Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Am J Hum Genet ; 111(3): 594-613, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38423010

ABSTRACT

The endosomal sorting complex required for transport (ESCRT) machinery is essential for membrane remodeling and autophagy and it comprises three multi-subunit complexes (ESCRT I-III). We report nine individuals from six families presenting with a spectrum of neurodevelopmental/neurodegenerative features caused by bi-allelic variants in SNF8 (GenBank: NM_007241.4), encoding the ESCRT-II subunit SNF8. The phenotypic spectrum included four individuals with severe developmental and epileptic encephalopathy, massive reduction of white matter, hypo-/aplasia of the corpus callosum, neurodevelopmental arrest, and early death. A second cohort shows a milder phenotype with intellectual disability, childhood-onset optic atrophy, or ataxia. All mildly affected individuals shared the same hypomorphic variant, c.304G>A (p.Val102Ile). In patient-derived fibroblasts, bi-allelic SNF8 variants cause loss of ESCRT-II subunits. Snf8 loss of function in zebrafish results in global developmental delay and altered embryo morphology, impaired optic nerve development, and reduced forebrain size. In vivo experiments corroborated the pathogenicity of the tested SNF8 variants and their variable impact on embryo development, validating the observed clinical heterogeneity. Taken together, we conclude that loss of ESCRT-II due to bi-allelic SNF8 variants is associated with a spectrum of neurodevelopmental/neurodegenerative phenotypes mediated likely via impairment of the autophagic flux.


Subject(s)
Epilepsy, Generalized , Optic Atrophy , Animals , Humans , Child , Zebrafish/genetics , Optic Atrophy/genetics , Phenotype , Endosomal Sorting Complexes Required for Transport/genetics
2.
Neurol Sci ; 45(3): 1007-1016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37853291

ABSTRACT

BACKGROUND: Transition from child-centered to adult-centered healthcare is a gradual process that addresses the medical, psychological, and educational needs of young people in the management of their autonomy in making decisions about their health and their future clinical assistance. This transfer is challenging across all chronic diseases but can be particularly arduous in rare neurological conditions. AIM: To describe the current practice on the transition process for young patients in centers participating in the European Reference Network for Rare Neurological Diseases (ERN-RND). METHODS: Members of the ERN-RND working group developed a questionnaire considering child-to-adult transition issues and procedures in current clinical practice. The questionnaire included 20 questions and was sent to members of the health care providers (HCPs) participating in the network. RESULTS: Twenty ERN-RND members (75% adult neurologists; 25% pediatricians; 5% nurses or study coordinators) responded to the survey, representing 10 European countries. Transition usually occurs between 16 and 18 years of age, but 55% of pediatric HCPs continue to care for their patients until they reach 40 years of age or older. In 5/20 ERN-RND centers, a standardized procedure managing transition is currently adopted, whereas in the remaining centers, the transition from youth to adult service is usually assisted by pediatricians as part of their clinical practice. CONCLUSIONS: This survey demonstrated significant variations in clinical practice between different centers within the ERN-RND network. It provided valuable data on existing transition programs and highlighted key challenges in managing transitions for patients with rare neurological disorders.


Subject(s)
Delivery of Health Care , Nervous System Diseases , Adult , Adolescent , Humans , Child , Surveys and Questionnaires , Europe , Nervous System Diseases/diagnosis , Nervous System Diseases/therapy , Rare Diseases/diagnosis , Rare Diseases/therapy
3.
Cerebellum ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37897626

ABSTRACT

Dysarthria is a common and debilitating symptom of many neurodegenerative diseases, including those resulting in ataxia. Changes to speech lead to significant reductions in quality of life, impacting the speaker in most daily activities. Recognition of its importance as an objective outcome measure in clinical trials for ataxia is growing. Its viability as an endpoint across the disease spectrum (i.e. pre-symptomatic onwards) means that trials can recruit ambulant individuals and later-stage individuals who are often excluded because of difficulty completing lower limb tasks. Here we discuss the key considerations for speech testing in clinical trials including hardware selection, suitability of tasks and their role in protocols for trials and propose a core set of tasks for speech testing in clinical trials. Test batteries could include forms suitable for remote short, sensitive and easy to use, with norms available in several languages. The use of artificial intelligence also could improve accuracy and automaticity of analytical pipelines in clinic and trials.

4.
Cerebellum ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-37955812

ABSTRACT

With disease-modifying drugs on the horizon for degenerative ataxias, ecologically valid, finely granulated, digital health measures are highly warranted to augment clinical and patient-reported outcome measures. Gait and balance disturbances most often present as the first signs of degenerative cerebellar ataxia and are the most reported disabling features in disease progression. Thus, digital gait and balance measures constitute promising and relevant performance outcomes for clinical trials.This narrative review with embedded consensus will describe evidence for the sensitivity of digital gait and balance measures for evaluating ataxia severity and progression, propose a consensus protocol for establishing gait and balance metrics in natural history studies and clinical trials, and discuss relevant issues for their use as performance outcomes.

5.
J Med Genet ; 59(9): 888-894, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34675124

ABSTRACT

BACKGROUND: Joubert syndrome (JS) is a recessively inherited ciliopathy characterised by congenital ocular motor apraxia (COMA), developmental delay (DD), intellectual disability, ataxia, multiorgan involvement, and a unique cerebellar and brainstem malformation. Over 40 JS-associated genes are known with a diagnostic yield of 60%-75%.In 2018, we reported homozygous hypomorphic missense variants of the SUFU gene in two families with mild JS. Recently, heterozygous truncating SUFU variants were identified in families with dominantly inherited COMA, occasionally associated with mild DD and subtle cerebellar anomalies. METHODS: We reanalysed next generation sequencing (NGS) data in two cohorts comprising 1097 probands referred for genetic testing of JS genes. RESULTS: Heterozygous truncating and splice-site SUFU variants were detected in 22 patients from 17 families (1.5%) with strong male prevalence (86%), and in 8 asymptomatic parents. Patients presented with COMA, hypotonia, ataxia and mild DD, and only a third manifested intellectual disability of variable severity. Brain MRI showed consistent findings characterised by vermis hypoplasia, superior cerebellar dysplasia and subtle-to-mild abnormalities of the superior cerebellar peduncles. The same pattern was observed in two out of three tested asymptomatic parents. CONCLUSION: Heterozygous truncating or splice-site SUFU variants cause a novel neurodevelopmental syndrome encompassing COMA and mild JS, which likely represent overlapping entities. Variants can arise de novo or be inherited from a healthy parent, representing the first cause of JS with dominant inheritance and reduced penetrance. Awareness of this condition will increase the diagnostic yield of JS genetic testing, and allow appropriate counselling about prognosis, medical monitoring and recurrence risk.


Subject(s)
Abnormalities, Multiple , Cerebellar Ataxia , Eye Abnormalities , Intellectual Disability , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Cerebellar Ataxia/genetics , Cerebellum/abnormalities , Cerebellum/diagnostic imaging , Eye Abnormalities/genetics , Haploinsufficiency/genetics , Humans , Intellectual Disability/genetics , Kidney Diseases, Cystic/diagnosis , Kidney Diseases, Cystic/genetics , Male , Phenotype , Repressor Proteins/genetics , Retina/abnormalities
6.
J Med Genet ; 59(9): 878-887, 2022 Sep.
Article in English | MEDLINE | ID: mdl-34656997

ABSTRACT

BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.


Subject(s)
Mitochondrial Proteins , Ubiquinone , Cell Line , Child , Humans , Infant, Newborn , Mitochondrial Proteins/genetics , Neuroimaging , Phenotype , Ubiquinone/genetics , Ubiquinone/metabolism
7.
Hum Mutat ; 43(1): 67-73, 2022 01.
Article in English | MEDLINE | ID: mdl-34747546

ABSTRACT

Biallelic mutations in the BRAT1 gene, encoding BRCA1-associated ATM activator 1, result in variable phenotypes, from rigidity and multifocal seizure syndrome, lethal neonatal to neurodevelopmental disorder, and cerebellar atrophy with or without seizures, without obvious genotype-phenotype associations. We describe two families at the mildest end of the spectrum, differing in clinical presentation despite a common genotype at the BRAT1 locus. Two siblings displayed nonprogressive congenital ataxia and shrunken cerebellum on magnetic resonance imaging. A third unrelated patient showed normal neurodevelopment, adolescence-onset seizures, and ataxia, shrunken cerebellum, and ultrastructural abnormalities on skin biopsy, representing the mildest form of NEDCAS hitherto described. Exome sequencing identified the c.638dup and the novel c.1395G>A BRAT1 variants, the latter causing exon 10 skippings. The p53-MCL test revealed normal ATM kinase activity. Our findings broaden the allelic and clinical spectrum of BRAT1-related disease, which should be suspected in presence of nonprogressive cerebellar signs, even without a neurodevelopmental disorder.


Subject(s)
Nuclear Proteins , Seizures , Genetic Association Studies , Genotype , Humans , Mutation , Nuclear Proteins/genetics , Phenotype , Seizures/genetics
8.
Neuroepidemiology ; 56(3): 212-218, 2022.
Article in English | MEDLINE | ID: mdl-35636410

ABSTRACT

OBJECTIVE: The aim of this study was to estimate the Friedreich's ataxia (FRDA) prevalence in a highly populated region of Italy (previous studies in small geographic areas gave a largely variable prevalence) and to define the patients' molecular and clinical characteristics. METHODS: For the point-prevalence study, we considered patients belonging to families with a molecular diagnosis of FRDA and resident in Latium on 1 January 2019. The crude prevalence of FRDA, specific for age and sex, was calculated and standardized for age using the Italian population. Moreover, we investigated possible correlations among patients' genetic profile, symptoms, and age of onset. RESULTS: We identified 63 FRDA patients; the crude prevalence for total, males, and females were 1.07 (95% CI: 0.81-1.37), 0.81 (95% CI: 0.54-1.22), and 1.32 (95% CI: 0.97-1.79), per 100,000 inhabitants. We divided FRDA patients by three age-at-onset groups (early-EOFA 73%; late-LOFA 11.1%; very late-VLOFA 15.9%) and found significant differences in the scale for the assessment and rating of ataxia (SARA; p = 0.001), a biased distribution of the shorter allele (p = 0.001), an excess of scoliosis and cardiomyopathy (p = 0.001) in EOFA. To determine the contribution of patients' molecular and clinical characteristics to the annual rate of progression, we performed a multivariate regression analysis that gave an R2 value of 45.3%. CONCLUSIONS: We estimated the crude and standardized prevalence of FRDA in Latium. A clinical classification (EOFA, LOFA, VLOFA) gave significant correlations. This epidemiological estimate allows monitoring disease prevalence over time in cohort studies and/or for developing disease registry.


Subject(s)
Friedreich Ataxia , Cohort Studies , Cross-Sectional Studies , Female , Friedreich Ataxia/diagnosis , Friedreich Ataxia/epidemiology , Friedreich Ataxia/genetics , Humans , Italy/epidemiology , Male , Prevalence
9.
J Med Genet ; 58(7): 475-483, 2021 07.
Article in English | MEDLINE | ID: mdl-32737135

ABSTRACT

BACKGROUND: Dominant and recessive variants in the KIF1A gene on chromosome 2q37.3 are associated with several phenotypes, although only three syndromes are currently listed in the OMIM classification: hereditary sensory and autonomic neuropathy type 2 and spastic paraplegia type 30, both recessively inherited, and mental retardation type 9 with dominant inheritance. METHODS: In this retrospective multicentre study, we describe the clinical, neuroradiological and genetic features of 19 Caucasian patients (aged 3-65 years) harbouring heterozygous KIF1A variants, and extensively review the available literature to improve current classification of KIF1A-related disorders. RESULTS: Patients were divided into two groups. Group 1 comprised patients with a complex phenotype with prominent pyramidal signs, variably associated in all but one case with additional features (ie, epilepsy, ataxia, peripheral neuropathy, optic nerve atrophy); conversely, patients in group 2 presented an early onset or congenital ataxic phenotype. Fourteen different heterozygous missense variants were detected by next-generation sequencing screening, including three novel variants, most falling within the kinesin motor domain. CONCLUSION: The present study further enlarges the clinical and mutational spectrum of KIF1A-related disorders by describing a large series of patients with dominantly inherited KIF1A pathogenic variants ranging from pure to complex forms of hereditary spastic paraparesis/paraplegias (HSP) and ataxic phenotypes in a lower proportion of cases. A comprehensive review of the literature indicates that KIF1A screening should be implemented in HSP regardless of its mode of inheritance or presentations as well as in other complex neurodegenerative or neurodevelopmental disorders showing congenital or early onset ataxia.


Subject(s)
Kinesins/genetics , Neurodegenerative Diseases/genetics , Neurodevelopmental Disorders/genetics , Adolescent , Adult , Aged , Ataxia/congenital , Ataxia/genetics , Child , Child, Preschool , Female , Heterozygote , Humans , Male , Middle Aged , Mutation , Retrospective Studies , Young Adult
10.
Ann Neurol ; 88(2): 251-263, 2020 08.
Article in English | MEDLINE | ID: mdl-32337771

ABSTRACT

OBJECTIVE: To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS: Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS: Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION: This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.


Subject(s)
Cerebellar Ataxia/diagnostic imaging , Cerebellar Ataxia/genetics , Genetic Variation/genetics , Magnetic Resonance Imaging/methods , Ubiquinone/genetics , Adolescent , Adult , Aged , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Female , Humans , Male , Middle Aged , Mutation/genetics , Protein Structure, Secondary , Ubiquinone/chemistry , Young Adult
11.
Neurobiol Dis ; 141: 104880, 2020 07.
Article in English | MEDLINE | ID: mdl-32344152

ABSTRACT

Mitochondrial ribosomal protein large 24 (MRPL24) is 1 of the 82 protein components of mitochondrial ribosomes, playing an essential role in the mitochondrial translation process. We report here on a baby girl with cerebellar atrophy, choreoathetosis of limbs and face, intellectual disability and a combined defect of complexes I and IV in muscle biopsy, caused by a homozygous missense mutation identified in MRPL24. The variant predicts a Leu91Pro substitution at an evolutionarily conserved site. Using human mutant cells and the zebrafish model, we demonstrated the pathological role of the identified variant. In fact, in fibroblasts we observed a significant reduction of MRPL24 protein and of mitochondrial respiratory chain complex I and IV subunits, as well a markedly reduced synthesis of the mtDNA-encoded peptides. In zebrafish we demonstrated that the orthologue gene is expressed in metabolically active tissues, and that gene knockdown induced locomotion impairment, structural defects and low ATP production. The motor phenotype was complemented by human WT but not mutant cRNA. Moreover, sucrose density gradient fractionation showed perturbed assembly of large subunit mitoribosomal proteins, suggesting that the mutation leads to a conformational change in MRPL24, which is expected to cause an aberrant interaction of the protein with other components of the 39S mitoribosomal subunit.


Subject(s)
Mitochondrial Proteins/genetics , Movement Disorders/genetics , Ribosomal Proteins/genetics , Animals , Cerebellum/pathology , Female , Humans , Infant , Leviviridae , Male , Movement Disorders/pathology , Quadriceps Muscle/pathology , Zebrafish
12.
Cerebellum ; 19(1): 126-130, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31701351

ABSTRACT

Speech and language disorders are prominent signs in Friedreich ataxia (FRDA), which significantly impact on patients' quality of life. Despite such relevance, several issues regarding phenomenology, assessment, and treatment are still unmet. In this short review, we thus analyzed the existing literature to summarize what is known about the features of speech and language disorders in FRDA, which methods are used for evaluation and rating, and what are the available therapeutic strategies and future direction of scientific research in this field, in order to highlight critical aspects for a better clinical approach to the problem. FRDA patients often present dysarthria, resulting from central and peripheral causes and additional primary language disorders. Speech disturbances have peculiar characteristics, although variable among patients, and progress along the disease course. Assessment relies on multiple but not specific clinical scales, some of which can also reflect the general severity of ataxia; classical instrumental investigations and novel technologies allow more accurate measurements of several speech parameters, which could found application as potential disease's biomarkers. No successful treatments exist for communication disorders of FRDA patients; however, the tailored speech training or the non-invasive neuromodulation appear as the most reliable therapeutic options to be validate in future trials.


Subject(s)
Friedreich Ataxia/diagnosis , Friedreich Ataxia/epidemiology , Language Disorders/diagnosis , Language Disorders/epidemiology , Speech Disorders/diagnosis , Speech Disorders/epidemiology , Friedreich Ataxia/therapy , Humans , Language Disorders/therapy , Speech Disorders/therapy , Treatment Outcome
13.
J Med Genet ; 56(5): 293-300, 2019 05.
Article in English | MEDLINE | ID: mdl-30593463

ABSTRACT

BACKGROUND: Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder, due to the loss of function of the survival motor neuron (SMN1) gene. The first treatment for the condition, recently approved, is based on the reduction of exon 7 skipping in mRNAs produced by a highly homologous gene (SMN2). The primary objective of the present study was to evaluate the applicability of the dosage of SMN gene produts in blood, as biomarker for SMA, and the safety of oral salbutamol, a beta2-adrenergic agonist modulating SMN2 levels. METHODS: We have performed a 1-year multicentre, double-blind, placebo-controlled study with salbutamol in 45 adult patients with SMA. Patients assumed 4 mg of salbutamol or placebo/three times a day. Molecular tests were SMN2 copy number, SMN transcript and protein levels. We have also explored the clinical effect, by the outcome measures available at the time of study design. RESULTS: Thirty-six patients completed the study. Salbutamol was safe and well tolerated. We observed a significant and progressive increase in SMN2 full-length levels in peripheral blood of the salbutamol-treated patients (p<0.00001). The exploratory analysis of motor function showed an improvement in most patients. CONCLUSIONS: Our data demonstrate safety and molecular efficacy of salbutamol. We provide the first longitudinal evaluation of SMN levels (both transcripts and protein) in placebo and in response to a compound modulating the gene expression: SMN transcript dosage in peripheral blood is reliable and may be used as pharmacodynamic marker in clinical trials with systemic compounds modifying SMN2levels. TRIAL REGISTRATION NUMBER: EudraCT no. 2007-001088-32.


Subject(s)
Adrenergic beta-2 Receptor Agonists/therapeutic use , Albuterol/therapeutic use , Biomarkers , Muscular Atrophy, Spinal/drug therapy , Muscular Atrophy, Spinal/genetics , Survival of Motor Neuron 1 Protein/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Female , Gene Expression , Gene Expression Regulation/drug effects , Humans , Male , Middle Aged , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/metabolism , Survival of Motor Neuron 1 Protein/metabolism , Survival of Motor Neuron 2 Protein/genetics , Survival of Motor Neuron 2 Protein/metabolism , Treatment Outcome , Young Adult
14.
Neurogenetics ; 19(2): 111-121, 2018 05.
Article in English | MEDLINE | ID: mdl-29691679

ABSTRACT

Hereditary spastic paraplegias (HSP) are clinical and genetic heterogeneous diseases with more than 80 disease genes identified thus far. Studies on large cohorts of HSP patients showed that, by means of current technologies, the percentage of genetically solved cases is close to 50%. Notably, the percentage of molecularly confirmed diagnoses decreases significantly in sporadic patients. To describe our diagnostic molecular genetic approach on patients with pediatric-onset pure and complex HSP, 47 subjects with HSP underwent molecular screening of 113 known and candidate disease genes by targeted capture and massively parallel sequencing. Negative cases were successively analyzed by multiplex ligation-dependent probe amplification (MLPA) analysis for the SPAST gene and high-resolution SNP array analysis for genome-wide CNV detection. Diagnosis was molecularly confirmed in 29 out of 47 (62%) patients, most of whom had clinical diagnosis of cHSP. Although SPG11 and SPG4 remain the most frequent cause of, respectively, complex and pure HSP, a large number of pathogenic variants were disclosed in POLR3A, FA2H, DDHD2, ATP2B4, ENTPD1, ERLIN2, CAPN1, ALS2, ADAR1, RNASEH2B, TUBB4A, ATL1, and KIF1A. In a subset of these disease genes, phenotypic expansion and novel genotype-phenotype correlations were recognized. Notably, SNP array analysis did not provide any significant contribution in increasing the diagnostic yield. Our findings document the high diagnostic yield of targeted sequencing for patients with pediatric-onset, complex, and pure HSP. MLPA for SPAST and SNP array should be limited to properly selected cases based on clinical suspicion.


Subject(s)
High-Throughput Nucleotide Sequencing , Spastic Paraplegia, Hereditary/diagnosis , Spastic Paraplegia, Hereditary/genetics , Adolescent , Age of Onset , Brain/diagnostic imaging , Brain/pathology , Child , Child, Preschool , Cohort Studies , Female , Genetic Association Studies , Genetic Testing/methods , Humans , Infant , Infant, Newborn , Male , Mutation , Polymorphism, Single Nucleotide
15.
Cerebellum ; 17(4): 499-503, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29476442

ABSTRACT

Mutations in KCNJ10, which encodes the inwardly rectifying potassium channel Kir4.1, a primary regulator of membrane excitability and potassium homeostasis, cause a complex syndrome characterized by seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance called SeSAME/EAST syndrome. We describe a 41-year-old patient with non-syndromic, slowly progressive, early-onset ataxia. Targeted next-generation sequencing identified a novel c.180 T > G (p.Ile60Met) missense homozygous mutation. The mutated residue Ile60Met likely impairs phosphatidylinositol 4, 5-bisphosphate (PIP2) binding which is known to play an essential role in channel gating. Our study expands the clinical and mutational spectrum of KCNJ10-related disorders and suggests that screening of this gene should be implemented in patients with early-onset ataxia, with or without syndromic features.


Subject(s)
Mutation, Missense , Potassium Channels, Inwardly Rectifying/genetics , Spinocerebellar Degenerations/genetics , Adult , Amino Acid Sequence , Female , Homozygote , Humans , Models, Molecular , Phenotype , Potassium Channels, Inwardly Rectifying/metabolism , Spinocerebellar Degenerations/diagnostic imaging , Spinocerebellar Degenerations/physiopathology
16.
J Neuroeng Rehabil ; 14(1): 4, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-28069073

ABSTRACT

BACKGROUND: Multiple Sclerosis (MS) is a widespread progressive neurologic disease with consequent impairments in daily activities. Disorders of balance are frequent and equilibrium tests are potentially useful to quantify disability and to verify treatment effectiveness. The fair sensitivity of the widely used not-perturbed tests to detect balance disturbances in MS patients have prompted the development of mechatronic systems capable to impose known equilibrium perturbations, in order to challenge the balance control and, consequently, to better assess the level of impairment. We sought to clarify whether the proposed perturbed-test is capable to discriminate healthy subjects from patients with MS, even in mild or in the absence of clinically evident balance disturbances. METHODS: We assessed balance performances of 17 adults with MS and 13 age-matched healthy controls (HC) using both perturbed (PT) and not-perturbed (NPT) postural tests by means of a 3 Degree Of Freedom (DOF) rotational mechatronic platform. Participants stood barefoot on the platform in standing position and their center of pressure (CoP) was gathered by using a pressure matrix. Each trial lasted 30 s and was carried out with and without visual stimuli. Several postural indices were computed for each trial. Correlations between postural indices and clinical scales were analyzed. RESULTS: No significant differences were found between groups for all indices when subjects performed NPTs. Conversely, significant differences in postural indices between MS and HC emerged during PTs. Additionally, PTs revealed significant differences between patients without any cerebellar impairment (cerebellar EDSS subscore equal to 0) and HC. The discrimination capability of PTs was confirmed by the ROC analysis. No significant change of the selected metrics occurred in HC when NPTs were performed with eyes closed, while indices presented a significant worsening in MS subjects. CONCLUSIONS: Not-perturbed tests showed lower sensitivity than perturbed ones in the identification of equilibrium impairments in minimally disabled MS patients. However, not-perturbed tests allow to better evaluate the influence of visual flow disturbances on balance control in MS. In conclusion, our findings proved that the use of the novel tests based on a 3DOF mechatronic device represents an effective tool to investigate early balance disturbances in MS.


Subject(s)
Multiple Sclerosis/diagnosis , Neurologic Examination/methods , Postural Balance , Adult , Female , Humans , Male , Middle Aged , Posture
17.
Int J Mol Sci ; 18(10)2017 Oct 18.
Article in English | MEDLINE | ID: mdl-29057804

ABSTRACT

Oxidative stress is actively involved in Friedreich's Ataxia (FA), thus pharmacological targeting of the antioxidant machinery may have therapeutic value. Here, we analyzed the relevance of the antioxidant phase II response mediated by the transcription factor Nrf2 on frataxin-deficient cultured motor neurons and on fibroblasts of patients. The in vitro treatment of the potent Nrf2 activator sulforaphane increased Nrf2 protein levels and led to the upregulation of phase II antioxidant enzymes. The neuroprotective effects were accompanied by an increase in neurites' number and extension. Sulforaphane (SFN) is a natural compound of many diets and is now being used in clinical trials for other pathologies. Our results provide morphological and biochemical evidence to endorse a neuroprotective strategy that may have therapeutic relevance for FA. The findings of this work reinforce the crucial importance of Nrf2 in FA and provide a rationale for using Nrf2-inducers as pharmacological agents.


Subject(s)
Friedreich Ataxia/metabolism , Isothiocyanates/pharmacology , Motor Neurons/metabolism , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/pharmacology , Adolescent , Adult , Cells, Cultured , Child , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Friedreich Ataxia/pathology , Humans , Iron-Binding Proteins/genetics , Isothiocyanates/therapeutic use , Male , Motor Neurons/drug effects , Motor Neurons/pathology , NF-E2-Related Factor 2/genetics , Neuroprotective Agents/therapeutic use , Oxidative Stress , Sulfoxides , Frataxin
18.
Exp Brain Res ; 234(9): 2619-27, 2016 09.
Article in English | MEDLINE | ID: mdl-27165507

ABSTRACT

Visually impaired persons present an atypical gait pattern characterized by slower walking speed, shorter stride length and longer time of stance. Three explanatory hypotheses have been advanced in the literature: balance deficit, lack of an anticipatory mechanisms and foot probing the ground. In the present study, we compared the three hypotheses by applying their predictions to gait analysis and posturography of blind children without neurological impairment and compared their performance with that of an age-matched control group. The gait analysis results documented that blind children presented reduced walking velocity and step length, increased step width and external rotation of the foot progression angle, reduced ground reaction force and ankle maximum angle, moment and power in late stance, increased head flexion, decreased thorax flexion and pelvis anteversion, compared with the control group. The posturographic analysis showed equal skill level between blind children and normally sighted children when they close their eyes. The results are consistent with only one of the three hypotheses: namely, they prove that blind children's gait is influenced only by the absence of visually driven anticipatory control mechanisms. Finally, rehabilitative recommendations for children with blindness are advanced in discussion.


Subject(s)
Biomechanical Phenomena/physiology , Blindness/physiopathology , Gait/physiology , Adolescent , Ankle Joint/physiology , Child , Child, Preschool , Female , Foot/physiology , Foot/physiopathology , Humans , Male , Rotation , Vision, Ocular
19.
J Neuroeng Rehabil ; 12: 41, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25900021

ABSTRACT

BACKGROUND: Friedreich's ataxia (FRDA) is the most common hereditary autosomal recessive form of ataxia. In this disease there is early manifestation of gait ataxia, and dysmetria of the arms and legs which causes impairment in daily activities that require fine manual dexterity. To date there is no cure for this disease. Some novel therapeutic approaches are ongoing in different steps of clinical trial. Development of sensitive outcome measures is crucial to prove therapeutic effectiveness. The aim of the study was to assess the reliability and sensitivity of quantitative and objective assessment of upper limb performance computed by means of the robotic device and to evaluate the correlation with clinical and functional markers of the disease severity. METHODS: Here we assess upper limb performances by means of the InMotion Arm Robot, a robot designed for clinical neurological applications, in a cohort of 14 children and young adults affected by FRDA, matched for age and gender with 18 healthy subjects. We focused on the analysis of kinematics, accuracy, smoothness, and submovements of the upper limb while reaching movements were performed. The robotic evaluation of upper limb performance consisted of planar reaching movements performed with the robotic system. The motors of the robot were turned off, so that the device worked as a measurement tool. The status of the disease was scored using the Scale for the Assessment and Rating of Ataxia (SARA). Relationships between robotic indices and a range of clinical and disease characteristics were examined. RESULTS: All our robotic indices were significantly different between the two cohorts except for two, and were highly and reliably discriminative between healthy and subjects with FRDA. In particular, subjects with FRDA exhibited slower movements as well as loss of accuracy and smoothness, which are typical of the disease. Duration of Movement, Normalized Jerk, and Number of Submovements were the best discriminative indices, as they were directly and easily measurable and correlated with the status of the disease, as measured by SARA. CONCLUSIONS: Our results suggest that outcome measures obtained by means of robotic devices can improve the sensitivity of clinical evaluations of patients' dexterity and can accurately and efficiently quantify changes over time in clinical trials, particularly when functional scales appear to be no longer sensitive.


Subject(s)
Friedreich Ataxia/diagnosis , Friedreich Ataxia/physiopathology , Robotics/methods , Adolescent , Adult , Arm/physiopathology , Biomechanical Phenomena , Child , Female , Friedreich Ataxia/complications , Humans , Male , Movement/physiology , Outcome Assessment, Health Care , Reproducibility of Results , Upper Extremity/physiopathology , Young Adult
20.
Eur J Paediatr Neurol ; 52: 10-19, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38970889

ABSTRACT

AIM: This exploratory study evaluates rating scale usage by experts from the European Reference Network for Rare Neurological Diseases (ERN-RND) for paediatric MD, considering factors like diagnosis, intellectual disability, age, and transition to adult care. The aim is to propose a preliminary framework for consistent application. METHODS: A multicentre survey among 25 ERN-RND experts from 10 European countries examined rating scale usage in paediatric MD, categorizing MD into acute, non-progressive, and neurodegenerative types. Factors influencing scale choice and the transition to adult care practices were analysed. A comprehensive literature search was conducted to identify the earliest age of application of these scales in paediatric patients. RESULTS: The study identifies various rating scales and establishes their usage frequencies for different MDs. Experts highlighted the need for standardized scales and proposed preliminary evaluation strategies based on clinical contexts. Challenges in applying scales to young, non-cooperative patients were acknowledged. INTERPRETATION: The study recommends developing standardized rating scales for paediatric MDs to improve evaluations and data collection. It suggests potential scales for specific clinical scenarios to better evaluate disease progression. Comprehensive, patient-centred care remains crucial during the transition to adult care, despite the identified challenges. This exploratory approach aims to enhance patient outcomes and care.

SELECTION OF CITATIONS
SEARCH DETAIL