Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 154(3): 505-17, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23911318

ABSTRACT

Purine biosynthesis and metabolism, conserved in all living organisms, is essential for cellular energy homeostasis and nucleic acid synthesis. The de novo synthesis of purine precursors is under tight negative feedback regulation mediated by adenosine and guanine nucleotides. We describe a distinct early-onset neurodegenerative condition resulting from mutations in the adenosine monophosphate deaminase 2 gene (AMPD2). Patients have characteristic brain imaging features of pontocerebellar hypoplasia (PCH) due to loss of brainstem and cerebellar parenchyma. We found that AMPD2 plays an evolutionary conserved role in the maintenance of cellular guanine nucleotide pools by regulating the feedback inhibition of adenosine derivatives on de novo purine synthesis. AMPD2 deficiency results in defective GTP-dependent initiation of protein translation, which can be rescued by administration of purine precursors. These data suggest AMPD2-related PCH as a potentially treatable early-onset neurodegenerative disease.


Subject(s)
AMP Deaminase/metabolism , Olivopontocerebellar Atrophies/metabolism , Purines/biosynthesis , AMP Deaminase/chemistry , AMP Deaminase/genetics , Animals , Brain Stem/pathology , Cerebellum/pathology , Child , Female , Guanosine Triphosphate/metabolism , Humans , Male , Mice , Mice, Knockout , Mutation , Neural Stem Cells/metabolism , Olivopontocerebellar Atrophies/genetics , Olivopontocerebellar Atrophies/pathology , Protein Biosynthesis , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/metabolism
2.
Am J Hum Genet ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38843839

ABSTRACT

There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.

3.
Am J Hum Genet ; 103(3): 431-439, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30100084

ABSTRACT

ADP-ribosylation, the addition of poly-ADP ribose (PAR) onto proteins, is a response signal to cellular challenges, such as excitotoxicity or oxidative stress. This process is catalyzed by a group of enzymes referred to as poly(ADP-ribose) polymerases (PARPs). Because the accumulation of proteins with this modification results in cell death, its negative regulation restores cellular homeostasis: a process mediated by poly-ADP ribose glycohydrolases (PARGs) and ADP-ribosylhydrolase proteins (ARHs). Using linkage analysis and exome or genome sequencing, we identified recessive inactivating mutations in ADPRHL2 in six families. Affected individuals exhibited a pediatric-onset neurodegenerative disorder with progressive brain atrophy, developmental regression, and seizures in association with periods of stress, such as infections. Loss of the Drosophila paralog Parg showed lethality in response to oxidative challenge that was rescued by human ADPRHL2, suggesting functional conservation. Pharmacological inhibition of PARP also rescued the phenotype, suggesting the possibility of postnatal treatment for this genetic condition.

4.
Am J Hum Genet ; 98(4): 667-79, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27018473

ABSTRACT

Genetic studies of autism spectrum disorder (ASD) have established that de novo duplications and deletions contribute to risk. However, ascertainment of structural variants (SVs) has been restricted by the coarse resolution of current approaches. By applying a custom pipeline for SV discovery, genotyping, and de novo assembly to genome sequencing of 235 subjects (71 affected individuals, 26 healthy siblings, and their parents), we compiled an atlas of 29,719 SV loci (5,213/genome), comprising 11 different classes. We found a high diversity of de novo mutations, the majority of which were undetectable by previous methods. In addition, we observed complex mutation clusters where combinations of de novo SVs, nucleotide substitutions, and indels occurred as a single event. We estimate a high rate of structural mutation in humans (20%) and propose that genetic risk for ASD is attributable to an elevated frequency of gene-disrupting de novo SVs, but not an elevated rate of genome rearrangement.


Subject(s)
Autism Spectrum Disorder/genetics , Gene Deletion , Gene Duplication , Alleles , Amino Acid Sequence , Base Sequence , Case-Control Studies , Child , DNA Copy Number Variations , Female , Gene Frequency , Gene Rearrangement , Genetic Loci , Genome, Human , Genotyping Techniques , Humans , INDEL Mutation , Male , Microarray Analysis , Molecular Sequence Data , Pedigree , Reproducibility of Results , Sensitivity and Specificity
6.
J Med Genet ; 54(9): 613-623, 2017 09.
Article in English | MEDLINE | ID: mdl-28735298

ABSTRACT

BACKGROUND: Mutations in forkhead box protein P1 (FOXP1) cause intellectual disability (ID) and specific language impairment (SLI), with or without autistic features (MIM: 613670). Despite multiple case reports no specific phenotype emerged so far. METHODS: We correlate clinical and molecular data of 25 novel and 23 previously reported patients with FOXP1 defects. We evaluated FOXP1 activity by an in vitro luciferase model and assessed protein stability in vitro by western blotting. RESULTS: Patients show ID, SLI, neuromotor delay (NMD) and recurrent facial features including a high broad forehead, bent downslanting palpebral fissures, ptosis and/or blepharophimosis and a bulbous nasal tip. Behavioural problems and autistic features are common. Brain, cardiac and urogenital malformations can be associated. More severe ID and NMD, sensorineural hearing loss and feeding difficulties are more common in patients with interstitial 3p deletions (14 patients) versus patients with monogenic FOXP1 defects (34 patients). Mutations result in impaired transcriptional repression and/or reduced protein stability. CONCLUSIONS: FOXP1-related ID syndrome is a recognisable entity with a wide clinical spectrum and frequent systemic involvement. Our data will be helpful to evaluate genotype-phenotype correlations when interpreting next-generation sequencing data obtained in patients with ID and/or SLI and will guide clinical management.


Subject(s)
Forkhead Transcription Factors/genetics , Intellectual Disability/genetics , Repressor Proteins/genetics , Autism Spectrum Disorder/genetics , Face/abnormalities , Female , Forkhead Transcription Factors/chemistry , Forkhead Transcription Factors/metabolism , Humans , Language Disorders/genetics , Male , Motor Skills Disorders/genetics , Mutation , Mutation, Missense , Neurodevelopmental Disorders/genetics , Phenotype , Protein Stability , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Syndrome , Transcription, Genetic
7.
JAMA ; 319(5): 474-482, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29411031

ABSTRACT

Importance: Fetal alcohol spectrum disorders are costly, life-long disabilities. Older data suggested the prevalence of the disorder in the United States was 10 per 1000 children; however, there are few current estimates based on larger, diverse US population samples. Objective: To estimate the prevalence of fetal alcohol spectrum disorders, including fetal alcohol syndrome, partial fetal alcohol syndrome, and alcohol-related neurodevelopmental disorder, in 4 regions of the United States. Design, Setting, and Participants: Active case ascertainment methods using a cross-sectional design were used to assess children for fetal alcohol spectrum disorders between 2010 and 2016. Children were systematically assessed in the 4 domains that contribute to the fetal alcohol spectrum disorder continuum: dysmorphic features, physical growth, neurobehavioral development, and prenatal alcohol exposure. The settings were 4 communities in the Rocky Mountain, Midwestern, Southeastern, and Pacific Southwestern regions of the United States. First-grade children and their parents or guardians were enrolled. Exposures: Alcohol consumption during pregnancy. Main Outcomes and Measures: Prevalence of fetal alcohol spectrum disorders in the 4 communities was the main outcome. Conservative estimates for the prevalence of the disorder and 95% CIs were calculated using the eligible first-grade population as the denominator. Weighted prevalences and 95% CIs were also estimated, accounting for the sampling schemes and using data restricted to children who received a full evaluation. Results: A total of 6639 children were selected for participation from a population of 13 146 first-graders (boys, 51.9%; mean age, 6.7 years [SD, 0.41] and white maternal race, 79.3%). A total of 222 cases of fetal alcohol spectrum disorders were identified. The conservative prevalence estimates for fetal alcohol spectrum disorders ranged from 11.3 (95% CI, 7.8-15.8) to 50.0 (95% CI, 39.9-61.7) per 1000 children. The weighted prevalence estimates for fetal alcohol spectrum disorders ranged from 31.1 (95% CI, 16.1-54.0) to 98.5 (95% CI, 57.5-139.5) per 1000 children. Conclusions and Relevance: Estimated prevalence of fetal alcohol spectrum disorders among first-graders in 4 US communities ranged from 1.1% to 5.0% using a conservative approach. These findings may represent more accurate US prevalence estimates than previous studies but may not be generalizable to all communities.


Subject(s)
Fetal Alcohol Spectrum Disorders/epidemiology , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Fetal Alcohol Spectrum Disorders/ethnology , Humans , Male , Mothers , Prevalence , Sampling Studies , Socioeconomic Factors , United States/epidemiology
9.
Am J Med Genet A ; 170A(4): 992-8, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27001912

ABSTRACT

Galloway-Mowat syndrome is a rare autosomal-recessive disorder classically described as the combination of microcephaly and nephrotic syndrome. Recently, homozygous truncating mutations in WDR73 (WD repeat domain 73) were described in two of 31 unrelated families with Galloway-Mowat syndrome which was followed by a report of two sibs in an Egyptian consanguineous family. In this report, seven affecteds from four families showing biallelic missense mutations in WDR73 were identified by exome sequencing and confirmed to follow a recessive model of inheritance. Three-dimensional modeling predicted conformational alterations as a result of the mutation, supporting pathogenicity. An additional 13 families with microcephaly and renal phenotype were negative for WDR73 mutations. Missense mutations in the WDR73 gene are reported for the first time in Galloway-Mowat syndrome. A detailed phenotypic comparison of all reported WDR73-linked Galloway-Mowat syndrome patients with WDR73 negative patients showed that WDR73 mutations are limited to those with classical Galloway-Mowat syndrome features, in addition to cerebellar atrophy, thin corpus callosum, brain stem hypoplasia, occasional coarse face, late-onset and mostly slow progressive nephrotic syndrome, and frequent epilepsy.


Subject(s)
Hernia, Hiatal/diagnosis , Hernia, Hiatal/genetics , Homozygote , Microcephaly/diagnosis , Microcephaly/genetics , Mutation, Missense , Nephrosis/diagnosis , Nephrosis/genetics , Proteins/genetics , Cohort Studies , Exome , Facies , Female , Genetic Association Studies , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Molecular , Pedigree , Phenotype , Protein Conformation , Proteins/chemistry
10.
Dev Med Child Neurol ; 56(1): 12-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24116704

ABSTRACT

Autism spectrum disorders (ASDs) are a group of heterogeneous neurodevelopmental disorders that show impaired communication and socialization, restricted interests, and stereotypical behavioral patterns. Recent advances in molecular medicine and high throughput screenings, such as array comparative genomic hybridization (CGH) and exome and whole genome sequencing, have revealed both novel insights and new questions about the nature of this spectrum of disorders. What has emerged is a better understanding about the genetic architecture of various genetic subtypes of ASD and correlations of genetic mutations with specific autism subtypes. Based on this new information, we outline a strategy for advancing diagnosis, prognosis, and counseling for patients and families.


Subject(s)
Child Development Disorders, Pervasive/genetics , Child Development Disorders, Pervasive/psychology , Gene Deletion , Gene Duplication , Child , Child Development Disorders, Pervasive/diagnosis , Child, Preschool , Chromosome Deletion , Chromosome Disorders/complications , Chromosome Disorders/genetics , Chromosomes, Human, Pair 22/genetics , Comparative Genomic Hybridization , DNA Copy Number Variations/genetics , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Humans , Infant , Intellectual Disability/genetics , Intellectual Disability/psychology , Methyl-CpG-Binding Protein 2/genetics , Muscular Dystrophy, Duchenne/complications , Nerve Tissue Proteins/genetics , PTEN Phosphohydrolase/genetics , Severity of Illness Index , Tuberous Sclerosis/complications , Tuberous Sclerosis/genetics , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/genetics
12.
Nat Hum Behav ; 6(3): 443-454, 2022 03.
Article in English | MEDLINE | ID: mdl-34980898

ABSTRACT

Affective speech, including motherese, captures an infant's attention and enhances social, language and emotional development. Decreased behavioural response to affective speech and reduced caregiver-child interactions are early signs of autism in infants. To understand this, we measured neural responses to mild affect speech, moderate affect speech and motherese using natural sleep functional magnetic resonance imaging and behavioural preference for motherese using eye tracking in typically developing toddlers and those with autism. By combining diverse neural-clinical data using similarity network fusion, we discovered four distinct clusters of toddlers. The autism cluster with the weakest superior temporal responses to affective speech and very poor social and language abilities had reduced behavioural preference for motherese, while the typically developing cluster with the strongest superior temporal response to affective speech showed the opposite effect. We conclude that significantly reduced behavioural preference for motherese in autism is related to impaired development of temporal cortical systems that normally respond to parental affective speech.


Subject(s)
Autism Spectrum Disorder , Speech , Attention , Autism Spectrum Disorder/diagnostic imaging , Eye-Tracking Technology , Humans , Infant , Language Development
13.
Nat Genet ; 54(9): 1284-1292, 2022 09.
Article in English | MEDLINE | ID: mdl-35654974

ABSTRACT

The genetic etiology of autism spectrum disorder (ASD) is multifactorial, but how combinations of genetic factors determine risk is unclear. In a large family sample, we show that genetic loads of rare and polygenic risk are inversely correlated in cases and greater in females than in males, consistent with a liability threshold that differs by sex. De novo mutations (DNMs), rare inherited variants and polygenic scores were associated with various dimensions of symptom severity in children and parents. Parental age effects on risk for ASD in offspring were attributable to a combination of genetic mechanisms, including DNMs that accumulate in the paternal germline and inherited risk that influences behavior in parents. Genes implicated by rare variants were enriched in excitatory and inhibitory neurons compared with genes implicated by common variants. Our results suggest that a phenotypic spectrum of ASD is attributable to a spectrum of genetic factors that impact different neurodevelopmental processes.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Child , Family , Female , Genetic Predisposition to Disease , Humans , Male , Multifactorial Inheritance/genetics
14.
J Ultrasound Med ; 29(2): 195-202, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20103789

ABSTRACT

OBJECTIVE: Determination of fetal sex is an important part of detailed second-trimester ultrasonography. This task can be hindered by the fetal position, a low amniotic fluid volume, and advanced gestational age. Identification of fetal sex is further important in multiple gestations and prior histories of indeterminate-sex pregnancies. The goal of the study was to compare the effectiveness of 2-dimensional ultrasonography (2DUS) versus 3-dimensional ultrasonography (3DUS) at sex identification and to determine how genitalia measurements taken with 3DUS technology compare with measurements taken with 2DUS. METHODS: A total of 111 patients at or beyond 16 weeks' gestation were recruited. Assignments of fetal sex using 2DUS and 3DUS were compared by the test of proportions. The actual neonatal sex was obtained after delivery. Given such small number of misdiagnoses by either 2DUS or 3DUS, the accuracies of the two modalities were not found to be statistically distinguishable from one another (P = .5585). The penile length, scrotal width, and bilabial diameter according to gestational age were measured and compared with previously published 2DUS data by t tests. RESULTS: Sexes were assigned and interpreted in 65 cases. Ranges of genitalia measurements were plotted against gestational age and were found to be comparable with published data. There was a dramatic difference between the bilabial diameter and scrotal width with advancing gestational age that made sex determination much easier in the third trimester. CONCLUSIONS: Although 3DUS did not have better prediction of fetal sex when compared with 2DUS, it may be a useful tool in conjunction with traditional imaging techniques in assigning fetal sex.


Subject(s)
Gonads/diagnostic imaging , Gonads/embryology , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Sex Determination Analysis/methods , Ultrasonography, Prenatal/methods , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity
15.
PLoS One ; 14(10): e0223603, 2019.
Article in English | MEDLINE | ID: mdl-31626646

ABSTRACT

BACKGROUND: Information is needed on the safety of adalimumab when used in pregnancy for the treatment of certain autoimmune diseases. METHODS AND FINDINGS: Between 2004 and 2016, the Organization of Teratology Information Specialists Research Center at the University of California San Diego conducted a prospective controlled observational cohort study in 602 pregnant women who had or had not taken adalimumab. Women in the adalimumab-exposed cohort had received at least one dose of the drug in the first trimester for the treatment of rheumatoid arthritis or Crohn's Disease (N = 257). Women in the disease comparison cohort had not used adalimumab in pregnancy (N = 120). Women in the healthy comparison cohort had no rheumatic or inflammatory bowel diseases (N = 225). Women and their infants were followed to one year postpartum with maternal interviews, medical records abstraction, and physical examinations. Study outcomes were major structural birth defects, minor defects, spontaneous abortion, preterm delivery, pre and post-natal growth deficiency, serious or opportunistic infections and malignancies. 42/602 (7.0%) of pregnancies were lost-to-follow-up. 22/221 (10.0%) in the adalimumab-exposed cohort had a live born infant with a major birth defect compared to 8/106 (7.5%) in the diseased unexposed cohort (adjusted odds ratio 1.10, 95% confidence interval [CI] 0.45 to 2.73). Women in the adalimumab-exposed cohort were more likely to deliver preterm compared to the healthy cohort (adjusted hazard ratio [aHR] 2.59, 95% CI 1.22 to 5.50), but not compared to the diseased unexposed cohort (aHR 0.82, 95% CI 0.66 to 7.20). No significant increased risks were noted with adalimumab exposure for any other study outcomes. CONCLUSIONS: Adalimumab exposure in pregnancy compared to diseased unexposed pregnancies was not associated with an increased risk for any of the adverse outcomes examined. Women with rheumatoid arthritis or Crohn's Disease were at increased risk of preterm delivery, irrespective of adalimumab exposure.


Subject(s)
Adalimumab/adverse effects , Antirheumatic Agents/adverse effects , Maternal Exposure/adverse effects , Pregnancy Outcome , Adalimumab/therapeutic use , Adult , Antirheumatic Agents/therapeutic use , Congenital Abnormalities/epidemiology , Congenital Abnormalities/etiology , Female , Humans , Live Birth , Middle Aged , Odds Ratio , Pregnancy , Pregnancy Complications/drug therapy , Pregnancy Complications/epidemiology , Risk Factors , Young Adult
16.
Hum Mutat ; 29(7): 959-65, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18446851

ABSTRACT

Capillary malformation-arteriovenous malformation (CM-AVM) is a newly recognized autosomal dominant disorder, caused by mutations in the RASA1 gene in six families. Here we report 42 novel RASA1 mutations and the associated phenotype in 44 families. The penetrance and de novo occurrence were high. All affected individuals presented multifocal capillary malformations (CMs), which represent the hallmark of the disorder. Importantly, one-third had fast-flow vascular lesions. Among them, we observed severe intracranial AVMs, including vein of Galen aneurysmal malformation, which were symptomatic at birth or during infancy, extracranial AVM of the face and extremities, and Parkes Weber syndrome (PKWS), previously considered sporadic and nongenetic. These fast-flow lesions can be differed from the other two genetic AVMs seen in hereditary hemorrhagic telangiectasia (HHT) and in phosphatase and tensin homolog (PTEN) hamartomatous tumor syndrome. Finally, some CM-AVM patients had neural tumors reminiscent of neurofibromatosis type 1 or 2. This is the first extensive study on the phenotypes associated with RASA1 mutations, and unravels their wide heterogeneity.


Subject(s)
Immunoglobulin Variable Region/genetics , Mutation , Recombinant Proteins/genetics , Vascular Malformations/genetics , Vein of Galen Malformations/genetics , Arteriovenous Malformations , Family , Humans , Phenotype , Single-Chain Antibodies , Syndrome , p120 GTPase Activating Protein
17.
Am J Med Genet A ; 146A(22): 2885-90, 2008 Nov 15.
Article in English | MEDLINE | ID: mdl-18925679

ABSTRACT

Expanded newborn screening detects patients with modest elevations in citrulline; however it is currently unclear how to treat these patients and how to counsel their parents. In order to begin to address these issues, we compared the clinical, biochemical, and molecular features of 10 patients with mildly elevated citrulline levels. Three patients presented with clinical illness whereas seven came to attention as a result of expanded newborn screening. One patient presented during pregnancy and responded promptly to IV sodium phenylacetate/sodium benzoate and arginine therapy with no long-term adverse effects on mother or fetus. Two children presented with neurocognitive dysfunction, one of these responded dramatically to dietary protein reduction. ASS enzyme activity was not deficient in all patients with biallelic mutations suggesting this test cannot exclude the ASS1 locus in patients with mildly elevated plasma citrulline. Conversely, all symptomatic patients who were tested had deficient activity. We describe four unreported mutations (p.Y291S, p.R272H, p.F72L, and p.L88I), as well as the common p.W179R mutation. In silico algorithms were inconsistent in predicting the pathogenicity of mutations. The cognitive benefit in one patient of protein restriction and the lack of adverse outcome in seven others restricted from birth, suggest a role for protein restriction and continued monitoring to prevent neurocognitive dysfunction.


Subject(s)
Argininosuccinate Synthase/blood , Argininosuccinate Synthase/genetics , Citrullinemia/enzymology , Citrullinemia/genetics , Adolescent , Child , Child, Preschool , Citrulline/blood , Citrullinemia/diagnosis , Citrullinemia/therapy , DNA Mutational Analysis , Female , Humans , Infant , Infant, Newborn , Male , Neonatal Screening , Pregnancy , Pregnancy Complications/enzymology , Pregnancy Complications/genetics , Pregnancy Complications/therapy
18.
Birth Defects Res A Clin Mol Teratol ; 82(8): 597-600, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18553490

ABSTRACT

BACKGROUND: The acardiac human fetus represents an accident of monozygotic twinning or higher multiple births due to an artery-to-artery and a vein-to-vein anastomosis in the monochorial placenta. Blood returning to the placenta through the umbilical artery of a normal cotwin is directed into the umbilical artery of the acardiac twin such that blood reaching the cranial end of the embryo is likely to be poorly oxygenated resulting in a number of structural defects including oral clefts. Although retrograde perfusion as a cause of hypoxia is unique to the acardiac fetus, there is ample evidence from animal studies that hypoxia is associated with facial clefting. METHODS: Twenty-six acardiac fetuses were examined at UCSD Medical Center between 1974 and 2003. RESULTS: In 12 of the 26, the cephalic end of the fetus was sufficiently intact to document the structures of the face. Of these, cleft lip +/- palate was present in five and cleft palate alone was present in one. In all six, the oral cleft followed the normal planes of facial closure. The cotwin in all six cases was normal. CONCLUSIONS: This article suggests that decreased blood flow/hypoxia to the cephalic end of the fetus may be an important contributor to the development of cleft lip +/- palate and cleft palate alone in the acardiac fetus and raises the possibility that this may also be a mechanism responsible for oral clefting in singletons.


Subject(s)
Abnormalities, Multiple/pathology , Cleft Lip/etiology , Cleft Palate/etiology , Fetal Heart/abnormalities , Fetus/abnormalities , Hypoxia/complications , Abnormalities, Severe Teratoid/pathology , Cleft Lip/complications , Cleft Lip/pathology , Cleft Palate/complications , Cleft Palate/pathology , Female , Fetal Death/pathology , Fetus/blood supply , Fetus/pathology , Humans , Placental Circulation/physiology , Pregnancy
19.
Science ; 360(6386): 327-331, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29674594

ABSTRACT

The genetic basis of autism spectrum disorder (ASD) is known to consist of contributions from de novo mutations in variant-intolerant genes. We hypothesize that rare inherited structural variants in cis-regulatory elements (CRE-SVs) of these genes also contribute to ASD. We investigated this by assessing the evidence for natural selection and transmission distortion of CRE-SVs in whole genomes of 9274 subjects from 2600 families affected by ASD. In a discovery cohort of 829 families, structural variants were depleted within promoters and untranslated regions, and paternally inherited CRE-SVs were preferentially transmitted to affected offspring and not to their unaffected siblings. The association of paternal CRE-SVs was replicated in an independent sample of 1771 families. Our results suggest that rare inherited noncoding variants predispose children to ASD, with differing contributions from each parent.


Subject(s)
Autism Spectrum Disorder/genetics , Genetic Predisposition to Disease , Genetic Variation , Paternal Inheritance , Promoter Regions, Genetic/genetics , Exons , Gene Expression Regulation , Genome, Human , Humans , Mutation , Pedigree , RNA, Untranslated/genetics , Selection, Genetic , Sequence Deletion , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL