Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Chem Phys ; 146(12): 124113, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28388114

ABSTRACT

We investigate the extent to which the dynamics of excitons in the light-harvesting complex LH2 of purple bacteria can be described using a Markovian approximation. To analyse the degree of non-Markovianity in these systems, we introduce a measure based on fitting Lindblad dynamics, as well as employing a recently introduced trace-distance measure. We apply these measures to a chromophore-dimer model of exciton dynamics and use the hierarchical equation-of-motion method to take into account the broad, low-frequency phonon bath. With a smooth phonon bath, small amounts of non-Markovianity are present according to the trace-distance measure, but the dynamics is poorly described by a Lindblad master equation unless the excitonic dimer coupling strength is modified. Inclusion of underdamped, high-frequency modes leads to significant deviations from Markovian evolution in both measures. In particular, we find that modes that are nearly resonant with gaps in the excitonic spectrum produce dynamics that deviate most strongly from the Lindblad approximation, despite the trace distance measuring larger amounts of non-Markovianity for higher frequency modes. Overall we find that the detailed structure in the high-frequency region of the spectral density has a significant impact on the nature of the dynamics of excitons.


Subject(s)
Bacteriochlorophyll A/chemistry , Proteobacteria/chemistry , Quantum Theory , Markov Chains , Vibration
2.
J Phys Chem Lett ; 10(23): 7383-7390, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31714789

ABSTRACT

Photosynthetic organisms use networks of chromophores to absorb and deliver solar energy to reaction centers. We present a detailed model of the light-harvesting complexes in purple bacteria, including explicit interaction with sunlight, radiative and nonradiative energy loss, and dephasing and thermalizing effects of coupling to a vibrational bath. We capture the effect of slow vibrations by introducing time-dependent disorder. Our model describes the experimentally observed high efficiency of light harvesting, despite the absence of long-range quantum coherence. The one-exciton part of the quantum state fluctuates continuously but remains highly mixed at all times. These results suggest a relatively minor role for structure in determining efficiency. We build hypothetical models with randomly arranged chromophores but still observe high efficiency when nearest-neighbor distances are comparable to those in nature. This helps explain the high transport efficiency in organisms with widely differing antenna structures and suggests new design criteria for artificial light-harvesting devices.


Subject(s)
Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Proteobacteria/metabolism , Light-Harvesting Protein Complexes/metabolism , Models, Biological , Quantum Theory , Solar Energy
SELECTION OF CITATIONS
SEARCH DETAIL