Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Am J Physiol Renal Physiol ; 319(6): F955-F965, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33073585

ABSTRACT

Mitochondria play a complex role in maintaining cellular function including ATP generation, generation of biosynthetic precursors for macromolecules, maintenance of redox homeostasis, and metabolic waste management. Although the contribution of mitochondrial function in various kidney diseases has been studied, there are still avenues that need to be explored under healthy and diseased conditions. Mitochondrial damage and dysfunction have been implicated in experimental models of podocytopathy as well as in humans with glomerular diseases resulting from podocyte dysfunction. Specifically, in the podocyte, metabolism is largely driven by oxidative phosphorylation or glycolysis depending on the metabolic needs. These metabolic needs may change drastically in the presence of podocyte injury in glomerular diseases such as diabetic kidney disease or focal segmental glomerulosclerosis. Here, we review the role of mitochondria in the podocyte and the factors regulating its function at baseline and in a variety of podocytopathies to identify potential targets for therapy.


Subject(s)
Mitochondria/physiology , Podocytes/physiology , Humans , Kidney Diseases/metabolism
2.
Diabetes ; 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702781

ABSTRACT

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2 KO/KI , Sco2 KI/KI ), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2 KO/KI and Sco2 KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2 KO/KI ;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

3.
Diabetes ; 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34957485

ABSTRACT

Increased oxidative stress in glomerular endothelial cells (GEnCs) contributes to early diabetic kidney disease (DKD). While mitochondrial respiratory complex IV activity is reduced in DKD, it remains unclear whether this is a driver or a consequence of oxidative stress in GEnCs. Synthesis of cytochrome C oxidase 2 (SCO2), a key metallochaperone in the electron transport chain, is critical to the biogenesis and assembly of subunits required for functional respiratory complex IV activity. Here, we investigated the effects of Sco2 hypomorphs (Sco2KO/KI, Sco2KI/KI), with a functional loss of SCO2, in the progression of DKD using a murine model of Type II Diabetes Mellitus, db/db mice. Diabetic Sco2KO/KI and Sco2KI/KI hypomorphs exhibited a reduction in complex IV activity, but an improvement in albuminuria, serum creatinine, and histomorphometric evidence of early DKD as compared to db/db mice. Single-nucleus RNA sequencing with gene set enrichment analysis of differentially expressed genes in the endothelial cluster of Sco2KO/KI;db/db mice demonstrated an increase in genes involved in VEGF-VEGFR2 signaling and reduced oxidative stress as compared to db/db mice. These data suggest that reduced complex IV activity due to a loss of functional SCO2 might be protective in GEnCs in early DKD.

4.
Diabetes ; 67(11): 2420-2433, 2018 11.
Article in English | MEDLINE | ID: mdl-30115650

ABSTRACT

Mitochondrial injury is uniformly observed in several murine models as well as in individuals with diabetic kidney disease (DKD). Although emerging evidence has highlighted the role of key transcriptional regulators in mitochondrial biogenesis, little is known about the regulation of mitochondrial cytochrome c oxidase assembly in the podocyte under diabetic conditions. We recently reported a critical role of the zinc finger Krüppel-like factor 6 (KLF6) in maintaining mitochondrial function and preventing apoptosis in a proteinuric murine model. In this study, we report that podocyte-specific knockdown of Klf6 increased the susceptibility to streptozotocin-induced DKD in the resistant C57BL/6 mouse strain. We observed that the loss of KLF6 in podocytes reduced the expression of synthesis of cytochrome c oxidase 2 with resultant increased mitochondrial injury, leading to activation of the intrinsic apoptotic pathway under diabetic conditions. Conversely, mitochondrial injury and apoptosis were significantly attenuated with overexpression of KLF6 in cultured human podocytes under hyperglycemic conditions. Finally, we observed a significant reduction in glomerular and podocyte-specific expression of KLF6 in human kidney biopsies with progression of DKD. Collectively, these data suggest that podocyte-specific KLF6 is critical to preventing mitochondrial injury and apoptosis under diabetic conditions.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/metabolism , Kruppel-Like Factor 6/metabolism , Mitochondria/metabolism , Podocytes/metabolism , Proteinuria/metabolism , Animals , Apoptosis/physiology , Blood Pressure/physiology , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/pathology , Glomerular Filtration Rate/physiology , Humans , Kidney/metabolism , Kidney/pathology , Kruppel-Like Factor 6/genetics , Mice , Mitochondria/pathology , Podocytes/pathology , Proteinuria/pathology
SELECTION OF CITATIONS
SEARCH DETAIL