ABSTRACT
The origin of the German cockroach, Blattella germanica, is enigmatic, in part because it is ubiquitous worldwide in human-built structures but absent from any natural habitats. The first historical records of this species are from ca. 250 years ago (ya) from central Europe (hence its name). However, recent research suggests that the center of diversity of the genus is Asian, where its closest relatives are found. To solve this paradox, we sampled genome-wide markers of 281 cockroaches from 17 countries across six continents. We confirm that B. germanica evolved from the Asian cockroach Blattella asahinai approximately 2,100 ya, probably by adapting to human settlements in India or Myanmar. Our genomic analyses reconstructed two primary global spread routes, one older, westward route to the Middle East coinciding with various Islamic dynasties (~1,200 ya), and another younger eastward route coinciding with the European colonial period (~390 ya). While Europe was not central to the early domestication and spread of the German cockroach, European advances in long-distance transportation and temperature-controlled housing were likely important for the more recent global spread, increasing chances of successful dispersal to and establishment in new regions. The global genetic structure of German cockroaches further supports our model, as it generally aligns with geopolitical boundaries, suggesting regional bridgehead populations established following the advent of international commerce.
Subject(s)
Blattellidae , Animals , Blattellidae/genetics , Phylogeny , Europe , Biological EvolutionABSTRACT
In social insect colonies, selfish behaviour due to intracolonial conflict among members can result in colony-level costs despite close relatedness. In certain termite species, queens use asexual reproduction for within-colony queen succession but rely on sexual reproduction for worker and alate production, resulting in multiple half-clones of a single primary queen competing for personal reproduction. Our study demonstrates that competition over asexual queen succession among different clone types leads to the overproduction of parthenogenetic offspring, resulting in the production of dysfunctional parthenogenetic alates. By genotyping the queens of 23 field colonies of Reticulitermes speratus, we found that clone variation in the queen population reduces as colonies develop. Field sampling of alates and primary reproductives of incipient colonies showed that overproduced parthenogenetic offspring develop into alates that have significantly smaller body sizes and much lower survivorship than sexually produced alates. Our results indicate that while the production of earlier and more parthenogenetic eggs is advantageous for winning the competition for personal reproduction, it comes at a great cost to the colony. Thus, this study highlights the evolutionary interplay between individual-level and colony-level selection on parthenogenesis by queens.
Subject(s)
Isoptera , Parthenogenesis , Animals , Isoptera/physiology , Isoptera/genetics , Female , Reproduction , Social BehaviorABSTRACT
Human activity has facilitated the introduction of many exotic species via global trade. Asia-Pacific countries comprise one of the most economically and trade-active regions in the world, which makes it an area that is highly vulnerable to invasive species, including ants. There are currently over 60 exotic ant species in the Asia-Pacific, with the red imported fire ant, Solenopsis invicta, among the most destructive. Exotic ants pose many economic and ecological problems for the region. Countries in the Asia-Pacific have dealt with the problem of exotic ants in very different ways, and there has been an overall lack of preparedness. To improve the management of risks associated with invasive ants, we recommend that countries take action across the biosecurity spectrum, spanning prevention, containment, and quarantine. The creation of an Asia-Pacific network for management of invasive ants should help prevent their introduction and mitigate their impacts.
Subject(s)
Ants , Animals , Ants/physiology , Asia , Introduced SpeciesABSTRACT
Biological invasions are becoming more prevalent due to the rise of global trade and expansion of urban areas. Ants are among the most prolific invaders with many exhibiting a multiqueen colony structure, dependent colony foundation and reduced internest aggression. Although these characteristics are generally associated with the invasions of exotic ants, they may also facilitate the spread of native ants into novel habitats. Native to diverse habitats across North America, the odorous house ant Tapinoma sessile has become abundant in urban environments throughout the United States. Natural colonies typically have a small workforce, inhabit a single nest, and are headed by a single queen, whereas urban colonies tend to be several orders of magnitude larger, inhabit multiple nests (i.e., polydomy) and are headed by multiple queens (i.e., polygyny). Here, we explore and compare the population genetic and breeding structure of T. sessile within and between urban and natural environments in several localities across its distribution range. We found the social structure of a colony to be a plastic trait in both habitats, although extreme polygyny was confined to urban habitats. Additionally, polydomous colonies were only present in urban habitats, suggesting T. sessile can only achieve supercoloniality within urbanized areas. Finally, we identified strong differentiation between urban and natural populations in each locality and continent-wide, indicating cities may restrict gene flow and exert intense selection pressure. Overall, our study highlights urbanization's influence in charting the evolutionary course for species.
Subject(s)
Ants , Aggression , Animals , Ants/genetics , Biological Evolution , Cities , EcosystemABSTRACT
Evaluating the factors that promote invasive ant abundance is critical to assess their ecological impact and inform their management. Many invasive ant species show reduced nestmate recognition and an absence of boundaries between unrelated nests, which allow populations to achieve greater densities due to reduced intraspecific competition. We examined nestmate discrimination and colony boundaries in introduced populations of the red imported fire ant (Solenopsis invicta; hereafter, fire ant). Fire ants occur in two social forms: monogyne (colonies with a single egg-laying queen) and polygyne (colonies with multiple egg-laying queens). In contrast with monogyne nests, polygyne nests are thought to be interconnected due to the reduced antagonism between non-nestmate polygyne workers, perhaps because polygyne workers habituate the colony to an odour unique to Gp-9b -carrying adults. However, colony boundaries and nestmate discrimination are poorly documented, particularly for worker-brood interactions. To delimit boundaries between field colonies, we correlated the exchange of a 15 N-glycine tracer dissolved in a sucrose solution with social form. We also evaluated nestmate discrimination between polygyne workers and larvae in the laboratory. Counter to our expectations, polygyne colonies behaved identically to monogyne colonies, suggesting both social forms maintain strict colony boundaries. Polygyne workers also preferentially fed larval nestmates and may have selectively cannibalized non-nestmates. The levels of relatedness among workers in polygyne colonies was higher than those previously reported in North America (mean ± standard error: 0.269 ± 0.037). Our study highlights the importance of combining genetic analyses with direct quantification of resource exchange to better understand the factors influencing ant invasions.
Subject(s)
Ants , Animals , Ants/genetics , Humans , Larva/genetics , North America , Social BehaviorABSTRACT
The long-standing association between insects and microorganisms has been especially crucial to the evolutionary and ecological success of social insect groups. Notably, research on the interaction of the two social forms (monogyne and polygyne) of the red imported fire ant (RIFA), Solenopsis invicta Buren, with microbes in its soil habitat is presently limited. In this study, we characterized bacterial microbiomes associated with RIFA nest soils and native (RIFA-negative) soils to better understand the effects of colonization of RIFA on soil microbial communities. Bacterial community fingerprints of 16S rRNA amplicons using denaturing gradient gel electrophoresis revealed significant differences in the structure of the bacterial communities between RIFA-positive and RIFA-negative soils at 0 and 10 cm depths. Illumina sequencing of 16S rRNA amplicons provided fine-scale analysis to test for effects of RIFA colonization, RIFA social form, and soil depth on the composition of the bacterial microbiomes of the soil and RIFA workers. Our results showed the bacterial community structure of RIFA-colonized soils to be significantly different from native soil communities and to evidence elevated abundances of several taxa, including Actinobacteria. Colony social form was not found to be a significant factor in nest or RIFA worker microbiome compositions. RIFA workers and nest soils were determined to have markedly different bacterial communities, with RIFA worker microbiomes being characterized by high abundances of a Bartonella-like endosymbiont and Entomoplasmataceae. Cloning and sequencing of the 16S rRNA gene revealed the Bartonella sp. to be a novel bacterium.
Subject(s)
Ants , Animals , Ants/microbiology , Bacteria/genetics , Ecosystem , RNA, Ribosomal, 16S/genetics , SoilABSTRACT
Genetic diversity acts as a reservoir for potential adaptations, yet selection tends to reduce this diversity over generations. However, sexually antagonistic selection (SAS) may promote diversity by selecting different alleles in each sex. SAS arises when an allele is beneficial to one sex but harmful to the other. Usually, the evolution of sex chromosomes allows each sex to independently reach different optima, thereby circumventing the constraint of a shared autosomal genome. Because the X chromosome is found twice as often in females than males, it represents a hot spot for SAS, offering a refuge for recessive male-beneficial but female-costly alleles. Hymenopteran species do not have sex chromosomes; females are diploid and males are haploid, with sex usually determined by heterozygosity at the complementary sex-determining locus. For this reason, their entire genomes display an X-linked pattern, as every chromosome is found twice as often in females than in males, which theoretically predisposes them to SAS in large parts of their genome. Here we report an instance of sexual divergence in the Hymenoptera, a sexually reproducing group that lacks sex chromosomes. In the invasive ant Nylanderia fulva, a postzygotic SAS leads daughters to preferentially carry alleles from their mothers and sons to preferentially carry alleles from their grandfathers for a substantial region (â¼3%) of the genome. This mechanism results in nearly all females being heterozygous at these regions and maintains diversity throughout the population, which may mitigate the effects of a genetic bottleneck following introduction to an exotic area and enhance the invasion success of this ant.
Subject(s)
Ants/genetics , Genome, Insect , Selection, Genetic , Alleles , Animals , Diploidy , Female , Haploidy , Introduced Species , Loss of Heterozygosity , Male , Polymorphism, Single Nucleotide , Sex Characteristics , Sex Determination Processes , TexasABSTRACT
As native ranges are often geographically structured, invasive species originating from a single source population only carry a fraction of the genetic diversity present in their native range. The invasion process is thus often associated with a drastic loss of genetic diversity resulting from a founder event. However, the fraction of diversity brought to the invasive range may vary under different invasion histories, increasing with the size of the propagule, the number of reintroduction events, and/or the total genetic diversity represented by the various source populations in a multiple-introduction scenario. In this study, we generated a SNP data set for the invasive termite Reticulitermes flavipes from 23 native populations in the eastern United States and six introduced populations throughout the world. Using population genetic analyses and approximate Bayesian computation random forest, we investigated its worldwide invasion history. We found a complex invasion pathway with multiple events out of the native range and bridgehead introductions from the introduced population in France. Our data suggest that extensive long-distance jump dispersal appears common in both the native and introduced ranges of this species, probably through human transportation. Overall, our results show that similar to multiple introduction events into the invasive range, admixture in the native range prior to invasion can potentially favour invasion success by increasing the genetic diversity that is later transferred to the introduced range.
Subject(s)
Genetics, Population , Introduced Species , Isoptera , Animals , Bayes Theorem , Genetic Variation , Isoptera/genetics , Microsatellite Repeats , United StatesABSTRACT
Termites are intimately tied to the microbial world, as they utilize their gut microbiome for the conversion of plant cellulose into necessary nutrients. Subterranean termites must also protect themselves from the vast diversity of harmful microbes found in soil. However, not all soil microbes are harmful, such as Streptomyces and methanotrophic bacteria that some species of termites harbor in complex nest structures made of fecal material. The eastern subterranean termite, Reticulitermes flavipes, has a simple nest structure consisting of fecal lined galleries. We tested the hypothesis that R. flavipes maintains a select microbial community in its nests to limit the penetration of harmful soilborne pathogens and favor the growth of beneficial microbes. Using Illumina sequencing, we characterized the bacterial and fungal communities in the surrounding soil, in the nest galleries, and on the cuticle of workers. We found that the galleries provide a more beneficial microbial community than the surrounding soil. Bacterial and fungal diversity was highest in the soil, lower in the galleries, and least on the cuticle. Bacterial communities clustered together according to the substrate from which they were sampled, but this clustering was less clear in fungal communities. Most of the identified bacterial and fungal taxa were unique to one substrate, but the soil and gallery communities had very similar phylum-level taxonomic profiles. Notably, the galleries of R. flavipes also harbored both the potentially beneficial Streptomyces and the methanotrophic Methylacidiphilales, indicating that these microbial associations in fecal material pre-date the emergence of complex fecal nest structures. Surprisingly, several pathogenic groups were relatively abundant in the galleries and on the cuticle, suggesting that pathogens may accumulate within termite nests over time while putatively remaining at enzootic level during the lifetime of the colony.
Subject(s)
Isoptera , Microbiota , Streptomyces , Animals , Fungi/genetics , Humans , SoilABSTRACT
Chemical communication is fundamental to success in social insect colonies. Species-, colony-, and caste-specific blends of cuticular hydrocarbons (CHCs) and other chemicals have been well documented as pheromones, mediating important behavioral and physiological aspects of social insects. More specifically, royal pheromones used by queens (and kings in termites) enable workers to recognize and care for these vital individuals and maintain the reproductive division of labor. In termites, however, no royal-recognition pheromones have been identified to date. In the current study, solvent extracts of the subterranean termite Reticulitermes flavipes were analyzed to assess differences in cuticular compounds among castes. We identified a royal-specific hydrocarbon-heneicosane-and several previously unreported and highly royal enriched long-chain alkanes. When applied to glass dummies, heneicosane elicited worker behavioral responses identical to those elicited by live termite queens, including increased vibratory shaking and antennation. Further, the behavioral effects of heneicosane were amplified when presented with nestmate termite workers' cuticular extracts, underscoring the importance of chemical context in termite royal recognition. Thus, heneicosane is a royal-recognition pheromone that is active in both queens and kings of R. flavipes The use of heneicosane as a queen and king recognition pheromone by termites suggests that CHCs evolved as royal pheromones â¼150 million years ago, â¼50 million years before their first use as queen-recognition pheromones in social Hymenoptera. We therefore infer that termites and social Hymenoptera convergently evolved the use of these ubiquitous compounds in royal recognition.
Subject(s)
Hydrocarbons/chemistry , Isoptera/chemistry , Isoptera/physiology , Pheromones/chemistry , Alkanes/chemistry , Alkanes/metabolism , Animals , Behavior, Animal , Biological Evolution , Female , Hydrocarbons/metabolism , Isoptera/genetics , Male , Pheromones/metabolism , Social DominanceABSTRACT
BACKGROUND: Social insects are among the most serious invasive pests in the world, particularly successful at monopolizing environmental resources to outcompete native species and achieve ecological dominance. The invasive success of some social insects is enhanced by their unicolonial structure, under which the presence of numerous queens and the lack of aggression against non-nestmates allow high worker densities, colony growth, and survival while eliminating intra-specific competition. In this study, we investigated the population genetics, colony structure and levels of aggression in the tawny crazy ant, Nylanderia fulva, which was recently introduced into the United States from South America. RESULTS: We found that this species experienced a genetic bottleneck during its invasion lowering its genetic diversity by 60%. Our results show that the introduction of N. fulva is associated with a shift in colony structure. This species exhibits a multicolonial organization in its native range, with colonies clearly separated from one another, whereas it displays a unicolonial system with no clear boundaries among nests in its invasive range. We uncovered an absence of genetic differentiation among populations across the entire invasive range, and a lack of aggressive behaviors towards conspecifics from different nests, even ones separated by several hundreds of kilometers. CONCLUSIONS: Overall, these results suggest that across its entire invasive range in the U.S.A., this species forms a single supercolony spreading more than 2000 km. In each invasive nest, we found several, up to hundreds, of reproductive queens, each being mated with a single male. The many reproductive queens per nests, together with the free movement of individuals between nests, leads to a relatedness coefficient among nestmate workers close to zero in introduced populations, calling into question the stability of this unicolonial system in which indirect fitness benefits to workers is apparently absent.
Subject(s)
Ants/classification , Ants/genetics , Aggression , Animals , Ants/physiology , Female , Genetic Variation , Genetics, Population , Male , Microsatellite Repeats , Social Behavior , United StatesABSTRACT
Eusocial insects exhibit the most striking example of phenotypic plasticity. There has been a long controversy over the factors determining caste development of individuals in social insects. Here we demonstrate that parental phenotypes influence the social status of offspring not through genetic inheritance but through genomic imprinting in termites. Our extensive field survey and genetic analysis of the termite Reticulitermes speratus show that its breeding system is inconsistent with a genetic caste determination model. We therefore developed a genomic imprinting model, in which queen- and king-specific epigenetic marks antagonistically influence sexual development of offspring. The model accounts for all known empirical data on caste differentiation of R. speratus and other related species. By conducting colony-founding experiments and additively incorporating relevant socio-environmental factors into our genomic imprinting model, we show the relative importance of genomic imprinting and environmental factors in caste determination. The idea of epigenetic inheritance of sexual phenotypes solves the puzzle of why parthenogenetically produced daughters carrying only maternal chromosomes exclusively develop into queens and why parental phenotypes (nymph- or worker-derived reproductives) strongly influence caste differentiation of offspring. According to our model, the worker caste is seen as a "neuter" caste whose sexual development is suppressed due to counterbalanced maternal and paternal imprinting and opens new avenues for understanding the evolution of caste systems in social insects.
Subject(s)
Epigenesis, Genetic , Genomic Imprinting , Hierarchy, Social , Isoptera/genetics , Models, Biological , AnimalsABSTRACT
Identifying traits that facilitate species introductions and successful invasions of ecosystems represents a key issue in ecology. Following their establishment into new environments, many non-native species exhibit phenotypic plasticity with post-introduction changes in behaviour, morphology or life history traits that allow them to overcome the presumed loss of genetic diversity resulting in inbreeding and reduced adaptive potential. Here, we present a unique strategy in the invasive ant Brachyponera chinensis (Emery), in which inbreeding tolerance is a pre-adapted trait for invasion success, allowing this ant to cope with genetic depletion following a genetic bottleneck. We report for the first time that inbreeding is not a consequence of the founder effect following introduction, but it is due to mating between sister queens and their brothers that pre-exists in native populations which may have helped it circumvent the cost of invasion. We show that a genetic bottleneck does not affect the genetic diversity or the level of heterozygosity within colonies and suggest that generations of sib-mating in native populations may have reduced inbreeding depression through purifying selection of deleterious alleles. This work highlights how a unique life history may pre-adapt some species for biological invasions.
Subject(s)
Ants/genetics , Genetics, Population , Inbreeding , Introduced Species , Animals , Female , Founder Effect , Genetic Variation , Heterozygote , Inbreeding Depression , Japan , Male , North Carolina , Selection, GeneticABSTRACT
A termite colony is usually founded by a pair of alates, the primary reproductives, which produce all the nestmates. In some species, secondary reproductives appear to either replace the primaries or supplement colony reproduction. In termites, secondary reproductives are generally ergatoids derived from workers or nymphoids derived from nymphs. Silvestritermes euamignathus is a termite species that forms multiple nymphoid reproductives, and to date it was hypothesized that these secondary reproductives were the progeny of the primary founding reproductives. We developed markers for 12 microsatellite loci and used COI mitochondrial DNA (mtDNA) to genotype 59 nymphoid neotenics found in a colony of S. euamignathus to test this hypothesis. Our results showed that nymphoids of S. euamignathus are not all siblings. The microsatellite analysis suggests that the secondary reproductives derived from a minimum of four different pairs of reproductives belonging to at least two different matrilines. This is the first record of non-sibling secondary reproductives occupying the same nest in a higher termite. These unrelated reproductives might be the result of either pleometrotic colony foundation or colony fusion.
Subject(s)
Isoptera/physiology , Animals , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Genotype , Isoptera/genetics , Microsatellite Repeats/genetics , Nymph , Reproduction , Tropical ClimateABSTRACT
Genetic differentiation may exist among sympatric populations of a species due to long-term associations with alternative hosts (i.e. host-associated differentiation). While host-associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host-associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human-built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock-down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host-specific populations. Within locations human-associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human-mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association.
Subject(s)
Bedbugs/genetics , Gene Flow , Genetic Variation , Host Specificity , Animals , Bayes Theorem , Cell Nucleus/genetics , Chiroptera/parasitology , Cluster Analysis , DNA, Mitochondrial/genetics , Ectoparasitic Infestations , Europe , Evolution, Molecular , Genetics, Population , Genotype , Haplotypes , Humans , Microsatellite RepeatsABSTRACT
For many insect species, group living provides physiological and behavioral benefits, including faster development. Bed bugs (Cimex lectularius L.) live in aggregations composed of eggs, nymphs, and adults of various ages. Our aim was to determine whether bed bug nymphs reared in groups develop faster than solitary nymphs. We reared first instars either in isolation or in groups from hatching to adult emergence and recorded their development time. In addition, we investigated the effects of group housing on same-age nymphs versus nymphs reared with adults. Nymphal development was 2.2 d faster in grouped nymphs than in solitary-housed nymphs, representing 7.3% faster overall development. However, this grouping effect did not appear to be influenced by group composition. Thus, similar to other gregarious insect species, nymph development in bed bugs is faster in aggregations than in isolation.
Subject(s)
Bedbugs/growth & development , Animals , Female , Male , Nymph/growth & development , Population DensityABSTRACT
Collective behaviors of social insects are often regulated by pheromones. In subterranean termites, some workers forage for and exploit decaying wood for new food resources while forming tunnels from their nest. Colonizing new food resources requires workers to build and disinfect tunnels and chambers inside the nest and ingest decaying wood; therefore subterranean termite colonies should have mechanisms to establish and maintain groups of workers to perform these functions. Recently, an aggregation pheromone was identified in workers of the termite Reticulitermes speratus, which induces quick attraction of nestmate workers and prolonged aggregation to the site of attraction. In this study, we extended this work to another species of Reticulitermes and identified a worker aggregation pheromone in the termite R. virginicus. GC-MS analysis and bioassays demonstrated that this pheromone consists of 3-octanone, 3-octanol, and palmitic acid and shows a colony-specific, dose-dependent attractant response but not an arrestant response. Furthermore, these pheromone components were most likely emitted from the surface of the body. This suggests that aggregation pheromone composition and function differ significantly among termite species, even within the same genus. This study advances our understanding of the regulatory mechanisms of termite aggregation behavior.
Subject(s)
Behavior, Animal , Isoptera , Pheromones , Animals , Isoptera/physiology , Pheromones/metabolism , Behavior, Animal/physiology , Gas Chromatography-Mass Spectrometry , Social BehaviorABSTRACT
The higher classification of termites requires substantial revision as the Neoisoptera, the most diverse termite lineage, comprise many paraphyletic and polyphyletic higher taxa. Here, we produce an updated termite classification using genomic-scale analyses. We reconstruct phylogenies under diverse substitution models with ultraconserved elements analyzed as concatenated matrices or within the multi-species coalescence framework. Our classification is further supported by analyses controlling for rogue loci and taxa, and topological tests. We show that the Neoisoptera are composed of seven family-level monophyletic lineages, including the Heterotermitidae Froggatt, Psammotermitidae Holmgren, and Termitogetonidae Holmgren, raised from subfamilial rank. The species-rich Termitidae are composed of 18 subfamily-level monophyletic lineages, including the new subfamilies Crepititermitinae, Cylindrotermitinae, Forficulitermitinae, Neocapritermitinae, Protohamitermitinae, and Promirotermitinae; and the revived Amitermitinae Kemner, Microcerotermitinae Holmgren, and Mirocapritermitinae Kemner. Building an updated taxonomic classification on the foundation of unambiguously supported monophyletic lineages makes it highly resilient to potential destabilization caused by the future availability of novel phylogenetic markers and methods. The taxonomic stability is further guaranteed by the modularity of the new termite classification, designed to accommodate as-yet undescribed species with uncertain affinities to the herein delimited monophyletic lineages in the form of new families or subfamilies.
Subject(s)
Genomics , Isoptera , Phylogeny , Isoptera/genetics , Isoptera/classification , Animals , Genomics/methods , Genome, InsectABSTRACT
Social insects exhibit remarkable variation in their colony breeding structures, both within and among species. Ecological factors are believed to be important in shaping reproductive traits of social insect colonies, yet there is little information linking specific environmental variables with differences in breeding structure. Subterranean termites (Rhinotermitidae) show exceptional variation in colony breeding structure, differing in the number of reproductives and degree of inbreeding; colonies can be simple families headed by a single pair of monogamous reproductives (king and queen) or they can be extended families headed by multiple inbreeding neotenic reproductives (wingless individuals). Using microsatellite markers, we characterized colony breeding structure and levels of inbreeding in populations over large parts of the range of the subterranean termites Reticulitermes flavipes in the USA and R. grassei in Europe. Combining these new data with previous results on populations of both species, we found that latitude had a strong effect on the proportion of extended-family colonies in R. flavipes and on levels of inbreeding in both species. We examined the effect of several environmental variables that vary latitudinally; while the degree of inbreeding was greatest in cool, moist habitats in both species, seasonality affected the species differently. Inbreeding in R. flavipes was most strongly associated with climatic variables (mean annual temperature and seasonality), whereas nonclimatic variables, including the availability of wood substrate and soil composition, were important predictors of inbreeding in R. grassei. These results are the first showing that termite breeding structure is shaped by local environmental factors and that species can vary in their responses to these factors.
Subject(s)
Genetic Variation , Inbreeding , Isoptera/genetics , Animals , Climate Change , Environment , Europe , Female , Genetic Loci , Genetics, Population , Genotype , Isoptera/physiology , Male , Microsatellite Repeats , Reproduction/genetics , United StatesABSTRACT
The hallmark of social insects is their caste system: reproduction is primarily monopolized by queens, whereas workers specialize in the other tasks required for colony growth and survival. Pheromones produced by reigning queens have long been believed to be the prime factor inhibiting the differentiation of new reproductive individuals. However, there has been very little progress in the chemical identification of such inhibitory pheromones. Here we report the identification of a volatile inhibitory pheromone produced by female neotenics (secondary queens) that acts directly on target individuals to suppress the differentiation of new female neotenics and identify n-butyl-n-butyrate and 2-methyl-1-butanol as the active components of the inhibitory pheromone. An artificial pheromone blend consisting of these two compounds had a strong inhibitory effect similar to live neotenics. Surprisingly, the same two volatiles are also emitted by eggs, playing a role both as an attractant to workers and an inhibitor of reproductive differentiation. This dual production of an inhibitory pheromone by female reproductives and eggs probably reflects the recruitment of an attractant pheromone as an inhibitory pheromone and may provide a mechanism ensuring honest signaling of reproductive status with a tight coupling between fertility and inhibitory power. Identification of a volatile pheromone regulating caste differentiation in a termite provides insights into the functioning of social insect colonies and opens important avenues for elucidating the developmental pathways leading to reproductive and nonreproductive castes.