Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nucleic Acids Res ; 52(4): 1753-1762, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38117984

ABSTRACT

Members of the conserved Pif1 family of 5'-3' DNA helicases can unwind G4s and mitigate their negative impact on genome stability. In Saccharomyces cerevisiae, two Pif1 family members, Pif1 and Rrm3, contribute to the suppression of genomic instability at diverse regions including telomeres, centromeres and tRNA genes. While Pif1 can resolve lagging strand G4s in vivo, little is known regarding Rrm3 function at G4s and its cooperation with Pif1 for G4 replication. Here, we monitored replication through G4 sequences in real time to show that Rrm3 is essential for efficient replisome progression through G4s located on the leading strand template, but not on the lagging strand. We found that Rrm3 importance for replication through G4s is dependent on its catalytic activity and its N-terminal unstructured region. Overall, we show that Rrm3 and Pif1 exhibit a division of labor that enables robust replication fork progression through leading and lagging strand G4s, respectively.


Subject(s)
G-Quadruplexes , Saccharomyces cerevisiae Proteins , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Int J Cancer ; 145(12): 3402-3413, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31081944

ABSTRACT

Medulloblastoma is the most common malignant brain cancer in children. Since previous studies have mainly focused on alterations in the coding genome, our understanding of the contribution of long noncoding RNAs (lncRNAs) to medulloblastoma biology is just emerging. Using patient-derived data, we show that the promoter of lncRNA TP73-AS1 is hypomethylated and that the transcript is highly expressed in the SHH subgroup. Furthermore, high expression of TP73-AS1 is correlated with poor outcome in patients with TP53 wild-type SHH tumors. Silencing TP73-AS1 in medulloblastoma tumor cells induced apoptosis, while proliferation and migration were inhibited in culture. In vivo, silencing TP73-AS1 in medulloblastoma tumor cells resulted in reduced tumor growth, reduced proliferation of tumor cells, increased apoptosis and led to prolonged survival of tumor-bearing mice. Together, our study suggests that the lncRNA TP73-AS1 is a prognostic marker and therapeutic target in medulloblastoma tumors and serves as a proof of concept that lncRNAs are important factors in the disease.


Subject(s)
Cerebellar Neoplasms/genetics , Medulloblastoma/genetics , RNA, Long Noncoding/genetics , Animals , Apoptosis/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Humans , Male , Mice , Mice, Inbred NOD , Mice, SCID , Signal Transduction/genetics , Up-Regulation/genetics
3.
Nat Commun ; 10(1): 4128, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31511524

ABSTRACT

Pediatric malignancies including Ewing sarcoma (EwS) feature a paucity of somatic alterations except for pathognomonic driver-mutations that cannot explain overt variations in clinical outcome. Here, we demonstrate in EwS how cooperation of dominant oncogenes and regulatory germline variants determine tumor growth, patient survival and drug response. Binding of the oncogenic EWSR1-FLI1 fusion transcription factor to a polymorphic enhancer-like DNA element controls expression of the transcription factor MYBL2 mediating these phenotypes. Whole-genome and RNA sequencing reveals that variability at this locus is inherited via the germline and is associated with variable inter-tumoral MYBL2 expression. High MYBL2 levels sensitize EwS cells for inhibition of its upstream activating kinase CDK2 in vitro and in vivo, suggesting MYBL2 as a putative biomarker for anti-CDK2-therapy. Collectively, we establish cooperation of somatic mutations and regulatory germline variants as a major determinant of tumor progression and highlight the importance of integrating the regulatory genome in precision medicine.


Subject(s)
Germ-Line Mutation/genetics , Neoplasms/genetics , Neoplasms/therapy , Animals , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation , Cell Survival , Cyclin-Dependent Kinase 2/antagonists & inhibitors , Cyclin-Dependent Kinase 2/metabolism , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , Microsatellite Repeats/genetics , Neoplasm Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Phenotype , Polymorphism, Genetic , Trans-Activators , Treatment Outcome , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL