Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 103
Filter
Add more filters

Publication year range
1.
PLoS Biol ; 22(7): e3002727, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39042667

ABSTRACT

Reduction of amyloid beta (Aß) has been shown to be effective in treating Alzheimer's disease (AD), but the underlying assumption that neurons are the main source of pathogenic Aß is untested. Here, we challenge this prevailing belief by demonstrating that oligodendrocytes are an important source of Aß in the human brain and play a key role in promoting abnormal neuronal hyperactivity in an AD knock-in mouse model. We show that selectively suppressing oligodendrocyte Aß production improves AD brain pathology and restores neuronal function in the mouse model in vivo. Our findings suggest that targeting oligodendrocyte Aß production could be a promising therapeutic strategy for treating AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Mice, Transgenic , Neurons , Oligodendroglia , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Alzheimer Disease/genetics , Animals , Oligodendroglia/metabolism , Amyloid beta-Peptides/metabolism , Humans , Neurons/metabolism , Mice , Brain/metabolism , Brain/pathology , Male , Female , Gene Knock-In Techniques
2.
Nature ; 586(7831): 735-740, 2020 10.
Article in English | MEDLINE | ID: mdl-32879487

ABSTRACT

Innate immunity is associated with Alzheimer's disease1, but the influence of immune activation on the production of amyloid-ß is unknown2,3. Here we identify interferon-induced transmembrane protein 3 (IFITM3) as a γ-secretase modulatory protein, and establish a mechanism by which inflammation affects the generation of amyloid-ß. Inflammatory cytokines induce the expression of IFITM3 in neurons and astrocytes, which binds to γ-secretase and upregulates its activity, thereby increasing the production of amyloid-ß. The expression of IFITM3 is increased with ageing and in mouse models that express familial Alzheimer's disease genes. Furthermore, knockout of IFITM3 reduces γ-secretase activity and the formation of amyloid plaques in a transgenic mouse model (5xFAD) of early amyloid deposition. IFITM3 protein is upregulated in tissue samples from a subset of patients with late-onset Alzheimer's disease that exhibit higher γ-secretase activity. The amount of IFITM3 in the γ-secretase complex has a strong and positive correlation with γ-secretase activity in samples from patients with late-onset Alzheimer's disease. These findings reveal a mechanism in which γ-secretase is modulated by neuroinflammation via IFITM3 and the risk of Alzheimer's disease is thereby increased.


Subject(s)
Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Immunity, Innate , Membrane Proteins/metabolism , RNA-Binding Proteins/metabolism , Age of Onset , Aged, 80 and over , Aging/genetics , Aging/immunology , Aging/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/chemistry , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Animals , Astrocytes/metabolism , Catalytic Domain , Disease Models, Animal , Female , HEK293 Cells , Humans , Inflammation , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Presenilin-1/metabolism , RNA-Binding Proteins/genetics , Risk , Up-Regulation
3.
Circ Res ; 130(9): 1321-1341, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35382554

ABSTRACT

BACKGROUND: Cerebral small vessel injury, including loss of endothelial tight junctions, endothelial dysfunction, and blood-brain barrier breakdown, is an early and typical pathology for Alzheimer's disease, cerebral amyloid angiopathy, and hypertension-related cerebral small vessel disease. Whether there is a common mechanism contributing to these cerebrovascular alterations remains unclear. Studies have shown an elevation of BACE1 (ß-site amyloid precursor protein cleaving enzyme 1) in cerebral vessels from cerebral amyloid angiopathy or Alzheimer's disease patients, suggesting that vascular BACE1 may involve in cerebral small vessel injury. METHODS: To understand the contribution of vascular BACE1 to cerebrovascular impairments, we combined cellular and molecular techniques, mass spectrometry, immunostaining approaches, and functional testing to elucidate the potential pathological mechanisms. RESULTS: We observe a 3.71-fold increase in BACE1 expression in the cerebral microvessels from patients with hypertension. Importantly, we discover that an endothelial tight junction protein, occludin, is a completely new substrate for endothelial BACE1. BACE1 cleaves occludin with full-length occludin reductions and occludin fragment productions. An excessive cleavage by elevated BACE1 induces membranal accumulation of caveolin-1 and subsequent caveolin-1-mediated endocytosis, resulting in lysosomal degradation of other tight junction proteins. Meanwhile, membranal caveolin-1 increases the binding to eNOS (endothelial nitric oxide synthase), together with raised circulating Aß (ß-amyloid peptides) produced by elevated BACE1, leading to an attenuation of eNOS activity and resultant endothelial dysfunction. Furthermore, the initial endothelial damage provokes chronic reduction of cerebral blood flow, blood-brain barrier leakage, microbleeds, tau hyperphosphorylation, synaptic loss, and cognitive impairment in endothelial-specific BACE1 transgenic mice. Conversely, inhibition of aberrant BACE1 activity ameliorates tight junction loss, endothelial dysfunction, and memory deficits. CONCLUSIONS: Our findings establish a novel and direct relationship between endothelial BACE1 and cerebral small vessel damage, indicating that abnormal elevation of endothelial BACE1 is a new mechanism for cerebral small vessel disease pathogenesis.


Subject(s)
Alzheimer Disease , Cerebral Amyloid Angiopathy , Cerebral Small Vessel Diseases , Hypertension , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/metabolism , Humans , Hypertension/complications , Mice , Mice, Transgenic , Nitric Oxide Synthase Type III/metabolism , Occludin/metabolism , Tight Junction Proteins , Tight Junctions/metabolism
4.
Brain ; 145(1): 324-339, 2022 03 29.
Article in English | MEDLINE | ID: mdl-34264340

ABSTRACT

The risk of seizures is 10-fold higher in patients with Alzheimer's disease than the general population, yet the mechanisms underlying this susceptibility and the effects of these seizures are poorly understood. To elucidate the proposed bidirectional relationship between Alzheimer's disease and seizures, we studied human brain samples (n = 34) from patients with Alzheimer's disease and found that those with a history of seizures (n = 14) had increased amyloid-ß and tau pathology, with upregulation of the mechanistic target of rapamycin (mTOR) pathway, compared with patients without a known history of seizures (n = 20). To establish whether seizures accelerate the progression of Alzheimer's disease, we induced chronic hyperexcitability in the five times familial Alzheimer's disease mouse model by kindling with the chemoconvulsant pentylenetetrazol and observed that the mouse model exhibited more severe seizures than the wild-type. Furthermore, kindled seizures exacerbated later cognitive impairment, Alzheimer's disease neuropathology and mTOR complex 1 activation. Finally, we demonstrated that the administration of the mTOR inhibitor rapamycin following kindled seizures rescued enhanced remote and long-term memory deficits associated with earlier kindling and prevented seizure-induced increases in Alzheimer's disease neuropathology. These data demonstrated an important link between chronic hyperexcitability and progressive Alzheimer's disease pathology and suggest a mechanism whereby rapamycin may serve as an adjunct therapy to attenuate progression of the disease.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Pentylenetetrazole/toxicity , Seizures/metabolism
5.
J Biomed Inform ; 144: 104442, 2023 08.
Article in English | MEDLINE | ID: mdl-37429512

ABSTRACT

OBJECTIVE: We develop a deep learning framework based on the pre-trained Bidirectional Encoder Representations from Transformers (BERT) model using unstructured clinical notes from electronic health records (EHRs) to predict the risk of disease progression from Mild Cognitive Impairment (MCI) to Alzheimer's Disease (AD). METHODS: We identified 3657 patients diagnosed with MCI together with their progress notes from Northwestern Medicine Enterprise Data Warehouse (NMEDW) between 2000 and 2020. The progress notes no later than the first MCI diagnosis were used for the prediction. We first preprocessed the notes by deidentification, cleaning and splitting into sections, and then pre-trained a BERT model for AD (named AD-BERT) based on the publicly available Bio+Clinical BERT on the preprocessed notes. All sections of a patient were embedded into a vector representation by AD-BERT and then combined by global MaxPooling and a fully connected network to compute the probability of MCI-to-AD progression. For validation, we conducted a similar set of experiments on 2563 MCI patients identified at Weill Cornell Medicine (WCM) during the same timeframe. RESULTS: Compared with the 7 baseline models, the AD-BERT model achieved the best performance on both datasets, with Area Under receiver operating characteristic Curve (AUC) of 0.849 and F1 score of 0.440 on NMEDW dataset, and AUC of 0.883 and F1 score of 0.680 on WCM dataset. CONCLUSION: The use of EHRs for AD-related research is promising, and AD-BERT shows superior predictive performance in modeling MCI-to-AD progression prediction. Our study demonstrates the utility of pre-trained language models and clinical notes in predicting MCI-to-AD progression, which could have important implications for improving early detection and intervention for AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Cognitive Dysfunction/diagnosis , Disease Progression
6.
EMBO J ; 36(17): 2473-2487, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28768718

ABSTRACT

Animal models of human diseases that accurately recapitulate clinical pathology are indispensable for understanding molecular mechanisms and advancing preclinical studies. The Alzheimer's disease (AD) research community has historically used first-generation transgenic (Tg) mouse models that overexpress proteins linked to familial AD (FAD), mutant amyloid precursor protein (APP), or APP and presenilin (PS). These mice exhibit AD pathology, but the overexpression paradigm may cause additional phenotypes unrelated to AD Second-generation mouse models contain humanized sequences and clinical mutations in the endogenous mouse App gene. These mice show Aß accumulation without phenotypes related to overexpression but are not yet a clinical recapitulation of human AD In this review, we evaluate different APP mouse models of AD, and review recent studies using the second-generation mice. We advise AD researchers to consider the comparative strengths and limitations of each model against the scientific and therapeutic goal of a prospective preclinical study.


Subject(s)
Alzheimer Disease , Amyloid beta-Protein Precursor/genetics , Disease Models, Animal , Animals , Humans
7.
PLoS Genet ; 13(8): e1006962, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28806762

ABSTRACT

Impairment of the autophagy pathway has been observed during the pathogenesis of Alzheimer's disease (AD), a neurodegenerative disorder characterized by abnormal deposition of extracellular and intracellular amyloid ß (Aß) peptides. Yet the role of autophagy in Aß production and AD progression is complex. To study whether increased basal autophagy plays a beneficial role in Aß clearance and cognitive improvement, we developed a novel genetic model to hyperactivate autophagy in vivo. We found that knock-in of a point mutation F121A in the essential autophagy gene Beclin 1/Becn1 in mice significantly reduces the interaction of BECN1 with its inhibitor BCL2, and thus leads to constitutively active autophagy even under non-autophagy-inducing conditions in multiple tissues, including brain. Becn1F121A-mediated autophagy hyperactivation significantly decreases amyloid accumulation, prevents cognitive decline, and restores survival in AD mouse models. Using an immunoisolation method, we found biochemically that Aß oligomers are autophagic substrates and sequestered inside autophagosomes in the brain of autophagy-hyperactive AD mice. In addition to genetic activation of autophagy by Becn1 gain-of-function, we also found that ML246, a small-molecule autophagy inducer, as well as voluntary exercise, a physiological autophagy inducer, exert similar Becn1-dependent protective effects on Aß removal and memory in AD mice. Taken together, these results demonstrate that genetically disrupting BECN1-BCL2 binding hyperactivates autophagy in vivo, which sequestrates amyloid oligomers and prevents AD progression. The study establishes new approaches to activate autophagy in the brain, and reveals the important function of Becn1-mediated autophagy hyperactivation in the prevention of AD.


Subject(s)
Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Beclin-1/genetics , Cognition , Amyloid beta-Peptides/genetics , Animals , Autophagy , Beclin-1/metabolism , Disease Models, Animal , Gene Knock-In Techniques , HEK293 Cells , HeLa Cells , Humans , In Situ Nick-End Labeling , Male , Memory/physiology , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/metabolism , Point Mutation , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sequence Analysis, DNA
8.
J Neurosci ; 38(18): 4288-4300, 2018 05 02.
Article in English | MEDLINE | ID: mdl-29632166

ABSTRACT

HIV-associated neurocognitive disorders (HANDs) share common symptoms with Alzheimer's disease (AD), which is characterized by amyloid-ß (Aß) plaques. Plaques are formed by aggregation of Aß oligomers, which may be the toxic species in AD pathogenesis, and oligomers are generated by cleavage of amyloid precursor protein (APP) by ß-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 inhibitors reverse neuronal loss and cognitive decline in animal models of AD. Although studies have also found evidence of altered APP processing in HIV+ patients, it is unknown whether increased BACE1 expression or Aß oligomer production is a common neuropathological feature of HAND. Moreover, it is unknown whether BACE1 or APP is involved in the excitotoxic, NMDAR-dependent component of HIV-associated neurotoxicity in vitro Herein, we hypothesize that HIV-associated neurotoxicity is mediated by NMDAR-dependent elevation of BACE1 and subsequent altered processing of APP. Supporting this, we observed elevated levels of BACE1 and Aß oligomers in CNS of male and female HIV+ patients. In a model of HIV-associated neurotoxicity in which rat neurons are treated with supernatants from HIV-infected human monocyte-derived macrophages, we observed NMDAR-dependent elevation of BACE1 protein. NMDA treatment also increased BACE1 and both pharmacological BACE1 inhibition and genetic loss of APP were partially neuroprotective. Moreover, in APP knock-out (APP-/-) mouse neurons, NMDA-induced toxicity was BACE1 independent, indicating that cytotoxicity of BACE1 is dependent upon APP cleavage. Our findings suggest that increased BACE1 and the resultant Aß oligomer production may contribute to HIV-associated neuropathogenesis and inhibition of BACE1 could have therapeutic potential in HANDs.SIGNIFICANCE STATEMENT HIV-associated neurocognitive disorders (HANDs) represent a range of cognitive impairments affecting ∼50% of HIV+ individuals. The specific causes of HAND are unknown, but evidence suggests that HIV-infected macrophage infiltration into the brain may cause neuronal damage. Herein, we show that neurons treated with conditioned media from HIV-infected macrophages have increased expression of ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein implicated in Alzheimer's disease pathogenesis. Moreover, inhibition of BACE1 prevented neuronal loss after conditioned media exposure, but had no effect on HIV-associated neurotoxicity in neurons lacking its cleavage target amyloid precursor protein. We also observed increased BACE1 expression in HIV+ patient brain tissue, confirming the potential relevance of BACE1 as a therapeutic target in HANDs.


Subject(s)
AIDS Dementia Complex/genetics , AIDS Dementia Complex/pathology , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Aspartic Acid Endopeptidases/genetics , HIV Infections/pathology , Neurons/pathology , Adult , Amyloid Precursor Protein Secretases/antagonists & inhibitors , Animals , Aspartic Acid Endopeptidases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Agonists/toxicity , Female , Hippocampus/metabolism , Humans , Macrophages/chemistry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , N-Methylaspartate/toxicity , Rats , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/genetics
9.
J Biol Chem ; 293(48): 18434-18443, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30315100

ABSTRACT

Alzheimer's disease mouse models that overexpress amyloid precursor protein (APP) and presenilin 1 (PS1) form ß-amyloid (Aß) plaques, a hallmark Alzheimer's disease lesion. It has been assumed that the neuroinflammation, synaptic dysfunction, neurodegeneration, and cognitive impairment observed in these mice are caused by cerebral Aß accumulation. However, it is also possible that accumulation of the overexpressed transmembrane proteins APP and PS1 in the endoplasmic reticulum (ER) triggers chronic ER stress and activation of the unfolded protein response (UPR). The 5XFAD mouse, a widely used amyloid pathology model, overexpresses APP and PS1, displays aggressive amyloid pathology, and has been reported to exhibit ER stress. To systematically evaluate whether 5XFAD mice have increased ER stress, here we used biochemical approaches to assess a comprehensive panel of UPR markers. We report that APP and PS1 levels are 1.8- and 1.5-fold, respectively, of those in 5XFAD compared with nontransgenic brains, indicating that transgenes are not massively overexpressed in 5XFAD mice. Using immunoblotting, we quantified UPR protein levels in nontransgenic, 5XFAD, and 5XFAD;BACE1-/- mice at 4, 6, and 9 months of age. Importantly, we did not observe elevation of the ER stress markers p-eIF2α, ATF4, CHOP, p-IRE1α, or BiP at any age in 5XFAD or 5XFAD;BACE1-/- compared with nontransgenic mice. Despite lacking Aß generation, 5XFAD;BACE1-/- mice still expressed APP and PS1 transgenes, indicating that their overexpression does not cause ER stress. These results reveal the absence of ER stress in 5XFAD mice, suggesting that artifactual phenotypes associated with overexpression-induced ER stress are not a concern in this model.


Subject(s)
Alzheimer Disease/metabolism , Disease Models, Animal , Endoplasmic Reticulum Stress , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Aspartic Acid Endopeptidases/metabolism , Female , Humans , Male , Mice , Mice, Transgenic , Mutation , Presenilin-1/genetics , Presenilin-1/metabolism , Unfolded Protein Response
10.
Am J Pathol ; 187(1): 91-109, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27993242

ABSTRACT

Mounting evidence implicates antiretroviral (ARV) drugs as potential contributors to the persistence and evolution of clinical and pathological presentation of HIV-associated neurocognitive disorders in the post-ARV era. Based on their ability to induce endoplasmic reticulum (ER) stress in various cell types, we hypothesized that ARV-mediated ER stress in the central nervous system resulted in chronic dysregulation of the unfolded protein response and altered amyloid precursor protein (APP) processing. We used in vitro and in vivo models to show that HIV protease inhibitor (PI) class ARVs induced neuronal damage and ER stress, leading to PKR-like ER kinase-dependent phosphorylation of the eukaryotic translation initiation factor 2α and enhanced translation of ß-site APP cleaving enzyme-1 (BACE1). In addition, PIs induced ß-amyloid production, indicative of increased BACE1-mediated APP processing, in rodent neuroglial cultures and human APP-expressing Chinese hamster ovary cells. Inhibition of BACE1 activity protected against neuronal damage. Finally, ARVs administered to mice and SIV-infected macaques resulted in neuronal damage and BACE1 up-regulation in the central nervous system. These findings implicate a subset of PIs as potential mediators of neurodegeneration in HIV-associated neurocognitive disorders.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , HIV Protease Inhibitors/pharmacology , Protein Biosynthesis/drug effects , Protein Processing, Post-Translational/drug effects , Up-Regulation/drug effects , Animals , Axons/drug effects , Axons/metabolism , Axons/pathology , Cells, Cultured , Macaca , Male , Mice, Inbred C57BL , Microtubule-Associated Proteins/metabolism , Neuroglia/drug effects , Neuroglia/metabolism , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Protein Stability/drug effects , Rats , Ritonavir/pharmacology , Unfolded Protein Response/drug effects , eIF-2 Kinase/metabolism
11.
Neurobiol Learn Mem ; 154: 141-157, 2018 10.
Article in English | MEDLINE | ID: mdl-29906573

ABSTRACT

Voltage-gated ion channels are critical for neuronal integration. Some of these channels, however, are misregulated in several neurological disorders, causing both gain- and loss-of-function channelopathies in neurons. Using several transgenic mouse models of Alzheimer's disease (AD), we find that sub-threshold voltage signals strongly influenced by hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels progressively deteriorate over chronological aging in hippocampal CA1 pyramidal neurons. The degraded signaling via HCN channels in the transgenic mice is accompanied by an age-related global loss of their non-uniform dendritic expression. Both the aberrant signaling via HCN channels and their mislocalization could be restored using a variety of pharmacological agents that target the endoplasmic reticulum (ER). Our rescue of the HCN channelopathy helps provide molecular details into the favorable outcomes of ER-targeting drugs on the pathogenesis and synaptic/cognitive deficits in AD mouse models, and implies that they might have beneficial effects on neurological disorders linked to HCN channelopathies.


Subject(s)
Alzheimer Disease/physiopathology , CA1 Region, Hippocampal/physiology , Channelopathies/physiopathology , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Neuronal Plasticity , Pyramidal Cells/physiology , Action Potentials , Aging , Animals , CA1 Region, Hippocampal/ultrastructure , Disease Models, Animal , Endoplasmic Reticulum/physiology , Female , Male , Mice, Transgenic , Pyramidal Cells/ultrastructure
12.
J Neurosci ; 35(16): 6544-53, 2015 Apr 22.
Article in English | MEDLINE | ID: mdl-25904804

ABSTRACT

Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus.


Subject(s)
CA3 Region, Hippocampal/physiology , Cyclic AMP/physiology , Guanine Nucleotide Exchange Factors/physiology , Synaptic Transmission/physiology , Animals , CA3 Region, Hippocampal/drug effects , Colforsin/pharmacology , Excitatory Postsynaptic Potentials/physiology , Guanine Nucleotide Exchange Factors/genetics , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Male , Mice , Mice, Knockout , Mossy Fibers, Hippocampal/drug effects , Mossy Fibers, Hippocampal/physiology , Presynaptic Terminals/metabolism , Synaptic Transmission/drug effects
13.
Neurobiol Dis ; 96: 84-94, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27544484

ABSTRACT

In Alzheimer's disease (AD), astrocytes undergo morphological changes ranging from atrophy to hypertrophy, but the effect of such changes at the functional level is still largely unknown. Here, we aimed to investigate whether alterations in astrocyte activity in AD are transient and depend on their microenvironment, or whether they are irreversible. We established and characterized a new protocol for the isolation of adult astrocytes and discovered that astrocytes isolated from old 5xFAD mice have higher GFAP expression than astrocytes derived from WT mice, as observed in vivo. We found high C1q levels in brain sections from old 5xFAD mice in close vicinity to amyloid plaques and astrocyte processes. Interestingly, while old 5xFAD astrocytes are impaired in uptake of soluble Aß42, this effect was reversed upon an addition of exogenous C1q, suggesting a potential role for C1q in astrocyte-mediated Aß clearance. Our results suggest that scavenger receptor B1 plays a role in C1q-facilitated Aß uptake by astrocytes and that expression of scavenger receptor B1 is reduced in adult old 5xFAD astrocytes. Furthermore, old 5xFAD astrocytes show impairment in support of neuronal growth in co-culture and neurotoxicity concomitant with an elevation in IL-6 expression. Further understanding of the impact of astrocyte impairment on AD pathology may provide insights into the etiology of AD.


Subject(s)
Aging , Alzheimer Disease , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Brain/pathology , Gene Expression Regulation/genetics , Neuroprotective Agents/therapeutic use , Peptide Fragments/metabolism , Aging/genetics , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/therapy , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , CD11b Antigen/metabolism , Cells, Cultured , Coculture Techniques , Disease Models, Animal , Glial Fibrillary Acidic Protein/metabolism , Interleukin-6/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Transgenic , Mutation/genetics , Neurons/drug effects , Neurons/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism , Receptors, Complement/metabolism
14.
Acta Neuropathol ; 132(2): 235-256, 2016 08.
Article in English | MEDLINE | ID: mdl-26993139

ABSTRACT

Alzheimer's disease (AD) is characterized by amyloid plaques composed of the ß-amyloid (Aß) peptide surrounded by swollen presynaptic dystrophic neurites consisting of dysfunctional axons and terminals that accumulate the ß-site amyloid precursor protein (APP) cleaving enzyme (BACE1) required for Aß generation. The cellular and molecular mechanisms that govern presynaptic dystrophic neurite formation are unclear, and elucidating these processes may lead to novel AD therapeutic strategies. Previous studies suggest Aß may disrupt microtubules, which we hypothesize have a critical role in the development of presynaptic dystrophies. To investigate this further, here we have assessed the effects of Aß, particularly neurotoxic Aß42, on microtubules during the formation of presynaptic dystrophic neurites in vitro and in vivo. Live-cell imaging of primary neurons revealed that exposure to Aß42 oligomers caused varicose and beaded neurites with extensive microtubule disruption, and inhibited anterograde and retrograde trafficking. In brain sections from AD patients and the 5XFAD transgenic mouse model of amyloid pathology, dystrophic neurite halos with BACE1 elevation around amyloid plaques exhibited aberrant tubulin accumulations or voids. At the ultrastructural level, peri-plaque dystrophies were strikingly devoid of microtubules and replete with multi-lamellar vesicles resembling autophagic intermediates. Proteins of the microtubule motors, kinesin and dynein, and other neuronal proteins were aberrantly localized in peri-plaque dystrophies. Inactive pro-cathepsin D also accumulated in peri-plaque dystrophies, indicating reduced lysosomal function. Most importantly, BACE1 accumulation in peri-plaque dystrophies caused increased BACE1 cleavage of APP and Aß generation. Our study supports the hypothesis that Aß induces microtubule disruption in presynaptic dystrophic neurites that surround plaques, thus impairing axonal transport and leading to accumulation of BACE1 and exacerbation of amyloid pathology in AD.


Subject(s)
Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Neurites/pathology , Presynaptic Terminals/metabolism , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/metabolism , Animals , Aspartic Acid Endopeptidases/genetics , Axons/pathology , Disease Models, Animal , Mice, Inbred C57BL , Mice, Transgenic , Plaque, Amyloid/pathology
15.
J Biol Chem ; 288(2): 1295-306, 2013 Jan 11.
Article in English | MEDLINE | ID: mdl-23155049

ABSTRACT

Accumulation of ß-amyloid (Aß) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aß pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aß loads. Both GSK-3 isozymes (α/ß) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced Aß deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3α and GSK-3ß impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/Aß loads. Taken together, our data indicate that GSK-3 is a player in Aß pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of Aß burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function.


Subject(s)
Acids/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/physiology , Disease Models, Animal , Glycogen Synthase Kinase 3/antagonists & inhibitors , Lysosomes/metabolism , TOR Serine-Threonine Kinases/metabolism , Alzheimer Disease/physiopathology , Animals , Autophagy , Brain/metabolism , Cell Line , Electrophoresis, Polyacrylamide Gel , Humans , In Vitro Techniques , Mice
16.
J Neurochem ; 130(1): 4-28, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24646365

ABSTRACT

The ß-site APP cleaving enzymes 1 and 2 (BACE1 and BACE2) were initially identified as transmembrane aspartyl proteases cleaving the amyloid precursor protein (APP). BACE1 is a major drug target for Alzheimer's disease because BACE1-mediated cleavage of APP is the first step in the generation of the pathogenic amyloid-ß peptides. BACE1, which is highly expressed in the nervous system, is also required for myelination by cleaving neuregulin 1. Several recent proteomic and in vivo studies using BACE1- and BACE2-deficient mice demonstrate a much wider range of physiological substrates and functions for both proteases within and outside of the nervous system. For BACE1 this includes axon guidance, neurogenesis, muscle spindle formation, and neuronal network functions, whereas BACE2 was shown to be involved in pigmentation and pancreatic ß-cell function. This review highlights the recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer's disease. The protease BACE1 is a major drug target in Alzheimer disease. Together with its homolog BACE2, both proteases have an increasing number of functions within and outside of the nervous system. This review highlights recent progress in understanding cell biology, substrates, and functions of BACE proteases and discusses the therapeutic options and potential mechanism-based liabilities, in particular for BACE inhibitors in Alzheimer disease.


Subject(s)
Amyloid Precursor Protein Secretases/antagonists & inhibitors , Amyloid Precursor Protein Secretases/physiology , Aspartic Acid Endopeptidases/antagonists & inhibitors , Aspartic Acid Endopeptidases/physiology , Intracellular Fluid/enzymology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Amyloid beta-Protein Precursor/physiology , Animals , Forecasting , Humans , Intracellular Fluid/drug effects , Protein Transport/physiology
17.
Am J Pathol ; 183(2): 369-81, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23747948

ABSTRACT

Amyloid-ß (Aß) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aß), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aß peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aß deposition in humans and animal models. PyroGlu-3 Aß immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aß IR. PyroGlu-3 Aß is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aß deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aß deposition preceding pyroGlu-3 Aß deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aß is a major species of ß-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aß peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Pyrrolidonecarboxylic Acid/metabolism , Age of Onset , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor , Animals , Brain/pathology , Cerebral Amyloid Angiopathy/metabolism , Chlorocebus aethiops , Disease Models, Animal , Dogs , Down Syndrome/metabolism , Female , Humans , Immunohistochemistry , Male , Mice , Mice, Transgenic , Middle Aged , Plaque, Amyloid/metabolism
18.
Neurotherapeutics ; : e00425, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39054180

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and is the most common cause of dementia. AD is characterized pathologically by proteinaceous aggregates composed of amyloid beta (Aß) and tau as well as progressive neurodegeneration. Concurrently with the buildup of protein aggregates, a strong neuroinflammatory response, in the form of reactive astrocytosis and microgliosis, occurs in the AD brain. It has recently been shown that the gut microbiome (GMB), composed of trillions of bacteria in the human intestine, can regulate both reactive astrocytosis and microgliosis in the context of both amyloidosis and tauopathy. Many studies have implicated microglia in these processes. However, growing evidence suggests that interactions between the GMB and astrocytes have a much larger role than previously thought. In this review, we summarize evidence regarding the gut microbiome in the control of reactive astrocytosis in AD.

19.
Nat Commun ; 15(1): 264, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238311

ABSTRACT

Alzheimer's disease (AD) is characterized by progressive neurodegeneration, but the specific events that cause cell death remain poorly understood. Death Induced by Survival gene Elimination (DISE) is a cell death mechanism mediated by short (s) RNAs acting through the RNA-induced silencing complex (RISC). DISE is thus a form of RNA interference, in which G-rich 6mer seed sequences in the sRNAs (position 2-7) target hundreds of C-rich 6mer seed matches in genes essential for cell survival, resulting in the activation of cell death pathways. Here, using Argonaute precipitation and RNAseq (Ago-RP-Seq), we analyze RISC-bound sRNAs to quantify 6mer seed toxicity in several model systems. In mouse AD models and aging brain, in induced pluripotent stem cell-derived neurons from AD patients, and in cells exposed to Aß42 oligomers, RISC-bound sRNAs show a shift to more toxic 6mer seeds compared to controls. In contrast, in brains of "SuperAgers", humans over age 80 who have superior memory performance, RISC-bound sRNAs are shifted to more nontoxic 6mer seeds. Cells depleted of nontoxic sRNAs are sensitized to Aß42-induced cell death, and reintroducing nontoxic RNAs is protective. Altogether, the correlation between DISE and Aß42 toxicity suggests that increasing the levels of nontoxic miRNAs in the brain or blocking the activity of toxic RISC-bound sRNAs could ameliorate neurodegeneration.


Subject(s)
Alzheimer Disease , MicroRNAs , Mice , Animals , Humans , Aged, 80 and over , Alzheimer Disease/genetics , MicroRNAs/genetics , RNA-Induced Silencing Complex/genetics , RNA Interference , Aging/genetics , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity
20.
Nat Neurosci ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103558

ABSTRACT

Amyloid-ß (Aß) is thought to be neuronally derived in Alzheimer's disease (AD). However, transcripts of amyloid precursor protein (APP) and amyloidogenic enzymes are equally abundant in oligodendrocytes (OLs). By cell-type-specific deletion of Bace1 in a humanized knock-in AD model, APPNLGF, we demonstrate that OLs and neurons contribute to Aß plaque burden. For rapid plaque seeding, excitatory projection neurons must provide a threshold level of Aß. Ultimately, our findings are relevant for AD prevention and therapeutic strategies.

SELECTION OF CITATIONS
SEARCH DETAIL