Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Exp Bot ; 75(8): 2280-2298, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38180875

ABSTRACT

The Arabidopsis splicing factor serine/arginine-rich 45 (SR45) contributes to several biological processes. The sr45-1 loss-of-function mutant exhibits delayed root development, late flowering, unusual numbers of floral organs, shorter siliques with decreased seed sets, narrower leaves and petals, and altered metal distribution. SR45 bears a unique RNA recognition motif (RRM) flanked by one serine/arginine-rich (RS) domain on both sides. Here, we studied the function of each SR45 domains by examining their involvement in: (i) the spatial distribution of SR45; (ii) the establishment of a protein-protein interaction network including spliceosomal and exon-exon junction complex (EJC) components; and (iii) the RNA binding specificity. We report that the endogenous SR45 promoter is active during vegetative and reproductive growth, and that the SR45 protein localizes in the nucleus. We demonstrate that the C-terminal arginine/serine-rich domain is a determinant of nuclear localization. We show that the SR45 RRM domain specifically binds purine-rich RNA motifs via three residues (H101, H141, and Y143), and is also involved in protein-protein interactions. We further show that SR45 bridges both mRNA splicing and surveillance machineries as a partner of EJC core components and peripheral factors, which requires phosphoresidues probably phosphorylated by kinases from both the CLK and SRPK families. Our findings provide insights into the contribution of each SR45 domain to both spliceosome and EJC assemblies.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Exons , RNA Splicing Factors , RNA Splicing , Humans , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , RNA Splicing/genetics , RNA Splicing Factors/genetics , RNA Splicing Factors/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
Appl Microbiol Biotechnol ; 108(1): 425, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39042328

ABSTRACT

Borrelia, spirochetes transmitted by ticks, are the etiological agents of numerous multisystemic diseases, such as Lyme borreliosis (LB) and tick-borne relapsing fever (TBRF). This study focuses on two surface proteins from two Borrelia subspecies involved in these diseases: CspZ, expressed by Borrelia burgdorferi sensu stricto (also named BbCRASP-2 for complement regulator-acquiring surface protein 2), and the factor H binding A (FhbA), expressed by Borrelia hermsii. Numerous subspecies of Borrelia, including these latter, are able to evade the immune defenses of a variety of potential vertebrate hosts in a number of ways. In this context, previous data suggested that both surface proteins play a role in the immune evasion of both Borrelia subspecies by interacting with key regulators of the alternative pathway of the human complement system, factor H (FH) and FH-like protein 1 (FHL-1). The recombinant proteins, CspZ and FhbA, were expressed in Escherichia coli and purified by one-step metal-affinity chromatography, with yields of 15 and 20 mg or pure protein for 1 L of cultured bacteria, respectively. The purity was evaluated by SDS-PAGE and HPLC and is close to about 95%. The mass of CspZ and FhbA was checked by mass spectrometry (MS). Proper folding of CspZ and FhbA was confirmed by circular dichroism (CD), and their biological activity, namely their interaction with purified FH from human serum (recombinant FH15-20 and recombinant FHL-1), was characterized by SPR. Such a study provides the basis for the biochemical characterization of the studied proteins and their biomolecular interactions which is a necessary prerequisite for the development of new approaches to improve the current diagnosis of LB and TBRF. KEY POINTS: • DLS, CD, SEC-MALS, NMR, HPLC, and MS are tools for protein quality assessment • Borrelia spp. possesses immune evasion mechanisms, including human host complement • CspZ and FhbA interact with high affinity (pM to nM) to human FH and rFHL-1.


Subject(s)
Bacterial Proteins , Recombinant Proteins , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Humans , Borrelia burgdorferi/genetics , Borrelia burgdorferi/metabolism , Borrelia burgdorferi/immunology , Chromatography, Affinity , Escherichia coli/genetics , Escherichia coli/metabolism , Borrelia/genetics , Borrelia/metabolism , Borrelia/immunology , Complement Factor H/metabolism , Complement Factor H/genetics , Lyme Disease/microbiology , Complement C3b Inactivator Proteins/genetics , Complement C3b Inactivator Proteins/metabolism , Gene Expression
3.
Talanta ; 270: 125602, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38199121

ABSTRACT

Human papillomavirus (HPV) interacts, in vitro, with laminin 332 (LN332), a key component of the extracellular matrix. In this study, we performed bio-layer interferometry (BLI) and affinity capillary electrophoresis (ACE) to investigate the binding properties of this interaction. Virus-like particles (VLPs), composed of the HPV16 L1 major capsid protein, were used as HPV model and LN332 as the VLPs binding partner. Using BLI, we quantitatively determined the kinetics of the interaction, via the measurement of VLP binding and release from LN332 immobilized onto the surface of aminopropylsilane biosensors. We found an averaged kon of 1.74 x 104 M-1s-1 and an averaged koff of 1.50 x 10-4 s-1. Furthermore, an ACE method was developed to study the interaction under physiological conditions, where the interactants are moving freely in solution, without any fluorescence labeling. Specifically, a constant amount of HPV16-VLPs was preincubated with increasing LN332 concentrations and then the samples were injected in the capillary electrophoresis instrument. A shift in the migration time of the HPV16-VLP/LN332 complexes, carrying an increasing number of LN332 molecules bound per VLP, was observed. The mobility of the complexes was found to decrease with increasing LN332 concentrations in the sample. It was used to quantify stability constant. From BLI and ACE approaches, we reported an apparent equilibrium dissociation constant in the nanomolar range (8.89 nM and 17.7 nM, respectively) for the complex between HPV16-VLPs and LN332.


Subject(s)
Human Papillomavirus Viruses , Papillomavirus Infections , Humans , Kalinin , Human papillomavirus 16 , Electrophoresis, Capillary/methods , Interferometry
4.
Kidney Int Rep ; 9(3): 635-648, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481503

ABSTRACT

Introduction: Comorbidities and immunosuppressive therapies are associated with reduced immune responses to primary COVID-19 mRNA vaccination in kidney transplant recipients (KTRs). In healthy individuals, prior SARS-COV-2 infection is associated with increased vaccine responses, a phenotype called hybrid immunity. In this study, we explored the potential influence of immune suppression on hybrid immunity in KTRs. Methods: Eighty-two KTRs, including 59 SARS-CoV-2-naïve (naïve KTRs [N-KTRs]) and 23 SARS-CoV-2-experienced (experienced KTRs [E-KTRs]) patients, were prospectively studied and compared to 106 healthy controls (HCs), including 40 SARS-CoV-2-naïve (N-HCs) and 66 SARS-CoV-2-experienced (E-HCs) subjects. Polyfunctional antibody and T cell responses were measured following 2 doses of BNT162b2 mRNA vaccine. Associations between vaccine responses and clinical characteristics were studied by univariate and multivariate analyses. Results: In naïve KTRs, vaccine responses were markedly lower than in HCs and were correlated with older age, more recent transplantation, kidney retransplantation after graft failure, arterial hypertension, and treatment with mycophenolate mofetil (MMF). In contrast, vaccine responses of E-KTRs were similar to those of HCs and were associated with time between transplantation and vaccination, but not with the other risk factors associated with low vaccine responses in naïve KTRs. Conclusion: In conclusion, hybrid immunity overcomes immune suppression and provides potent humoral and cellular immunity to SARS-CoV-2 in KTRs.

SELECTION OF CITATIONS
SEARCH DETAIL