Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 184(16): 4348-4371.e40, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34358469

ABSTRACT

Lung squamous cell carcinoma (LSCC) remains a leading cause of cancer death with few therapeutic options. We characterized the proteogenomic landscape of LSCC, providing a deeper exposition of LSCC biology with potential therapeutic implications. We identify NSD3 as an alternative driver in FGFR1-amplified tumors and low-p63 tumors overexpressing the therapeutic target survivin. SOX2 is considered undruggable, but our analyses provide rationale for exploring chromatin modifiers such as LSD1 and EZH2 to target SOX2-overexpressing tumors. Our data support complex regulation of metabolic pathways by crosstalk between post-translational modifications including ubiquitylation. Numerous immune-related proteogenomic observations suggest directions for further investigation. Proteogenomic dissection of CDKN2A mutations argue for more nuanced assessment of RB1 protein expression and phosphorylation before declaring CDK4/6 inhibition unsuccessful. Finally, triangulation between LSCC, LUAD, and HNSCC identified both unique and common therapeutic vulnerabilities. These observations and proteogenomics data resources may guide research into the biology and treatment of LSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Lung Neoplasms/genetics , Proteogenomics , Acetylation , Adult , Aged , Aged, 80 and over , Cluster Analysis , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 6/genetics , Epithelial-Mesenchymal Transition/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Middle Aged , Mutation/genetics , Neoplasm Proteins/metabolism , Phosphorylation , Protein Binding , Receptor Tyrosine Kinase-like Orphan Receptors/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction , Ubiquitination
2.
Cell ; 182(1): 200-225.e35, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649874

ABSTRACT

To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.


Subject(s)
Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Proteogenomics , Adenocarcinoma of Lung/immunology , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , DNA Copy Number Variations/genetics , DNA Methylation/genetics , Female , Humans , Lung Neoplasms/immunology , Male , Middle Aged , Mutation/genetics , Oncogene Proteins, Fusion , Phenotype , Phosphoproteins/metabolism , Proteome/metabolism
3.
Cell ; 173(7): 1770-1782.e14, 2018 06 14.
Article in English | MEDLINE | ID: mdl-29906450

ABSTRACT

Using integrative genomic analysis of 360 metastatic castration-resistant prostate cancer (mCRPC) samples, we identified a novel subtype of prostate cancer typified by biallelic loss of CDK12 that is mutually exclusive with tumors driven by DNA repair deficiency, ETS fusions, and SPOP mutations. CDK12 loss is enriched in mCRPC relative to clinically localized disease and characterized by focal tandem duplications (FTDs) that lead to increased gene fusions and marked differential gene expression. FTDs associated with CDK12 loss result in highly recurrent gains at loci of genes involved in the cell cycle and DNA replication. CDK12 mutant cases are baseline diploid and do not exhibit DNA mutational signatures linked to defects in homologous recombination. CDK12 mutant cases are associated with elevated neoantigen burden ensuing from fusion-induced chimeric open reading frames and increased tumor T cell infiltration/clonal expansion. CDK12 inactivation thereby defines a distinct class of mCRPC that may benefit from immune checkpoint immunotherapy.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Prostatic Neoplasms/pathology , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Chemokine CCL21/genetics , Chemokine CCL21/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , DNA Repair , Gene Expression Regulation, Neoplastic , Genomic Instability , Humans , Male , Mutation, Missense , Neoplasm Staging , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Phenotype , Programmed Cell Death 1 Receptor/immunology , Prostate/diagnostic imaging , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/immunology , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Tomography, X-Ray Computed
4.
Cell ; 161(5): 1215-1228, 2015 May 21.
Article in English | MEDLINE | ID: mdl-26000489

ABSTRACT

Toward development of a precision medicine framework for metastatic, castration-resistant prostate cancer (mCRPC), we established a multi-institutional clinical sequencing infrastructure to conduct prospective whole-exome and transcriptome sequencing of bone or soft tissue tumor biopsies from a cohort of 150 mCRPC affected individuals. Aberrations of AR, ETS genes, TP53, and PTEN were frequent (40%-60% of cases), with TP53 and AR alterations enriched in mCRPC compared to primary prostate cancer. We identified new genomic alterations in PIK3CA/B, R-spondin, BRAF/RAF1, APC, ß-catenin, and ZBTB16/PLZF. Moreover, aberrations of BRCA2, BRCA1, and ATM were observed at substantially higher frequencies (19.3% overall) compared to those in primary prostate cancers. 89% of affected individuals harbored a clinically actionable aberration, including 62.7% with aberrations in AR, 65% in other cancer-related genes, and 8% with actionable pathogenic germline alterations. This cohort study provides clinically actionable information that could impact treatment decisions for these affected individuals.


Subject(s)
Gene Expression Profiling/methods , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Cohort Studies , Humans , Male , Mutation , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy
6.
Nature ; 571(7765): 413-418, 2019 07.
Article in English | MEDLINE | ID: mdl-31243372

ABSTRACT

ABTRACT: Forkhead box A1 (FOXA1) is a pioneer transcription factor that is essential for the normal development of several endoderm-derived organs, including the prostate gland1,2. FOXA1 is frequently mutated in hormone-receptor-driven prostate, breast, bladder and salivary-gland tumours3-8. However, it is unclear how FOXA1 alterations affect the development of cancer, and FOXA1 has previously been ascribed both tumour-suppressive9-11 and oncogenic12-14 roles. Here we assemble an aggregate cohort of 1,546 prostate cancers and show that FOXA1 alterations fall into three structural classes that diverge in clinical incidence and genetic co-alteration profiles, with a collective prevalence of 35%. Class-1 activating mutations originate in early prostate cancer without alterations in ETS or SPOP, selectively recur within the wing-2 region of the DNA-binding forkhead domain, enable enhanced chromatin mobility and binding frequency, and strongly transactivate a luminal androgen-receptor program of prostate oncogenesis. By contrast, class-2 activating mutations are acquired in metastatic prostate cancers, truncate the C-terminal domain of FOXA1, enable dominant chromatin binding by increasing DNA affinity and-through TLE3 inactivation-promote metastasis driven by the WNT pathway. Finally, class-3 genomic rearrangements are enriched in metastatic prostate cancers, consist of duplications and translocations within the FOXA1 locus, and structurally reposition a conserved regulatory element-herein denoted FOXA1 mastermind (FOXMIND)-to drive overexpression of FOXA1 or other oncogenes. Our study reaffirms the central role of FOXA1 in mediating oncogenesis driven by the androgen receptor, and provides mechanistic insights into how the classes of FOXA1 alteration promote the initiation and/or metastatic progression of prostate cancer. These results have direct implications for understanding the pathobiology of other hormone-receptor-driven cancers and rationalize the co-targeting of FOXA1 activity in therapeutic strategies.


Subject(s)
Hepatocyte Nuclear Factor 3-alpha/genetics , Mutation/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Cell Line, Tumor , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation, Neoplastic , Genome, Human/genetics , Hepatocyte Nuclear Factor 3-alpha/chemistry , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Male , Models, Molecular , Neoplasm Metastasis/genetics , Protein Domains , Receptors, Androgen/metabolism , Wnt Signaling Pathway
7.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-35945154

ABSTRACT

As recently demonstrated by the COVID-19 pandemic, large-scale pathogen genomic data are crucial to characterize transmission patterns of human infectious diseases. Yet, current methods to process raw sequence data into analysis-ready variants remain slow to scale, hampering rapid surveillance efforts and epidemiological investigations for disease control. Here, we introduce an accelerated, scalable, reproducible, and cost-effective framework for pathogen genomic variant identification and present an evaluation of its performance and accuracy across benchmark datasets of Plasmodium falciparum malaria genomes. We demonstrate superior performance of the GPU framework relative to standard pipelines with mean execution time and computational costs reduced by 27× and 4.6×, respectively, while delivering 99.9% accuracy at enhanced reproducibility.


Subject(s)
COVID-19 , Communicable Diseases , Malaria , COVID-19/epidemiology , COVID-19/genetics , Genomics/methods , Humans , Pandemics , Reproducibility of Results
8.
Proc Natl Acad Sci U S A ; 118(24)2021 06 15.
Article in English | MEDLINE | ID: mdl-34099557

ABSTRACT

Diverse subtypes of renal cell carcinomas (RCCs) display a wide spectrum of histomorphologies, proteogenomic alterations, immune cell infiltration patterns, and clinical behavior. Delineating the cells of origin for different RCC subtypes will provide mechanistic insights into their diverse pathobiology. Here, we employed single-cell RNA sequencing (scRNA-seq) to develop benign and malignant renal cell atlases. Using a random forest model trained on this cell atlas, we predicted the putative cell of origin for more than 10 RCC subtypes. scRNA-seq also revealed several attributes of the tumor microenvironment in the most common subtype of kidney cancer, clear cell RCC (ccRCC). We elucidated an active role for tumor epithelia in promoting immune cell infiltration, potentially explaining why ccRCC responds to immune checkpoint inhibitors, despite having a low neoantigen burden. In addition, we characterized an association between high endothelial cell types and lack of response to immunotherapy in ccRCC. Taken together, these single-cell analyses of benign kidney and RCC provide insight into the putative cell of origin for RCC subtypes and highlight the important role of the tumor microenvironment in influencing ccRCC biology and response to therapy.


Subject(s)
Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/therapy , Kidney Neoplasms/pathology , Kidney Neoplasms/therapy , Single-Cell Analysis , Carcinoma, Renal Cell/immunology , Cell Survival , Endothelial Cells/pathology , Epithelial Cells/pathology , Humans , Immunotherapy , Kidney/pathology , Kidney Neoplasms/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Myeloid Cells/pathology , Treatment Outcome
9.
Nature ; 548(7667): 297-303, 2017 08 17.
Article in English | MEDLINE | ID: mdl-28783718

ABSTRACT

Metastasis is the primary cause of cancer-related deaths. Although The Cancer Genome Atlas has sequenced primary tumour types obtained from surgical resections, much less comprehensive molecular analysis is available from clinically acquired metastatic cancers. Here we perform whole-exome and -transcriptome sequencing of 500 adult patients with metastatic solid tumours of diverse lineage and biopsy site. The most prevalent genes somatically altered in metastatic cancer included TP53, CDKN2A, PTEN, PIK3CA, and RB1. Putative pathogenic germline variants were present in 12.2% of cases of which 75% were related to defects in DNA repair. RNA sequencing complemented DNA sequencing to identify gene fusions, pathway activation, and immune profiling. Our results show that integrative sequence analysis provides a clinically relevant, multi-dimensional view of the complex molecular landscape and microenvironment of metastatic cancers.


Subject(s)
Genetics, Medical , Genomics , Neoplasm Metastasis/genetics , Adult , Class I Phosphatidylinositol 3-Kinases/genetics , Cyclin-Dependent Kinase Inhibitor p16 , Cyclin-Dependent Kinase Inhibitor p18/genetics , DNA Repair/genetics , Female , Germ-Line Mutation/genetics , Humans , Male , Neoplasm Metastasis/immunology , Neoplasm Metastasis/pathology , PTEN Phosphohydrolase/genetics , Retinoblastoma Binding Proteins/genetics , Transcriptome/genetics , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Tumor Suppressor Protein p53/genetics , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
10.
Hum Mutat ; 43(12): 1979-1993, 2022 12.
Article in English | MEDLINE | ID: mdl-36054329

ABSTRACT

Detection of de novo variants (DNVs) is critical for studies of disease-related variation and mutation rates. To accelerate DNV calling, we developed a graphics processing units-based workflow. We applied our workflow to whole-genome sequencing data from three parent-child sequenced cohorts including the Simons Simplex Collection (SSC), Simons Foundation Powering Autism Research (SPARK), and the 1000 Genomes Project (1000G) that were sequenced using DNA from blood, saliva, and lymphoblastoid cell lines (LCLs), respectively. The SSC and SPARK DNV callsets were within expectations for number of DNVs, percent at CpG sites, phasing to the paternal chromosome of origin, and average allele balance. However, the 1000G DNV callset was not within expectations and contained excessive DNVs that are likely cell line artifacts. Mutation signature analysis revealed 30% of 1000G DNV signatures matched B-cell lymphoma. Furthermore, we found variants in DNA repair genes and at Clinvar pathogenic or likely-pathogenic sites and significant excess of protein-coding DNVs in IGLL5; a gene known to be involved in B-cell lymphomas. Our study provides a new rapid DNV caller for the field and elucidates important implications of using sequencing data from LCLs for reference building and disease-related projects.


Subject(s)
Neoplasms , Humans , Alleles , Mutation , Neoplasms/genetics , Whole Genome Sequencing
11.
Am J Pathol ; 184(3): 584-91, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24389164

ABSTRACT

Primary clear-cell adenocarcinoma of the urethra, a rare tumor that histomorphologically resembles clear-cell carcinoma of the female genital tract, occurs predominantly in women and is associated with a relatively poor prognosis. The histogenesis of this rare urethral neoplasm has not been completely resolved, but it is thought to arise from either müllerian rests or metaplastic urothelium. Herein, we present comprehensive surgical pathological and cytopathological findings from a patient with primary urethral clear-cell adenocarcinoma and describe next-generation sequencing results for this patient's unique tumor-the first such reported characterization of molecular aberrations in urethral clear-cell adenocarcinoma at the transcriptomic and genomic levels. Transcriptome analysis revealed novel gene fusion candidates, including ANKRD28-FNDC3B. Whole-exome analysis demonstrated focal copy number loss at the SMAD4 and ARID2 loci and 38 somatic mutations, including a truncating mutation in ATM and a novel nonsynonymous mutation in ALK.


Subject(s)
Adenocarcinoma, Clear Cell/pathology , Biomarkers, Tumor/genetics , Urethral Neoplasms/pathology , Adenocarcinoma, Clear Cell/genetics , Adenocarcinoma, Clear Cell/surgery , DNA Copy Number Variations , Exome/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Middle Aged , Mutation , Pathology, Surgical , Sequence Analysis, DNA , Urethral Neoplasms/genetics , Urethral Neoplasms/surgery
12.
JAMA ; 314(9): 913-25, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26325560

ABSTRACT

IMPORTANCE: Cancer is caused by a diverse array of somatic and germline genomic aberrations. Advances in genomic sequencing technologies have improved the ability to detect these molecular aberrations with greater sensitivity. However, integrating them into clinical management in an individualized manner has proven challenging. OBJECTIVE: To evaluate the use of integrative clinical sequencing and genetic counseling in the assessment and treatment of children and young adults with cancer. DESIGN, SETTING, AND PARTICIPANTS: Single-site, observational, consecutive case series (May 2012-October 2014) involving 102 children and young adults (mean age, 10.6 years; median age, 11.5 years, range, 0-22 years) with relapsed, refractory, or rare cancer. EXPOSURES: Participants underwent integrative clinical exome (tumor and germline DNA) and transcriptome (tumor RNA) sequencing and genetic counseling. Results were discussed by a precision medicine tumor board, which made recommendations to families and their physicians. MAIN OUTCOMES AND MEASURES: Proportion of patients with potentially actionable findings, results of clinical actions based on integrative clinical sequencing, and estimated proportion of patients or their families at risk of future cancer. RESULTS: Of the 104 screened patients, 102 enrolled with 91 (89%) having adequate tumor tissue to complete sequencing. Only the 91 patients were included in all calculations, including 28 (31%) with hematological malignancies and 63 (69%) with solid tumors. Forty-two patients (46%) had actionable findings that changed their cancer management: 15 of 28 (54%) with hematological malignancies and 27 of 63 (43%) with solid tumors. Individualized actions were taken in 23 of the 91 (25%) based on actionable integrative clinical sequencing findings, including change in treatment for 14 patients (15%) and genetic counseling for future risk for 9 patients (10%). Nine of 91 (10%) of the personalized clinical interventions resulted in ongoing partial clinical remission of 8 to 16 months or helped sustain complete clinical remission of 6 to 21 months. All 9 patients and families with actionable incidental genetic findings agreed to genetic counseling and screening. CONCLUSIONS AND RELEVANCE: In this single-center case series involving young patients with relapsed or refractory cancer, incorporation of integrative clinical sequencing data into clinical management was feasible, revealed potentially actionable findings in 46% of patients, and was associated with change in treatment and family genetic counseling for a small proportion of patients. The lack of a control group limited assessing whether better clinical outcomes resulted from this approach than outcomes that would have occurred with standard care.


Subject(s)
Genetic Counseling , Neoplasms/genetics , Sequence Analysis, DNA/methods , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Family , Feasibility Studies , Gene Fusion , Hematologic Neoplasms/genetics , Humans , Incidental Findings , Infant , Infant, Newborn , Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/genetics , Neoplasms/therapy , Outcome Assessment, Health Care , Remission Induction , Young Adult
14.
Indian J Otolaryngol Head Neck Surg ; 75(2): 366-373, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37275084

ABSTRACT

This study was conducted in locally advanced supraglottic and hypopharyngeal squamous cell carcinoma patients to ascertain the efficacy and toxicity profile of a two drug combination neo adjuvant chemotherapy (NACT) schedule containing Taxane and Platinum; prior to definitive concurrent chemo-radiotherapy (Def CCRT); sixty patients with stage III, IVA and IVB locally advanced squamous cell cancers of larynx and hypopharynx were randomised to two arms. Thirty patients in study group were treated with NACT with Paclitaxel (175 mg/m2) and Carboplatin (AUC 5-7) for 3, 3 weekly cycles; followed by CCRT in the patients who showed at-least a partial response (PR). These patients were compared with the 30 patients of control group who received upfront CCRT. More patients in Study arm developed grade 3 dysphagia (p = 0.001) and mucositis (p = 0.003). Renal, hematogenous and skin toxicities were identical in two arms. At 3 months post treatment complete response (CR) at primary site was 83.3% and 66.6% (p = 0.245) in study and control arms respectively. At 6 months post treatment; 20 patients (66.6%) in the study group and 17 patients (56.6%) in the control group continued to be in clinic-radiological CR (p = 0.20). NACT with Paclitaxel and Carboplatin is tolerated with manageable toxicities in patients with LAHNSCC (Locally advanced head and neck squamous cell carcinoma), with increased Grade 3 dysphagia and mucositis as compared to patients getting upfront CCRT. A longer follow-up period with a larger sample size is required to further evaluate any statistically significant benefit of adding NACT prior to CCRT.

15.
J Cancer Res Ther ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102910

ABSTRACT

INTRODUCTION: Brainstem is a rare yet challenging site for primary brain tumors. We present the patient characteristics, treatment-related details, and survival outcomes of patients with brain stem gliomas treated over a decade, from August 2010 to July 2022, at a tertiary care center in northern India. MATERIALS AND METHODS: Twenty-seven patients of brainstem gliomas were treated in our hospital from August 2010 to July 2022. All of these patients were treated with radiation therapy based on a radiological diagnosis only. Data were collected and analyzed from patient registration, treatment, and follow-up records. RESULTS: Of the 27 patients, 18 were male and 9 were female. Fourteen patients (51.85%) were in the pediatric age group (<12 years). The most common symptom at onset was hemiparesis, seen in 62.96%. The majority of the patients (24; 88.88%) had pontine involvement at the time of treatment. Overall survival at a minimum 2-year follow-up post-treatment was 22.22% in the entire cohort. Age, sex, or size of tumor at presentation was not seen to have any significant impact on survival of patients. CONCLUSION: With the advancement in surgical techniques and molecular analysis of brain tumors, there is likely to be a change in the management of brainstem gliomas; however, radiation therapy has been used for the management of these tumors for decades now. Radiation therapy continues to show rapid and significant radiological and clinical improvement in the majority of such patients, and it would continue to play an important part in multi-modality management.

16.
J Contemp Brachytherapy ; 15(3): 224-228, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37425208

ABSTRACT

Dermatofibrosarcoma protuberans (DFSP) is a locally aggressive soft tissue tumor with a high propensity of local recurrence after surgery. Radiotherapy as an adjuvant therapy has been shown to reduce recurrent rates of this disease. Surface mould brachytherapy is an effective and safe modality for the delivery of radiotherapy in soft tissue tumors, though its utilization and popularity have decreased in recent years. Here, we presented a case of a recurrent DFSP of the scalp who was treated with surgery followed by adjuvant surface mould brachytherapy to avoid dose inhomogeneity likely to occur in this anatomic region with external beam radiotherapy in the absence of intensity-modulated radiotherapy. The treatment was delivered successfully with minimal adverse reactions, and the patient is disease-free at 18 months post-treatment with no treatment toxicity.

17.
Neoplasia ; 42: 100910, 2023 08.
Article in English | MEDLINE | ID: mdl-37267699

ABSTRACT

BACKGROUND: Biliary tract cancers (BTCs) including intrahepatic, perihilar, and distal cholangiocarcinoma as well as gallbladder cancer, are rare but aggressive malignancies with few effective standard of care therapies. METHODS: We implemented integrative clinical sequencing of advanced BTC tumors from 124 consecutive patients who progressed on standard therapies (N=92 with MI-ONCOSEQ and N=32 with commercial gene panels) enrolled between 2011-2020. RESULTS: Genomic profiling of paired tumor and normal DNA and tumor transcriptome (RNA) sequencing identified actionable somatic and germline genomic alterations in 54 patients (43.5%), and potentially actionable alterations in 79 (63.7%) of the cohort. Of these, patients who received matched targeted therapy (22; 40.7%) had a median overall survival of 28.1 months compared to 13.3 months in those who did not receive matched targeted therapy (32; P < 0.01), or 13.9 months in those without actionable mutations (70; P < 0.01). Additionally, we discovered recurrent activating mutations in FGFR2, and a novel association between KRAS and BRAF mutant tumors with high expression of immune modulatory protein NT5E (CD73) that may represent novel therapeutic avenues. CONCLUSIONS: Overall, the identification of actionable/ potentially actionable aberrations in a large proportion of cases, and improvement in survival with precision oncology supports molecular analysis and clinical sequencing for all patients with advanced BTC.


Subject(s)
Bile Duct Neoplasms , Biliary Tract Neoplasms , Humans , Precision Medicine , Bile Duct Neoplasms/genetics , Biliary Tract Neoplasms/genetics , Biliary Tract Neoplasms/therapy , Biliary Tract Neoplasms/pathology , Mutation , Genomics , Bile Ducts, Intrahepatic/metabolism , Bile Ducts, Intrahepatic/pathology
18.
Nat Genet ; 55(10): 1623-1631, 2023 10.
Article in English | MEDLINE | ID: mdl-37709865

ABSTRACT

Primary aldosteronism (PA) is the most common form of endocrine hypertension and is characterized by inappropriately elevated aldosterone production via a renin-independent mechanism. Driver somatic mutations for aldosterone excess have been found in approximately 90% of aldosterone-producing adenomas (APAs). Other causes of lateralized adrenal PA include aldosterone-producing nodules (APNs). Using next-generation sequencing, we identified recurrent in-frame deletions in SLC30A1 in four APAs and one APN (p.L51_A57del, n = 3; p.L49_L55del, n = 2). SLC30A1 encodes the ubiquitous zinc efflux transporter ZnT1 (zinc transporter 1). The identified SLC30A1 variants are situated close to the zinc-binding site (His43 and Asp47) in transmembrane domain II and probably cause abnormal ion transport. Cases of PA with SLC30A1 mutations showed male dominance and demonstrated increased aldosterone and 18-oxocortisol concentrations. Functional studies of the SLC30A151_57del variant in a doxycycline-inducible adrenal cell system revealed pathological Na+ influx. An aberrant Na+ current led to depolarization of the resting membrane potential and, thus, to the opening of voltage-gated calcium (Ca2+) channels. This resulted in an increase in cytosolic Ca2+ activity, which stimulated CYP11B2 mRNA expression and aldosterone production. Collectively, these data implicate zinc transporter alterations as a dominant driver of aldosterone excess in PA.


Subject(s)
Adenoma , Adrenal Cortex Neoplasms , Adrenocortical Adenoma , Cation Transport Proteins , Hyperaldosteronism , Male , Humans , Aldosterone/genetics , Adrenocortical Adenoma/genetics , Hyperaldosteronism/genetics , Adenoma/genetics , Adenoma/complications , Mutation , Zinc/metabolism , Adrenal Cortex Neoplasms/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Cation Transport Proteins/genetics
19.
JAMA Oncol ; 7(4): 525-533, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33630025

ABSTRACT

IMPORTANCE: Use of next-generation sequencing (NGS) to identify clinically actionable genomic targets has been incorporated into routine clinical practice in the management of advanced solid tumors; however, the clinical utility of this testing remains uncertain. OBJECTIVE: To determine which patients derived the greatest degree of clinical benefit from NGS profiling. DESIGN, SETTING, AND PARTICIPANTS: Patients in this cohort study underwent fresh tumor biopsy and blood sample collection for genomic profiling of paired tumor and normal DNA (whole-exome or targeted-exome capture with analysis of 1700 genes) and tumor transcriptome (RNA) sequencing. Somatic and germline genomic alterations were annotated and classified according to degree of clinical actionability. Results were returned to treating oncologists. Data were collected from May 1, 2011, to February 28, 2018, and analyzed from May 1, 2011, to April 30, 2020. MAIN OUTCOMES AND MEASURES: Patients' subsequent therapy and treatment response were extracted from the medical record to determine clinical benefit rate from NGS-directed therapy at 6 months and exceptional responses lasting 12 months or longer. RESULTS: During the study period, NGS was attempted on tumors from 1138 patients and was successful in 1015 (89.2%) (MET1000 cohort) (538 men [53.0%]; mean [SD] age, 57.7 [13.3] years). Potentially clinically actionable genomic alterations were discovered in 817 patients (80.5%). Of these, 132 patients (16.2%) received sequencing-directed therapy, and 49 had clinical benefit (37.1%). Exceptional responses were observed in 26 patients (19.7% of treated patients). Pathogenic germline variants (PGVs) were identified in 160 patients (15.8% of cohort), including 49 PGVs (4.8% of cohort) with therapeutic relevance. For 55 patients with carcinoma of unknown primary origin, NGS identified the primary site in 28 (50.9%), and sequencing-directed therapy in 13 patients resulted in clinical benefit in 7 instances (53.8%), including 5 exceptional responses. CONCLUSIONS AND RELEVANCE: The high rate of therapeutically relevant PGVs identified across diverse cancer types supports a recommendation for directed germline testing in all patients with advanced cancer. The high frequency of therapeutically relevant somatic and germline findings in patients with carcinoma of unknown primary origin and other rare cancers supports the use of comprehensive NGS profiling as a component of standard of care for these disease entities.


Subject(s)
Biomarkers, Tumor , Neoplasms , Biomarkers, Tumor/genetics , Cohort Studies , Genomics , High-Throughput Nucleotide Sequencing/methods , Humans , Male , Middle Aged , Neoplasms/drug therapy
20.
Cancer Cell ; 39(3): 361-379.e16, 2021 03 08.
Article in English | MEDLINE | ID: mdl-33417831

ABSTRACT

We present a proteogenomic study of 108 human papilloma virus (HPV)-negative head and neck squamous cell carcinomas (HNSCCs). Proteomic analysis systematically catalogs HNSCC-associated proteins and phosphosites, prioritizes copy number drivers, and highlights an oncogenic role for RNA processing genes. Proteomic investigation of mutual exclusivity between FAT1 truncating mutations and 11q13.3 amplifications reveals dysregulated actin dynamics as a common functional consequence. Phosphoproteomics characterizes two modes of EGFR activation, suggesting a new strategy to stratify HNSCCs based on EGFR ligand abundance for effective treatment with inhibitory EGFR monoclonal antibodies. Widespread deletion of immune modulatory genes accounts for low immune infiltration in immune-cold tumors, whereas concordant upregulation of multiple immune checkpoint proteins may underlie resistance to anti-programmed cell death protein 1 monotherapy in immune-hot tumors. Multi-omic analysis identifies three molecular subtypes with high potential for treatment with CDK inhibitors, anti-EGFR antibody therapy, and immunotherapy, respectively. Altogether, proteogenomics provides a systematic framework to inform HNSCC biology and treatment.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Papillomavirus Infections/genetics , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Adult , Aged , Aged, 80 and over , ErbB Receptors/genetics , Female , Humans , Immunotherapy/methods , Male , Middle Aged , Papillomavirus Infections/drug therapy , Papillomavirus Infections/virology , Proteogenomics/methods , Proteomics/methods , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL