , Child , Child, Preschool , Developmental Disabilities/diagnosis , Humans , Infant, Newborn
10.
Mol Psychiatry ; 26(5): 1551-1560, 2021 05.
Article in English | MEDLINE | ID: mdl-33483694

ABSTRACT

The incidence of autism spectrum disorder (ASD) has been rising, however ASD-risk biomarkers remain lacking. We previously identified the presence of maternal autoantibodies to fetal brain proteins specific to ASD, now termed maternal autoantibody-related (MAR) ASD. The current study aimed to create and validate a serological assay to identify ASD-specific maternal autoantibody patterns of reactivity against eight previously identified proteins (CRMP1, CRMP2, GDA, NSE, LDHA, LDHB, STIP1, and YBOX) that are highly expressed in developing brain, and determine the relationship of these reactivity patterns with ASD outcome severity. We used plasma from mothers of children diagnosed with ASD (n = 450) and from typically developing children (TD, n = 342) to develop an ELISA test for each of the protein antigens. We then determined patterns of reactivity a highly significant association with ASD, and discovered several patterns that were ASD-specific (18% in the training set and 10% in the validation set vs. 0% TD). The three main patterns associated with MAR ASD are CRMP1 + GDA (ASD% = 4.2 vs. TD% = 0, OR 31.04, p = <0.0001), CRMP1 + CRMP2 (ASD% = 3.6 vs. TD% = 0, OR 26.08, p = 0.0005) and NSE + STIP1 (ASD% = 3.1 vs. TD% = 0, OR 22.82, p = 0.0001). Additionally, we found that maternal autoantibody reactivity to CRMP1 significantly increases the odds of a child having a higher Autism Diagnostic Observation Schedule (ADOS) severity score (OR 2.3; 95% CI: 1.358-3.987, p = 0.0021). This is the first report that uses machine learning subgroup discovery to identify with 100% accuracy MAR ASD-specific patterns as potential biomarkers of risk for a subset of up to 18% of ASD cases in this study population.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autoantibodies , Brain , Child , Female , Humans , Risk Assessment
11.
Mol Psychiatry ; 26(3): 875-887, 2021 03.
Article in English | MEDLINE | ID: mdl-31965031

ABSTRACT

Maternal infection during pregnancy is associated with increased risk of psychiatric and neurodevelopmental disorders (NDDs). Experimental animal models demonstrate that maternal immune activation (MIA) elevates inflammatory cytokine levels in the maternal and fetal compartments and causes behavioral changes in offspring. Individual cytokines have been shown to modulate neurite outgrowth and synaptic connectivity in cultured rodent neurons, but whether clinically relevant cytokine mixtures similarly modulate neurodevelopment in human neurons is not known. To address this, we quantified apoptosis, neurite outgrowth, and synapse number in the LUHMES human neuronal cell line exposed to varying concentrations of: (1) a mixture of 12 cytokines and chemokines (EMA) elevated in mid-gestational serum samples from mothers of children with autism and intellectual disability; (2) an inflammatory cytokine mixture (ICM) comprised of five cytokines elevated in experimental MIA models; or (3) individual cytokines in ICM. At concentrations that activated nuclear factor-kappa B (NF-κB) in LUHMES cells, EMA and ICM induced caspase-3/7 activity. ICM altered neurite outgrowth, but only at concentrations that also reduced cell viability, whereas ICM reduced synapse number independent of changes in cell viability. Individual cytokines in ICM phenocopied the effects of ICM on NF-κB activation and synaptic connectivity, but did not completely mimic the effects of ICM on apoptosis. These results demonstrate that clinically relevant cytokine mixtures modulate apoptosis and synaptic density in developing human neurons. Given the relevance of these neurodevelopmental processes in NDDs, our findings support the hypothesis that cytokines contribute to the adverse effects of MIA on children.


Subject(s)
Cell Survival , Cytokines , NF-kappa B , Neurons/physiology , Animals , Cell Line , Female , Humans , Pregnancy
12.
Mol Psychiatry ; 26(12): 7530-7537, 2021 12.
Article in English | MEDLINE | ID: mdl-34290368

ABSTRACT

Immunoglobulin G (IgG) autoantibodies reactive to fetal brain proteins in mothers of children with ASD have been described by several groups. To understand their pathologic significance, we developed a mouse model of maternal autoantibody related ASD (MAR-ASD) utilizing the peptide epitopes from human autoantibody reactivity patterns. Male and female offspring prenatally exposed to the salient maternal autoantibodies displayed robust deficits in social interactions and increased repetitive self-grooming behaviors as juveniles and adults. In the present study, neuroanatomical differences in adult MAR-ASD and control offspring were assessed via high-resolution ex vivo magnetic resonance imaging (MRI) at 6 months of age. Of interest, MAR-ASD mice displayed significantly larger total brain volume and of the 159 regions examined, 31 were found to differ significantly in absolute volume (mm3) at an FDR of <5%. Specifically, the absolute volumes of several white matter tracts, cortical regions, and basal nuclei structures were significantly increased in MAR-ASD animals. These phenomena were largely driven by female MAR-ASD offspring, as no significant differences were seen with either absolute or relative regional volume in male MAR-ASD mice. However, structural covariance analysis suggests network-level desynchronization in brain volume in both male and female MAR-ASD mice. Additionally, preliminary correlational analysis with behavioral data relates that volumetric increases in numerous brain regions of MAR-ASD mice were correlated with social interaction and repetitive self-grooming behaviors in a sex-specific manner. These results demonstrate significant sex-specific effects in brain size, regional relationships, and behavior for offspring prenatally exposed to MAR-ASD autoantibodies relative to controls.


Subject(s)
Autism Spectrum Disorder , Animals , Autism Spectrum Disorder/metabolism , Autoantibodies , Brain/metabolism , Disease Models, Animal , Epitopes/metabolism , Female , Male , Mice
13.
Mol Psychiatry ; 25(11): 2994-3009, 2020 11.
Article in English | MEDLINE | ID: mdl-29955164

ABSTRACT

Immune dysregulation has been noted consistently in individuals with autism spectrum disorder (ASD) and their families, including the presence of autoantibodies reactive to fetal brain proteins in nearly a quarter of mothers of children with ASD versus <1% in mothers of typically developing children. Our lab recently identified the peptide epitope sequences on seven antigenic proteins targeted by these maternal autoantibodies. Through immunization with these peptide epitopes, we have successfully created an endogenous, antigen-driven mouse model that ensures a constant exposure to the salient autoantibodies throughout gestation in C57BL/6J mice. This exposure more naturally mimics what is observed in mothers of children with ASD. Male and female offspring were tested using a comprehensive sequence of behavioral assays, as well as measures of health and development highly relevant to ASD. We found that MAR-ASD male and female offspring had significant alterations in development and social interactions during dyadic play. Although 3-chambered social approach was not significantly different, fewer social interactions with an estrous female were noted in the adult male MAR-ASD animals, as well as reduced vocalizations emitted in response to social cues with robust repetitive self-grooming behaviors relative to saline treated controls. The generation of MAR-ASD-specific epitope autoantibodies in female mice prior to breeding created a model that demonstrates for the first time that ASD-specific antigen-induced maternal autoantibodies produced alterations in a constellation of ASD-relevant behaviors.


Subject(s)
Autism Spectrum Disorder/immunology , Autism Spectrum Disorder/physiopathology , Autoantibodies/immunology , Autoantigens/immunology , Epitopes/immunology , Animals , Autism Spectrum Disorder/psychology , Autistic Disorder/immunology , Autistic Disorder/physiopathology , Autistic Disorder/psychology , Brain/immunology , Brain/metabolism , Brain/physiopathology , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
14.
Infect Immun ; 88(12)2020 11 16.
Article in English | MEDLINE | ID: mdl-32958528

ABSTRACT

Malaria strongly predisposes to bacteremia, which is associated with sequestration of parasitized red blood cells and increased gastrointestinal permeability. The mechanisms underlying this disruption are poorly understood. Here, we evaluated the expression of factors associated with mast cell activation and malaria-associated bacteremia in a rodent model. C57BL/6J mice were infected with Plasmodium yoeliiyoelli 17XNL, and blood and tissues were collected over time to assay for circulating levels of bacterial 16S DNA, IgE, mast cell protease 1 (Mcpt-1) and Mcpt-4, Th1 and Th2 cytokines, and patterns of ileal mastocytosis and intestinal permeability. The anti-inflammatory cytokines (interleukin-4 [IL-4], IL-6, and IL-10) and MCP-1/CCL2 were detected early after P. yoeliiyoelii 17XNL infection. This was followed by the appearance of IL-9 and IL-13, cytokines known for their roles in mast cell activation and growth-enhancing activity as well as IgE production. Later increases in circulating IgE, which can induce mast cell degranulation, as well as Mcpt-1 and Mcpt-4, were observed concurrently with bacteremia and increased intestinal permeability. These results suggest that P. yoeliiyoelii 17XNL infection induces the production of early cytokines that activate mast cells and drive IgE production, followed by elevated IgE, IL-9, and IL-13 that maintain and enhance mast cell activation while disrupting the protease/antiprotease balance in the intestine, contributing to epithelial damage and increased permeability.


Subject(s)
Bacteremia/immunology , Cytokines/blood , Malaria/immunology , Mast Cells/metabolism , Plasmodium yoelii/immunology , Animals , Bacteremia/parasitology , Chemokine CCL2/blood , Chymases/blood , Female , Ileum/cytology , Ileum/metabolism , Ileum/parasitology , Immunoglobulin E/blood , Inflammation/blood , Interleukin-10/blood , Interleukin-13/metabolism , Interleukin-4/blood , Interleukin-6/blood , Interleukin-9/blood , Leukocytes/cytology , Malaria/blood , Malaria/parasitology , Mice , Mice, Inbred C57BL , Permeability , RNA, Ribosomal, 16S/blood , RNA, Ribosomal, 16S/genetics
15.
Neurobiol Dis ; 141: 104864, 2020 07.
Article in English | MEDLINE | ID: mdl-32278881

ABSTRACT

The prenatal environment, and in particular, the maternal-fetal immune environment, has emerged as a targeted area of research for central nervous system (CNS) diseases with neurodevelopmental origins. Converging evidence from both clinical and preclinical research indicates that changes in the maternal gestational immune environment can alter fetal brain development and increase the risk for certain neurodevelopmental disorders. Here we focus on the translational potential of one prenatal animal model - the maternal immune activation (MIA) model. This model stems from the observation that a subset of pregnant women who are exposed to infection during pregnancy have an increased risk of giving birth to a child who will later be diagnosed with a neurodevelopmental disorder, such as autism spectrum disorder (ASD) or schizophrenia (SZ). The preclinical MIA model provides a system in which to explore causal relationships, identify underlying neurobiological mechanisms, and, ultimately, develop novel therapeutic interventions and preventative strategies. In this review, we will highlight converging evidence from clinical and preclinical research that links changes in the maternal-fetal immune environment with lasting changes in offspring brain and behavioral development. We will then explore the promises and limitations of the MIA model as a translational tool to develop novel therapeutic interventions. As the translational potential of the MIA model has been the focus of several excellent review articles, here we will focus on what is perhaps the least well developed area of MIA model research - novel preventative strategies and therapeutic interventions.


Subject(s)
Brain/growth & development , Disease Models, Animal , Neurodevelopmental Disorders/immunology , Pregnancy Complications, Infectious/immunology , Prenatal Exposure Delayed Effects/immunology , Animals , Brain/immunology , Female , Humans , Neurodevelopmental Disorders/etiology , Pregnancy , Translational Research, Biomedical
16.
Brain Behav Immun ; 84: 200-208, 2020 02.
Article in English | MEDLINE | ID: mdl-31812776

ABSTRACT

Autism spectrum disorder (ASD) is an important health issue and affects 1 in 59 children in the US. Prior studies determined that maternal autoantibody related (MAR) autism is thought to be associated with ~23% of ASD cases. We previously identified seven MAR-specific autoantigens including CRMP1, CRMP2, GDA, LDHA, LDHB, STIP1, and YBX1. We subsequently described the epitope peptide sequences recognized by maternal autoantibodies for each of the seven ASD-specific autoantigens. The aim of the current study was to expand upon our previous work and identify additional antigens recognized by the ASD-specific maternal autoantibodies, as well as to map the unique ASD-specific epitopes using microarray technology. Fetal Rhesus macaque brain tissues were separated by molecular weight and a fraction containing bands between 37 and 45 kDa was analyzed using 2-D gel electrophoresis, followed by peptide mass mapping using MALDI-TOF MS and TOF/TOF tandem MS/MS. Using this methodology, Neuron specific enolase (NSE) was identified as a target autoantigen and selected for epitope mapping. The full NSE sequence was translated into 15-mer peptides with an overlap of 14 amino acids onto microarray slides and probed with maternal plasma from mothers with an ASD child and from mothers with a Typically Developing child (TD) (ASD = 27 and TD = 21). The resulting data were analyzed by T-test. We found 16 ASD-specific NSE-peptide sequences for which four sequences were statistically significant (p < 0.05) using both the t-test and SAM t-test: DVAASEFYRDGKYDL (p = 0.047; SAM score 1.49), IEDPFDQDDWAAWSK (p = 0.049; SAM score 1.49), ERLAKYNQLMRIEEE (p = 0.045; SAM score 1.57), and RLAKYNQLMRIEEEL (p = 0.017; SAM score 1.82). We further identified 5 sequences that were recognized by both ASD and TD antibodies suggesting a large immunodominant epitope (DYPVVSIEDPFDQDDWAAW). While maternal autoantibodies against the NSE protein are present both in mothers with ASD and mothers of TD children, there are several ASD-specific epitopes that can potentially be used as MAR ASD biomarkers. Further, studies including analysis of NSE as a target protein in combination with the previously identified MAR ASD autoantigens are currently underway.


Subject(s)
Autism Spectrum Disorder , Biomarkers , Peptides , Phosphopyruvate Hydratase , Animals , Autism Spectrum Disorder/blood , Autism Spectrum Disorder/diagnosis , Autoantibodies , Autoantigens/analysis , Biomarkers/blood , Child , Epitope Mapping , Female , Humans , Macaca mulatta , Peptides/analysis , Phosphopyruvate Hydratase/blood , Phosphopyruvate Hydratase/immunology , Tandem Mass Spectrometry
17.
Brain Behav Immun ; 88: 619-630, 2020 08.
Article in English | MEDLINE | ID: mdl-32335198

ABSTRACT

Despite the potential of rodent models of maternal immune activation (MIA) to identify new biomarkers and therapeutic interventions for a range of psychiatric disorders, current approaches using these models ignore two of the most important aspects of this risk factor for human disease: (i) most pregnancies are resilient to maternal viral infection and (ii) susceptible pregnancies can lead to different combinations of phenotypes in offspring. Here, we report two new sources of variability-the baseline immunoreactivity (BIR) of isogenic females prior to pregnancy and differences in immune responses in C57BL/6 dams across vendors-that contribute to resilience and susceptibility to distinct combinations of behavioral and biological outcomes in offspring. Similar to the variable effects of human maternal infection, MIA in mice does not cause disease-related phenotypes in all pregnancies and a combination of poly(I:C) dose and BIR predicts susceptibility and resilience of pregnancies to aberrant repetitive behaviors and alterations in striatal protein levels in offspring. Even more surprising is that the intermediate levels of BIR and poly(I:C) dose are most detrimental to offspring, with higher BIR and poly(I:C) doses conferring resilience to measured phenotypes in offspring. Importantly, we identify the BIR of female mice as a biomarker before pregnancy that predicts which dams will be most at risk as well as biomarkers in the brains of newborn offspring that correlate with changes in repetitive behaviors. Together, our results highlight considerations for optimizing MIA protocols to enhance rigor and reproducibility and reveal new factors that drive susceptibility of some pregnancies and resilience of others to MIA-induced abnormalities in offspring.


Subject(s)
Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL , Poly I-C , Pregnancy , Reproducibility of Results
18.
Mol Psychiatry ; 24(2): 252-265, 2019 02.
Article in English | MEDLINE | ID: mdl-29934547

ABSTRACT

It has been estimated that autism spectrum disorder (ASD) now affects 1 in 59 children in the United States. Although the cause(s) of ASD remain largely unknown, it is becoming increasingly apparent that ASD can no longer be defined simply as a behavioral disorder, but is in effect a rather complex and highly heterogeneous biological disorder. Up until recently the brain was thought to be "immune privileged." However, it is now known that the immune system plays critical roles in the development and functioning of the brain throughout life. Recent evidence from multiple investigators has illustrated the deleterious role that dysregulation of the maternal immune system during gestation can play in the manifestation of changes in neurodevelopment, resulting in the development of neurobehavioral disorders such as ASD. One potential etiologic pathway through which the maternal immune system can interfere with neurodevelopment is through maternal autoantibodies that recognize proteins in the developing fetal brain. This mechanism of pathogenesis is now thought to lead to a subphenotype of ASD that has been termed maternal autoantibody related (MAR) ASD. This review provides an overview of the current research implicating the presence of brain-reactive maternal autoantibodies as a risk factor for MAR ASD.


Subject(s)
Autism Spectrum Disorder/immunology , Autoantibodies/immunology , Prenatal Exposure Delayed Effects/immunology , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Brain/metabolism , Female , Fetus/metabolism , Humans , Pregnancy , Risk Factors
19.
J Neuroinflammation ; 16(1): 200, 2019 Oct 31.
Article in English | MEDLINE | ID: mdl-31672161

ABSTRACT

BACKGROUND: Neuroinflammation can modulate brain development; however, the influence of an acute peripheral immune challenge on neuroinflammatory responses in the early postnatal brain is not well characterized. To address this gap in knowledge, we evaluated the peripheral and central nervous system (CNS) immune responses to a mixed immune challenge in early postnatal rats of varying strains and sex. METHODS: On postnatal day 10 (P10), male and female Lewis and Brown Norway rats were injected intramuscularly with either a mix of bacterial and viral components in adjuvant, adjuvant-only, or saline. Immune responses were evaluated at 2 and 5 days post-challenge. Cytokine and chemokine levels were evaluated in serum and in multiple brain regions using a Luminex multiplex assay. Multi-factor ANOVAs were used to compare analyte levels across treatment groups within strain, sex, and day of sample collection. Numbers and activation status of astrocytes and microglia were also analyzed in the cortex and hippocampus by quantifying immunoreactivity for GFAP, IBA-1, and CD68 in fixed brain slices. Immunohistochemical data were analyzed using a mixed-model regression analysis. RESULTS: Acute peripheral immune challenge differentially altered cytokine and chemokine levels in the serum versus the brain. Within the brain, the cytokine and chemokine response varied between strains, sexes, and days post-challenge. Main findings included differences in T helper (Th) type cytokine responses in various brain regions, particularly the cortex, with respect to IL-4, IL-10, and IL-17 levels. Additionally, peripheral immune challenge altered GFAP and IBA-1 immunoreactivity in the brain in a strain- and sex-dependent manner. CONCLUSIONS: These findings indicate that genetic background and sex influence the CNS response to an acute peripheral immune challenge during early postnatal development. Additionally, these data reinforce that the developmental time point during which the challenge occurs has a distinct effect on the activation of CNS-resident cells.


Subject(s)
Brain/immunology , Cytokines/biosynthesis , Neuroglia/metabolism , Neuroimmunomodulation/immunology , Animals , Animals, Newborn , Brain/metabolism , Cytokines/immunology , Female , Inflammation/immunology , Inflammation/metabolism , Male , Neuroglia/immunology , Rats , Rats, Inbred BN , Rats, Inbred Lew
20.
Nanomedicine ; 21: 102067, 2019 10.
Article in English | MEDLINE | ID: mdl-31349087

ABSTRACT

Recently, the causative agents of Maternal Autoantibody-Related (MAR) autism, pathological autoantibodies and their epitopic targets (e.g. lactate dehydrogenase B [LDH B] peptide), have been identified. Herein, we report on the development of Systems for Nanoparticle-based Autoantibody Reception and Entrapment (SNAREs), which we hypothesized could scavenge disease-propagating MAR autoantibodies from the maternal blood. To demonstrate this functionality, we synthesized 15 nm dextran iron oxide nanoparticles surface-modified with citric acid, methoxy PEG(10 kDa) amine, and LDH B peptide (33.8 µg peptide/cm2). In vitro, we demonstrated significantly lower macrophage uptake for SNAREs compared to control NPs. The hallmark result of this study was the efficacy of the SNAREs to remove 90% of LDH B autoantibody from patient-derived serum. Further, in vitro cytotoxicity testing and a maximal tolerated dose study in mice demonstrated the safety of the SNARE formulation. This work establishes the feasibility of SNAREs as the first-ever prophylactic against MAR autism.


Subject(s)
Autistic Disorder/drug therapy , Autoantibodies , Nanoparticles , Peptides , Animals , Autistic Disorder/blood , Autistic Disorder/immunology , Autistic Disorder/pathology , Autoantibodies/blood , Autoantibodies/immunology , Disease Models, Animal , Female , Humans , Macrophages/immunology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Peptides/chemistry , Peptides/pharmacology , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL