Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 489
Filter
Add more filters

Publication year range
1.
Nature ; 599(7886): 622-627, 2021 11.
Article in English | MEDLINE | ID: mdl-34759320

ABSTRACT

Zero hunger and good health could be realized by 2030 through effective conservation, characterization and utilization of germplasm resources1. So far, few chickpea (Cicer arietinum) germplasm accessions have been characterized at the genome sequence level2. Here we present a detailed map of variation in 3,171 cultivated and 195 wild accessions to provide publicly available resources for chickpea genomics research and breeding. We constructed a chickpea pan-genome to describe genomic diversity across cultivated chickpea and its wild progenitor accessions. A divergence tree using genes present in around 80% of individuals in one species allowed us to estimate the divergence of Cicer over the last 21 million years. Our analysis found chromosomal segments and genes that show signatures of selection during domestication, migration and improvement. The chromosomal locations of deleterious mutations responsible for limited genetic diversity and decreased fitness were identified in elite germplasm. We identified superior haplotypes for improvement-related traits in landraces that can be introgressed into elite breeding lines through haplotype-based breeding, and found targets for purging deleterious alleles through genomics-assisted breeding and/or gene editing. Finally, we propose three crop breeding strategies based on genomic prediction to enhance crop productivity for 16 traits while avoiding the erosion of genetic diversity through optimal contribution selection (OCS)-based pre-breeding. The predicted performance for 100-seed weight, an important yield-related trait, increased by up to 23% and 12% with OCS- and haplotype-based genomic approaches, respectively.


Subject(s)
Cicer/genetics , Genetic Variation , Genome, Plant/genetics , Sequence Analysis, DNA , Crops, Agricultural/genetics , Haplotypes/genetics , Plant Breeding , Polymorphism, Single Nucleotide/genetics
2.
BMC Genomics ; 25(1): 439, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698307

ABSTRACT

BACKGROUND: Chickpea is prone to many abiotic stresses such as heat, drought, salinity, etc. which cause severe loss in yield. Tolerance towards these stresses is quantitative in nature and many studies have been done to map the loci influencing these traits in different populations using different markers. This study is an attempt to meta-analyse those reported loci projected over a high-density consensus map to provide a more accurate information on the regions influencing heat, drought, cold and salinity tolerance in chickpea. RESULTS: A meta-analysis of QTL reported to be responsible for tolerance to drought, heat, cold and salinity stress tolerance in chickpeas was done. A total of 1512 QTL responsible for the concerned abiotic stress tolerance were collected from literature, of which 1189 were projected on a chickpea consensus genetic map. The QTL meta-analysis predicted 59 MQTL spread over all 8 chromosomes, responsible for these 4 kinds of abiotic stress tolerance in chickpea. The physical locations of 23 MQTL were validated by various marker-trait associations and genome-wide association studies. Out of these reported MQTL, CaMQAST1.1, CaMQAST4.1, CaMQAST4.4, CaMQAST7.8, and CaMQAST8.2 were suggested to be useful for different breeding approaches as they were responsible for high per cent variance explained (PVE), had small intervals and encompassed a large number of originally reported QTL. Many putative candidate genes that might be responsible for directly or indirectly conferring abiotic stress tolerance were identified in the region covered by 4 major MQTL- CaMQAST1.1, CaMQAST4.4, CaMQAST7.7, and CaMQAST6.4, such as heat shock proteins, auxin and gibberellin response factors, etc. CONCLUSION: The results of this study should be useful for the breeders and researchers to develop new chickpea varieties which are tolerant to drought, heat, cold, and salinity stresses.


Subject(s)
Cicer , Quantitative Trait Loci , Stress, Physiological , Cicer/genetics , Stress, Physiological/genetics , Chromosome Mapping , Droughts , Genome-Wide Association Study
3.
Trends Genet ; 37(12): 1124-1136, 2021 12.
Article in English | MEDLINE | ID: mdl-34531040

ABSTRACT

Crop production systems need to expand their outputs sustainably to feed a burgeoning human population. Advances in genome sequencing technologies combined with efficient trait mapping procedures accelerate the availability of beneficial alleles for breeding and research. Enhanced interoperability between different omics and phenotyping platforms, leveraged by evolving machine learning tools, will help provide mechanistic explanations for complex plant traits. Targeted and rapid assembly of beneficial alleles using optimized breeding strategies and precise genome editing techniques could deliver ideal crops for the future. Realizing desired productivity gains in the field is imperative for securing an adequate future food supply for 10 billion people.


Subject(s)
Genome, Plant , Plant Breeding , Crops, Agricultural/genetics , Gene Editing/methods , Genome, Plant/genetics , Humans , Phenotype , Plant Breeding/methods
4.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38594614

ABSTRACT

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Subject(s)
Basidiomycota , Mycoses , Disease Resistance/genetics , Oleic Acid , Plant Breeding , Chromosome Mapping , Basidiomycota/genetics , Plant Diseases/genetics , Plant Diseases/microbiology
5.
BMC Plant Biol ; 24(1): 354, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693487

ABSTRACT

BACKGROUND: Aspergillus flavus is an important agricultural and food safety threat due to its production of carcinogenic aflatoxins. It has high level of genetic diversity that is adapted to various environments. Recently, we reported two reference genomes of A. flavus isolates, AF13 (MAT1-2 and highly aflatoxigenic isolate) and NRRL3357 (MAT1-1 and moderate aflatoxin producer). Where, an insertion of 310 kb in AF13 included an aflatoxin producing gene bZIP transcription factor, named atfC. Observations of significant genomic variants between these isolates of contrasting phenotypes prompted an investigation into variation among other agricultural isolates of A. flavus with the goal of discovering novel genes potentially associated with aflatoxin production regulation. Present study was designed with three main objectives: (1) collection of large number of A. flavus isolates from diverse sources including maize plants and field soils; (2) whole genome sequencing of collected isolates and development of a pangenome; and (3) pangenome-wide association study (Pan-GWAS) to identify novel secondary metabolite cluster genes. RESULTS: Pangenome analysis of 346 A. flavus isolates identified a total of 17,855 unique orthologous gene clusters, with mere 41% (7,315) core genes and 59% (10,540) accessory genes indicating accumulation of high genomic diversity during domestication. 5,994 orthologous gene clusters in accessory genome not annotated in either the A. flavus AF13 or NRRL3357 reference genomes. Pan-genome wide association analysis of the genomic variations identified 391 significant associated pan-genes associated with aflatoxin production. Interestingly, most of the significantly associated pan-genes (94%; 369 associations) belonged to accessory genome indicating that genome expansion has resulted in the incorporation of new genes associated with aflatoxin and other secondary metabolites. CONCLUSION: In summary, this study provides complete pangenome framework for the species of Aspergillus flavus along with associated genes for pathogen survival and aflatoxin production. The large accessory genome indicated large genome diversity in the species A. flavus, however AflaPan is a closed pangenome represents optimum diversity of species A. flavus. Most importantly, the newly identified aflatoxin producing gene clusters will be a new source for seeking aflatoxin mitigation strategies and needs new attention in research.


Subject(s)
Aflatoxins , Aspergillus flavus , Genome, Fungal , Multigene Family , Secondary Metabolism , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/genetics , Aflatoxins/metabolism , Secondary Metabolism/genetics , Zea mays/microbiology , Zea mays/genetics , Genome-Wide Association Study , Genes, Fungal , Whole Genome Sequencing , Genetic Variation
6.
Plant Biotechnol J ; 22(3): 555-571, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38050335

ABSTRACT

The nutritional value of wheat grains, particularly their protein and metabolite composition, is a result of the grain-filling process, especially in the endosperm. Here, we employ laser microdissection (LMD) combined with shotgun proteomics and metabolomics to generate a cell type-specific proteome and metabolome inventory of developing wheat endosperm at the early (15 DAA) and late (26 DAA) grain-filling stages. We identified 1803 proteins and 41 metabolites from four different cell types (aleurone (AL), sub-aleurone (SA), starchy endosperm (SE) and endosperm transfer cells (ETCs). Differentially expressed proteins were detected, 67 in the AL, 31 in the SA, 27 in the SE and 50 in the ETCs between these two-time points. Cell-type accumulation of specific SUT and GLUT transporters, sucrose converting and starch biosynthesis enzymes correlate well with the respective sugar metabolites, suggesting sugar upload and starch accumulation via nucellar projection and ETC at 15 DAA in contrast to the later stage at 26 DAA. Changes in various protein levels between AL, SA and ETC support this metabolic switch from 15 to 26 DAA. The distinct spatial and temporal abundances of proteins and metabolites revealed a contrasting activity of nitrogen assimilation pathways, e.g. for GOGAT, GDH and glutamic acid, in the different cell types from 15 to 26 DAA, which can be correlated with specific protein accumulation in the endosperm. The integration of cell-type specific proteome and metabolome data revealed a complex metabolic interplay of the different cell types and a functional switch during grain development and grain-filling processes.


Subject(s)
Endosperm , Triticum , Endosperm/metabolism , Triticum/metabolism , Proteome/metabolism , Proteomics , Antiviral Agents/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Edible Grain , Starch/metabolism , Sugars/metabolism
7.
Plant Biotechnol J ; 22(6): 1681-1702, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38294334

ABSTRACT

Alternative splicing (AS), an important post-transcriptional regulation mechanism in eukaryotes, can significantly increase transcript diversity and contribute to gene expression regulation and many other complicated developmental processes. While plant gene AS events are well described, few studies have investigated the comprehensive regulation machinery of plant AS. Here, we use multi-omics to analyse peanut AS events. Using long-read isoform sequencing, 146 464 full-length non-chimeric transcripts were obtained, resulting in annotation corrections for 1782 genes and the identification of 4653 new loci. Using Iso-Seq RNA sequences, 271 776 unique splice junctions were identified, 82.49% of which were supported by transcriptome data. We characterized 50 977 polyadenylation sites for 23 262 genes, 12 369 of which had alternative polyadenylation sites. AS allows differential regulation of the same gene by miRNAs at the isoform level coupled with polyadenylation. In addition, we identified many long non-coding RNAs and fusion transcripts. There is a suppressed effect of 6mA on AS and gene expression. By analysis of chromatin structures, the genes located in the boundaries of topologically associated domains, proximal chromosomal telomere regions, inter- or intra-chromosomal loops were found to have more unique splice isoforms, higher expression, lower 6mA and more transposable elements (TEs) in their gene bodies than the other genes, indicating that chromatin interaction, 6mA and TEs play important roles in AS and gene expression. These results greatly refine the peanut genome annotation and contribute to the study of gene expression and regulation in peanuts. This work also showed AS is associated with multiple strategies for gene regulation.


Subject(s)
Alternative Splicing , Arachis , Alternative Splicing/genetics , Arachis/genetics , Arachis/metabolism , Gene Expression Regulation, Plant , Polyploidy , DNA Methylation/genetics , Polyadenylation/genetics , Transcriptome/genetics
8.
Plant Biotechnol J ; 22(7): 1848-1866, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38391124

ABSTRACT

Although the regulatory mechanisms of dark and light-induced plant morphogenesis have been broadly investigated, the biological process in peanuts has not been systematically explored on single-cell resolution. Herein, 10 cell clusters were characterized using scRNA-seq-identified marker genes, based on 13 409 and 11 296 single cells from 1-week-old peanut seedling leaves grown under dark and light conditions. 6104 genes and 50 transcription factors (TFs) displayed significant expression patterns in distinct cell clusters, which provided gene resources for profiling dark/light-induced candidate genes. Further pseudo-time trajectory and cell cycle evidence supported that dark repressed the cell division and perturbed normal cell cycle, especially the PORA abundances correlated with 11 TFs highly enriched in mesophyll to restrict the chlorophyllide synthesis. Additionally, light repressed the epidermis cell developmental trajectory extending by inhibiting the growth hormone pathway, and 21 TFs probably contributed to the different genes transcriptional dynamic. Eventually, peanut AHL17 was identified from the profile of differentially expressed TFs, which encoded protein located in the nucleus promoted leaf epidermal cell enlargement when ectopically overexpressed in Arabidopsis through the regulatory phytohormone pathway. Overall, our study presents the different gene atlases in peanut etiolated and green seedlings, providing novel biological insights to elucidate light-induced leaf cell development at the single-cell level.


Subject(s)
Arachis , Gene Expression Regulation, Plant , Light , Plant Leaves , Seedlings , Arachis/genetics , Arachis/metabolism , Arachis/growth & development , Arachis/radiation effects , Plant Leaves/genetics , Plant Leaves/radiation effects , Plant Leaves/metabolism , Plant Leaves/growth & development , Seedlings/genetics , Seedlings/radiation effects , Seedlings/growth & development , Gene Expression Regulation, Plant/radiation effects , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Arabidopsis/radiation effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Darkness , Gene Expression Profiling , Plant Proteins/genetics , Plant Proteins/metabolism , Single-Cell Gene Expression Analysis
9.
Plant Biotechnol J ; 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38497586

ABSTRACT

Adzuki bean (Vigna angularis) is an important legume crop cultivated in over 30 countries worldwide. We developed a high-quality chromosome-level reference genome of adzuki bean cultivar Jingnong6 by combining PacBio Sequel long-read sequencing with short-read and Hi-C technologies. The assembled genome covers 97.8% of the adzuki bean genome with a contig N50 of approximately 16 Mb and a total of 32 738 protein-coding genes. We also generated a comprehensive genome variation map of adzuki bean by whole-genome resequencing (WGRS) of 322 diverse adzuki beans accessions including both wild and cultivated. Furthermore, we have conducted comparative genomics and a genome-wide association study (GWAS) on key agricultural traits to investigate the evolution and domestication. GWAS identified several candidate genes, including VaCycA3;1, VaHB15, VaANR1 and VaBm, that exhibited significant associations with domestication traits. Furthermore, we conducted functional analyses on the roles of VaANR1 and VaBm in regulating seed coat colour. We provided evidence for the highest genetic diversity of wild adzuki (Vigna angularis var. nipponensis) in China with the presence of the most original wild adzuki bean, and the occurrence of domestication process facilitating transition from wild to cultigen. The present study elucidates the genetic basis of adzuki bean domestication traits and provides crucial genomic resources to support future breeding efforts in adzuki bean.

10.
Plant Biotechnol J ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38923713

ABSTRACT

Developing early maturing lentil has the potential to minimize yield losses, mainly during terminal drought. Whole-genome resequencing (WGRS) based QTL-seq identified the loci governing earliness in lentil. The genetic analysis for maturity duration provided a good fit to 3:1 segregation (F2), indicating earliness as a recessive trait. WGRS of Globe Mutant (late parent), late-flowering, and early-flowering bulks (from RILs) has generated 1124.57, 1052.24 million raw and clean reads, respectively. The QTL-Seq identified three QTLs (LcqDTF3.1, LcqDTF3.2, and LcqDTF3.3) on chromosome 3 having 246244 SNPs and 15577 insertions/deletions (InDels) and 13 flowering pathway genes. Of these, 11 exhibited sequence variations between bulks and validation (qPCR) revealed a significant difference in the expression of nine candidate genes (LcGA20oxG, LcFRI, LcLFY, LcSPL13a, Lcu.2RBY.3g060720, Lcu.2RBY.3g062540, Lcu.2RBY.3g062760, LcELF3a, and LcEMF1). Interestingly, the LcELF3a gene showed significantly higher expression in late-flowering genotype and exhibited substantial involvement in promoting lateness. Subsequently, an InDel marker (I-SP-383.9; LcELF3a gene) developed from LcqDTF3.2 QTL region showed 82.35% PVE (phenotypic variation explained) for earliness. The cloning, sequencing, and comparative analysis of the LcELF3a gene from both parents revealed 23 SNPs and InDels. Interestingly, a 52 bp deletion was recorded in the LcELF3a gene of L4775, predicted to cause premature termination of protein synthesis after 4 missense amino acids beyond the 351st amino acid due to the frameshift during translation. The identified InDel marker holds significant potential for breeding early maturing lentil varieties.

11.
Theor Appl Genet ; 137(3): 66, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438591

ABSTRACT

KEY MESSAGE: Integrating GAB methods with high-throughput phenotyping, genome editing, and speed breeding hold great potential in designing future smart peanut cultivars to meet market and food supply demands. Cultivated peanut (Arachis hypogaea L.), a legume crop greatly valued for its nourishing food, cooking oil, and fodder, is extensively grown worldwide. Despite decades of classical breeding efforts, the actual on-farm yield of peanut remains below its potential productivity due to the complicated interplay of genotype, environment, and management factors, as well as their intricate interactions. Integrating modern genomics tools into crop breeding is necessary to fast-track breeding efficiency and rapid progress. When combined with speed breeding methods, this integration can substantially accelerate the breeding process, leading to faster access of improved varieties to farmers. Availability of high-quality reference genomes for wild diploid progenitors and cultivated peanuts has accelerated the process of gene/quantitative locus discovery, developing markers and genotyping assays as well as a few molecular breeding products with improved resistance and oil quality. The use of new breeding tools, e.g., genomic selection, haplotype-based breeding, speed breeding, high-throughput phenotyping, and genome editing, is probable to boost genetic gains in peanut. Moreover, renewed attention to efficient selection and exploitation of targeted genetic resources is also needed to design high-quality and high-yielding peanut cultivars with main adaptation attributes. In this context, the combination of genomics-assisted breeding (GAB), genome editing, and speed breeding hold great potential in designing future improved peanut cultivars to meet market and food supply demands.


Subject(s)
Arachis , Fabaceae , Arachis/genetics , Plant Breeding , Genomics , Vegetables
12.
Physiol Plant ; 176(4): e14416, 2024.
Article in English | MEDLINE | ID: mdl-38952344

ABSTRACT

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Fruit/genetics , Fruit/drug effects , Fruit/metabolism , Vanadium/pharmacology , Stress, Physiological/genetics , Caragana/genetics , Caragana/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps , Gene Expression Profiling , Droughts , Transcriptome/genetics , Transcriptome/drug effects , Cactaceae
13.
Plant Cell Rep ; 43(3): 80, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411713

ABSTRACT

The escalating challenges posed by metal(loid) toxicity in agricultural ecosystems, exacerbated by rapid climate change and anthropogenic pressures, demand urgent attention. Soil contamination is a critical issue because it significantly impacts crop productivity. The widespread threat of metal(loid) toxicity can jeopardize global food security due to contaminated food supplies and pose environmental risks, contributing to soil and water pollution and thus impacting the whole ecosystem. In this context, plants have evolved complex mechanisms to combat metal(loid) stress. Amid the array of innovative approaches, omics, notably transcriptomics, proteomics, and metabolomics, have emerged as transformative tools, shedding light on the genes, proteins, and key metabolites involved in metal(loid) stress responses and tolerance mechanisms. These identified candidates hold promise for developing high-yielding crops with desirable agronomic traits. Computational biology tools like bioinformatics, biological databases, and analytical pipelines support these omics approaches by harnessing diverse information and facilitating the mapping of genotype-to-phenotype relationships under stress conditions. This review explores: (1) the multifaceted strategies that plants use to adapt to metal(loid) toxicity in their environment; (2) the latest findings in metal(loid)-mediated transcriptomics, proteomics, and metabolomics studies across various plant species; (3) the integration of omics data with artificial intelligence and high-throughput phenotyping; (4) the latest bioinformatics databases, tools and pipelines for single and/or multi-omics data integration; (5) the latest insights into stress adaptations and tolerance mechanisms for future outlooks; and (6) the capacity of omics advances for creating sustainable and resilient crop plants that can thrive in metal(loid)-contaminated environments.


Subject(s)
Ecosystem , Proteomics , Artificial Intelligence , Gene Expression Profiling , Metals/toxicity , Soil
14.
J Environ Manage ; 351: 119977, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38160549

ABSTRACT

Moso bamboo (Phyllostachys edulis) is a valuable nontimber forestry product with a biennial cycle, producing abundant bamboo shoots within one year (on-year) and few shoots within the following year (off-year). Moso bamboo plants undergo clonal reproduction, resulting in similar genetic backgrounds. However, the number of moso bamboo shoots produced each year varies. Despite this variation, the impact of soil nutrients and the root microbiome on the biennial bearing of moso bamboo is poorly understood. We collected 139 soil samples and determined 14 major physicochemical properties of the rhizosphere, rhizoplane, and bulk soil in different seasons (i.e., the growing and deciduous seasons) and different years (i.e., on- and off-years). Based on 16S rRNA and metagenomic sequencing, major variations were found in the rhizospheric microbial composition during different seasons and years in the moso bamboo forest. Environmental driver analysis revealed that essential nutrients (i.e., SOC, TOC, TN, P, and NH4+) were the main drivers of the soil microbial community composition and were correlated with the on- and off-year cycles. Moreover, 19 MAGs were identified as important biomarkers that could distinguish on- and off-years. We found that both season and year influenced both the microbial community structure and functional pathways through the biosynthesis of nutrients that potentially interact with the moso bamboo growth rhythm, especially the on-year root-associated microbiome, which had a greater abundance of specific nutrients such as gibberellins and vitamin B6. This work provides a dynamic perspective of the differential responses of various on- and off-year microbial communities and enhances our understanding of bamboo soil microbiome biodiversity and stability.


Subject(s)
Poaceae , Rhizosphere , RNA, Ribosomal, 16S/genetics , Forests , Soil/chemistry
15.
BMC Genomics ; 24(1): 681, 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37957573

ABSTRACT

BACKGROUND: Microbial community played an essential role in ecosystem processes, be it mangrove wetland or other intertidal ecologies. Several enzymatic activities like hydrolases are effective ecological indicators of soil microbial function. So far, little is known on halophilic bacterial contribution and function on a genomic viewpoint of Indian Sundarban Wetland. Considering the above mentioned issues, the aims of this study was to understand the life style, metabolic functionalities and genomic features of the isolated bacterium, Salinicoccus roseus strain RF1H. A comparative genome-based study of S. roseus has not been reported yet. Henceforth, we have considered the inclusion of the intra-species genome comparison of S. roseus to gain insight into the high degree of variation in the genome of strain RF1H among others. RESULTS: Salinicoccus roseus strain RF1H is a pink-red pigmented, Gram-positive and non-motile cocci. The bacterium exhibited high salt tolerance (up to 15% NaCl), antibiotic resistance, biofilm formation and secretion of extracellular hydrolytic enzymes. The circular genome was approximately 2.62978 Mb in size, encoding 574 predicted genes with GC content 49.5%. Presence of genomic elements (prophages, transposable elements, CRISPR-Cas system) represented bacterial virulence and multidrug-resistance. Furthermore, genes associated with salt tolerance, temperature adaptation and DNA repair system were distributed in 17 genomic islands. Genes related to hydrocarbon degradation manifested metabolic capability of the bacterium for potential biotechnological applications. A comparative pangenome analysis revealed two-component response regulator, modified C4-dicarboxylate transport system and osmotic stress regulated ATP-binding proteins. Presence of genes encoding arginine decarboxylase (ADC) enzyme being involved in biofilm formation was reported from the genome. In silico study revealed the protein is thermostable and made up with ~ 415 amino acids, and hydrophilic in nature. Three motifs appeared to be evolutionary conserved in all Salinicoccus sequences. CONCLUSION: The first report of whole genome analysis of Salinicoccus roseus strain RF1H provided information of metabolic functionalities, biofilm formation, resistance mechanism and adaptation strategies to thrive in climate-change induced vulnerable spot like Sundarban. Comparative genome analysis highlighted the unique genome content that contributed the strain's adaptability. The biomolecules produced during metabolism are important sources of compounds with potential beneficial applications in pharmaceuticals.


Subject(s)
Ecosystem , Wetlands , DNA, Bacterial/genetics , Genomics , Biofilms , Phylogeny , Genome, Bacterial
16.
Funct Integr Genomics ; 23(3): 213, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37378707

ABSTRACT

Plant diseases threaten global food security by reducing the production and quality of produce. Identification of disease resistance sources and their utilization in crop improvement is of paramount significance. However, constant evolution and occurrence of new, more aggressive and highly virulent pathotypes disintegrates the resistance of cultivars and hence demanding the steady stream of disease resistance cultivars as the most sustainable way of disease management. In this context, molecular tools and technologies facilitate an efficient and rational engineering of crops to develop cultivars having resistance to multiple pathogens and pathotypes. Puccinia spp. is biotrophic fungi that interrupt crucial junctions for causing infection, thus risking nutrient access of wheat plants and their subsequent growth. Sugar is a major carbon source taken from host cells by pathogens. Sugar transporters (STPs) are key players during wheat-rust interactions that regulate the transport, exchange, and allocation of sugar at plant-pathogen interfaces. Intense competition for accessing sugars decides fate of incompatibility or compatibility between host and the pathogen. The mechanism of transport, allocation, and signaling of sugar molecules and role of STPs and their regulatory switches in determining resistance/susceptibility to rusts in wheat is poorly understood. This review discusses the molecular mechanisms involving STPs in distribution of sugar molecules for determination of rust resistance/susceptibility in wheat. We also present perspective on how detailed insights on the STP's role in wheat-rust interaction will be helpful in devising efficient strategies for wheat rust management.


Subject(s)
Basidiomycota , Triticum , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Sugars , Puccinia , Plant Diseases/genetics , Plant Diseases/microbiology
17.
Funct Integr Genomics ; 23(1): 47, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36692535

ABSTRACT

Climate change seriously impacts global agriculture, with rising temperatures directly affecting the yield. Vegetables are an essential part of daily human consumption and thus have importance among all agricultural crops. The human population is increasing daily, so there is a need for alternative ways which can be helpful in maximizing the harvestable yield of vegetables. The increase in temperature directly affects the plants' biochemical and molecular processes; having a significant impact on quality and yield. Breeding for climate-resilient crops with good yields takes a long time and lots of breeding efforts. However, with the advent of new omics technologies, such as genomics, transcriptomics, proteomics, and metabolomics, the efficiency and efficacy of unearthing information on pathways associated with high-temperature stress resilience has improved in many of the vegetable crops. Besides omics, the use of genomics-assisted breeding and new breeding approaches such as gene editing and speed breeding allow creation of modern vegetable cultivars that are more resilient to high temperatures. Collectively, these approaches will shorten the time to create and release novel vegetable varieties to meet growing demands for productivity and quality. This review discusses the effects of heat stress on vegetables and highlights recent research with a focus on how omics and genome editing can produce temperature-resilient vegetables more efficiently and faster.


Subject(s)
Plant Breeding , Vegetables , Humans , Vegetables/genetics , Crops, Agricultural/genetics , Genomics , Proteomics
18.
Plant Biotechnol J ; 21(12): 2426-2432, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37549196

ABSTRACT

Professor Andreas Graner stands as a towering figure in international crop plant genomics research, leaving an indelible imprint on the field over the past four decades. As we commemorate the 80th anniversary of Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany and Professor Graner's retirement in September 2023, here we celebrate and acknowledge his profound impact on crop genome analyses and genebank genomics. His trailblazing work extends from developing the first integrated RFLP map of barley, establishing the foundation of barley genome sequencing, and advancing functional genomics of malting quality, to pioneering the use of high-throughput phenomics. As the dedicated custodian of Germany's largest ex situ genebank at IPK Gatersleben, Professor Graner has fortified the institution's collection management and crop research, thereby contributing significantly to global efforts on conservation and utilization of plant genetic resources through genomics approaches. Alongside his impressive array of scientific achievements, Professor Graner's inspiring mentorship has nurtured a new generation of scientists, including us, leaving a lasting legacy in the field. This tribute underscores his enduring influence and celebrates his unwavering dedication to the scientific community.


Subject(s)
Crops, Agricultural , Plant Breeding , Crops, Agricultural/genetics , Genome, Plant/genetics , Genomics
19.
Plant Biotechnol J ; 21(11): 2173-2181, 2023 11.
Article in English | MEDLINE | ID: mdl-37523347

ABSTRACT

Peanut (Arachis) is a key oil and protein crop worldwide with large genome. The genomes of diploid and tetraploid peanuts have been sequenced, which were compared to decipher their genome structures, evolutionary, and life secrets. Genome sequencing efforts showed that different cultivars, although Bt homeologs being more privileged in gene retention and gene expression. This subgenome bias, extended to sequence variation and point mutation, might be related to the long terminal repeat (LTR) explosions after tetraploidization, especially in At subgenomes. Except that, whole-genome sequences revealed many important genes, for example, fatty acids and triacylglycerols pathway, NBS-LRR (nucleotide-binding site-leucine-rich repeats), and seed size decision genes, were enriched after recursive polyploidization. Each ancestral polyploidy, with old ones having occurred hundreds of thousand years ago, has thousands of duplicated genes in extant genomes, contributing to genetic novelty. Notably, although full genome sequences are available, the actual At subgenome ancestor has still been elusive, highlighted with new debate about peanut origin. Although being an orphan crop lagging behind other crops in genomic resources, the genome sequencing achievement has laid a solid foundation for advancing crop enhancement and system biology research of peanut.


Subject(s)
Arachis , Genome, Plant , Arachis/genetics , Genome, Plant/genetics , Domestication , Chromosome Mapping , Biological Evolution , Polyploidy
20.
Plant Biotechnol J ; 21(11): 2348-2357, 2023 11.
Article in English | MEDLINE | ID: mdl-37530223

ABSTRACT

Millets are a class of nutrient-rich coarse cereals with high resistance to abiotic stress; thus, they guarantee food security for people living in areas with extreme climatic conditions and provide stress-related genetic resources for other crops. However, no platform is available to provide a comprehensive and systematic multi-omics analysis for millets, which seriously hinders the mining of stress-related genes and the molecular breeding of millets. Here, a free, web-accessible, user-friendly millets multi-omics database platform (Milletdb, http://milletdb.novogene.com) has been developed. The Milletdb contains six millets and their one related species genomes, graph-based pan-genomics of pearl millet, and stress-related multi-omics data, which enable Milletdb to be the most complete millets multi-omics database available. We stored GWAS (genome-wide association study) results of 20 yield-related trait data obtained under three environmental conditions [field (no stress), early drought and late drought] for 2 years in the database, allowing users to identify stress-related genes that support yield improvement. Milletdb can simplify the functional genomics analysis of millets by providing users with 20 different tools (e.g., 'Gene mapping', 'Co-expression', 'KEGG/GO Enrichment' analysis, etc.). On the Milletdb platform, a gene PMA1G03779.1 was identified through 'GWAS', which has the potential to modulate yield and respond to different environmental stresses. Using the tools provided by Milletdb, we found that the stress-related PLATZs TFs (transcription factors) family expands in 87.5% of millet accessions and contributes to vegetative growth and abiotic stress responses. Milletdb can effectively serve researchers in the mining of key genes, genome editing and molecular breeding of millets.


Subject(s)
DNA Shuffling , Millets , Humans , Millets/genetics , Genome-Wide Association Study , Multiomics , Genomics/methods
SELECTION OF CITATIONS
SEARCH DETAIL