Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Proteome Res ; 19(6): 2391-2403, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32357013

ABSTRACT

Neuronal development is a complex multistep process that shapes neurons by progressing though several typical stages, including axon outgrowth, dendrite formation, and synaptogenesis. Knowledge of the mechanisms of neuronal development is mostly derived from the study of animal models. Advances in stem cell technology now enable us to generate neurons from human induced pluripotent stem cells (iPSCs). Here we provide a mass spectrometry-based quantitative proteomic signature of human iPSC-derived neurons, i.e., iPSC-derived induced glutamatergic neurons and iPSC-derived motor neurons, throughout neuronal differentiation. Tandem mass tag 10-plex labeling was carried out to perform proteomic profiling of cells at different time points. Our analysis reveals significant expression changes (FDR < 0.001) of several key proteins during the differentiation process, e.g., proteins involved in the Wnt and Notch signaling pathways. Overall, our data provide a rich resource of information on protein expression during human iPSC neuron differentiation.


Subject(s)
Induced Pluripotent Stem Cells , Animals , Cell Differentiation , Humans , Neurogenesis , Proteome/genetics , Proteomics
2.
Eur J Neurosci ; 49(11): 1418-1435, 2019 06.
Article in English | MEDLINE | ID: mdl-30588669

ABSTRACT

The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.


Subject(s)
CA1 Region, Hippocampal/metabolism , Eating/physiology , Fasting/physiology , Neurons/metabolism , Sodium Channels/metabolism , Animals , Female , Rats , Rats, Wistar
3.
Nat Commun ; 15(1): 7484, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39209824

ABSTRACT

Intermediate-length repeat expansions in ATAXIN-2 (ATXN2) are the strongest genetic risk factor for amyotrophic lateral sclerosis (ALS). At the molecular level, ATXN2 intermediate expansions enhance TDP-43 toxicity and pathology. However, whether this triggers ALS pathogenesis at the cellular and functional level remains unknown. Here, we combine patient-derived and mouse models to dissect the effects of ATXN2 intermediate expansions in an ALS background. iPSC-derived motor neurons from ATXN2-ALS patients show altered stress granules, neurite damage and abnormal electrophysiological properties compared to healthy control and other familial ALS mutations. In TDP-43Tg-ALS mice, ATXN2-Q33 causes reduced motor function, NMJ alterations, neuron degeneration and altered in vitro stress granule dynamics. Furthermore, gene expression changes related to mitochondrial function and inflammatory response are detected and confirmed at the cellular level in mice and human neuron and organoid models. Together, these results define pathogenic defects underlying ATXN2-ALS and provide a framework for future research into ATXN2-dependent pathogenesis and therapy.


Subject(s)
Amyotrophic Lateral Sclerosis , Ataxin-2 , Disease Models, Animal , Induced Pluripotent Stem Cells , Mice, Transgenic , Motor Neurons , Peptides , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Ataxin-2/genetics , Ataxin-2/metabolism , Humans , Animals , Peptides/metabolism , Peptides/genetics , Mice , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Phenotype , Male , Female , Mitochondria/metabolism , Neurites/metabolism
4.
Stem Cell Res Ther ; 14(1): 137, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37226203

ABSTRACT

BACKGROUND: Mesenchymal stromal/stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) hold promise as a disease modifying treatment in osteoarthritis (OA). Obesity, and its associated inflammation, contribute to OA development and metabolic OA represents a specific and significant group of the OA patient population. Given their immunomodulatory properties, MSC and MSC-EVs are especially interesting for this group of patients as a therapeutic option. Here, we were the first to compare the therapeutic efficacy of MSCs and MSC-EVs in a mild OA model taking these metabolic aspects into consideration. METHODS: Male Wistar-Han rats (Crl:WI(Han) (n = 36) were fed a high fat diet for 24 weeks, with unilateral induction of OA by groove surgery after 12 weeks. Eight days after surgery rats were randomized in three treatment groups receiving MSCs, MSC-EVs or vehicle injection. Pain-associated behavior, joint degeneration, and local and systemic inflammation were measured. RESULTS: We demonstrated that despite not having a significant therapeutic effect, MSC-EV treatment results in lower cartilage degeneration, less pain behaviour, osteophytosis and joint inflammation, than MSC treatment. Suggesting that MSC-EVs could be a more promising therapeutic strategy than MSCs in this mild metabolic OA model. CONCLUSION: In summary, we find that MSC treatment has negative effects on the joint in metabolic mild OA. This is an essential finding for the significant group of patients with metabolic OA phenotype, and might help to understand why clinical translation of MSC treatment shows varying therapeutic efficacy thus far. Our results also suggest that MSC-EV-based treatment might be a promising option for these patients, however MSC-EV therapeutic efficacy will need improvement.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Osteoarthritis , Humans , Male , Animals , Rats , Rats, Wistar , Osteoarthritis/therapy , Inflammation , Pain
5.
ACS Omega ; 6(51): 35375-35388, 2021 Dec 28.
Article in English | MEDLINE | ID: mdl-34984269

ABSTRACT

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder characterized by loss of motor neurons (MN) in the spinal cord leading to progressive muscle atrophy and weakness. SMA is caused by mutations in the survival motor neuron 1 (SMN1) gene, resulting in reduced levels of survival motor neuron (SMN) protein. The mechanisms that link SMN deficiency to selective motor neuron dysfunction in SMA remain largely unknown. We present here, for the first time, a comprehensive quantitative TMT-10plex proteomics analysis that covers the development of induced pluripotent stem cell-derived MNs from both healthy individuals and SMA patients. We show that the proteomes of SMA samples segregate from controls already at early stages of neuronal differentiation. The altered proteomic signature in SMA MNs is associated with mRNA splicing, ribonucleoprotein biogenesis, organelle organization, cellular biogenesis, and metabolic processes. We highlight several known SMN-binding partners and evaluate their expression changes during MN differentiation. In addition, we compared our study to human and mouse in vivo proteomic studies revealing distinct and similar signatures. Altogether, our work provides a comprehensive resource of molecular events during early stages of MN differentiation, containing potentially therapeutically interesting protein expression profiles for SMA.

6.
Theranostics ; 10(13): 5979-5997, 2020.
Article in English | MEDLINE | ID: mdl-32483432

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) are important players in tissue homeostasis and regeneration owing to their immunomodulatory potential and release of trophic factors that promote healing. They have been increasingly used in clinical trials to treat multiple conditions associated with inflammation and tissue damage such as graft versus host disease, orthopedic injuries and cardiac and liver diseases. Recent evidence demonstrates that their beneficial effects are derived, at least in part, from their secretome. In particular, data from animal models and first-in-man studies indicate that MSC-derived extracellular vesicles (MSC-EVs) can exert similar therapeutic potential as their cells of origin. MSC-EVs are membranous structures loaded with proteins, lipids, carbohydrates and nucleic acids, which play an important role in cell-cell communication and may represent an attractive alternative for cell-based therapy. In this article we summarize recent advances in the use of MSC-EVs for tissue repair. We highlight several isolation and characterization approaches used to enrich MSC-derived EVs. We discuss our current understanding of the relative contribution of the MSC-EVs to the immunomodulatory and regenerative effects mediated by MSCs and MSC secretome. Finally we highlight the challenges and opportunities, which come with the potential use of MSC-EVs as cell free therapy for conditions that require tissue repair.


Subject(s)
Extracellular Vesicles/physiology , Mesenchymal Stem Cells/physiology , Animals , Cell Communication/physiology , Cell- and Tissue-Based Therapy/methods , Humans , Immunomodulation/physiology , Inflammation/therapy , Wound Healing/physiology
7.
Mol Autism ; 11(1): 38, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32460858

ABSTRACT

BACKGROUND: Rett syndrome (RTT) is a progressive neurodevelopmental disease that is characterized by abnormalities in cognitive, social, and motor skills. RTT is often caused by mutations in the X-linked gene encoding methyl-CpG binding protein 2 (MeCP2). The mechanism by which impaired MeCP2 induces the pathological abnormalities in the brain is not understood. Both patients and mouse models have shown abnormalities at molecular and cellular level before typical RTT-associated symptoms appear. This implies that underlying mechanisms are already affected during neurodevelopmental stages. METHODS: To understand the molecular mechanisms involved in disease onset, we used an RTT patient induced pluripotent stem cell (iPSC)-based model with isogenic controls and performed time-series of proteomic analysis using in-depth high-resolution quantitative mass spectrometry during early stages of neuronal development. RESULTS: We provide mass spectrometry-based quantitative proteomic data, depth of about 7000 proteins, at neuronal progenitor developmental stages of RTT patient cells and isogenic controls. Our data gives evidence of proteomic alteration at early neurodevelopmental stages, suggesting alterations long before the phase that symptoms of RTT syndrome become apparent. Significant changes are associated with the GO enrichment analysis in biological processes cell-cell adhesion, actin cytoskeleton organization, neuronal stem cell population maintenance, and pituitary gland development, next to protein changes previously associated with RTT, i.e., dendrite morphology and synaptic deficits. Differential expression increased from early to late neural stem cell phases, although proteins involved in immunity, metabolic processes, and calcium signaling were affected throughout all stages analyzed. LIMITATIONS: The limitation of our study is the number of RTT patients analyzed. As the aim of our study was to investigate a large number of proteins, only one patient was considered, of which 3 different RTT iPSC clones and 3 isogenic control iPSC clones were included. Even though this approach allowed the study of mutation-induced alterations due to the usage of isogenic controls, results should be validated on different RTT patients to suggest common disease mechanisms. CONCLUSIONS: During early neuronal differentiation, there are consistent and time-point specific proteomic alterations in RTT patient cells carrying exons 3-4 deletion in MECP2. We found changes in proteins involved in pathway associated with RTT phenotypes, including dendrite morphology and synaptogenesis. Our results provide a valuable resource of proteins and pathways for follow-up studies, investigating common mechanisms involved during early disease stages of RTT syndrome.


Subject(s)
Neural Stem Cells/metabolism , Neurons/metabolism , Proteome , Proteomics , Rett Syndrome/metabolism , Biomarkers , Cell Differentiation/genetics , Cells, Cultured , Cellular Reprogramming/genetics , Computational Biology , Disease Susceptibility , Genetic Predisposition to Disease , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mass Spectrometry , Neural Stem Cells/cytology , Neurogenesis , Neurons/cytology , Phenotype , Protein Interaction Mapping , Proteomics/methods , Rett Syndrome/etiology
SELECTION OF CITATIONS
SEARCH DETAIL