Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Sci Total Environ ; 917: 170088, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38220001

ABSTRACT

Constructed wetlands (CWs) have been extensively used in Cr(VI) removal and have proven their ability to achieve high removal efficiencies. Although, numerous studies have been published in the past years presenting experimental results of CWs treating wastewater with Cr(VI) concentrations, a mathematical modeling describing the processes for Cr(VI) removal in CWs is lacking. In this work a mathematical model was developed, able to accurately describe the main mechanisms and reactions (i.e. biological reduction, plant biomass uptake-sorption) which are responsible for Cr(VI) removal in a wetland system. The model was calibrated and validated using data from a previously reported experimental study of horizontal subsurface CWs. Mathematical simulation indicates that in an unplanted wetland Cr(VI) was mainly removed through the diffusion/reduction process inside biofilm, attached on the porous media, while in the planted unit Cr(VI) was mainly removed through the sorption process to the root system of the plants. The developed model's simulations showed high correlation between predicted and experimental data, indicating that the proposed model can be used to design and predict full scale constructed wetland process for Cr(VI) removal.

2.
Water Sci Technol ; 68(10): 2228-33, 2013.
Article in English | MEDLINE | ID: mdl-24292472

ABSTRACT

The bioreduction of hexavalent chromium from aqueous solution was carried out using suspended growth and packed-bed reactors under a draw-fill operating mode, and horizontal subsurface constructed wetlands. Reactors were inoculated with industrial sludge from the Hellenic Aerospace Industry using sugar as substrate. In the suspended growth reactors, the maximum Cr(VI) reduction rate (about 2 mg/L h) was achieved for an initial concentration of 12.85 mg/L, while in the attached growth reactors, a similar reduction rate was achieved even with high initial concentrations (109 mg/L), thus confirming the advantage of these systems. Two horizontal subsurface constructed wetlands (CWs) pilot-scale units were also built and operated. The units contained fine gravel. One unit was planted with common reeds and one was kept unplanted. The mean influent concentrations of Cr(VI) were 5.61 and 5.47 mg/L for the planted and unplanted units, respectively. The performance of the planted CW units was very effective as mean Cr(VI) removal efficiency was 85% and efficiency maximum reached 100%. On the contrary, the unplanted CW achieved very low Cr(VI) removal with a mean value of 26%. Both attached growth reactors and CWs proved efficient and viable means for Cr(VI) reduction.


Subject(s)
Chromium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Wetlands , Pilot Projects
3.
Materials (Basel) ; 15(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36233891

ABSTRACT

Palygorskite sample (Pal) underwent thermal treatment at 400 °C (T-Pal) to be used as adsorbent for the removal of 200 mg NH4+-N/L from artificial solution. After thermal treatment, the sample was characterized via X-ray diffraction (XRD) and scanning electron microscopy (SEM). For NH4+-N removal, T-Pal was added as a bed matrix in fixed-bed reactor experiments and the effect of flow rate was determined. It was indicated that with the flow rate increase from 10 mL/min to 50 mL/min, fewer liters of the solution were purified, rendering a longer residual time of interactions, which is optimal for NH4+-N removal from T-Pal. The maximum removed amount was calculated at 978 mg NH4+-N (qtotal), suggesting T-Pal is a promising ammonium adsorbent. The data of kinetic experiments were applied to Clark, Yoon-Nelson, and Thomas kinetic models, with Clark having the best fit, highlighting a heterogenous adsorption. At the end of kinetic experiments, T-Pal applied in hydroponic cultivations and presented a sufficient release rate, which was found utilizable for saturated T-Pal usage as N fertilizer that satisfactory results were deemed concerning lettuces characteristics and growth.

4.
Environ Sci Pollut Res Int ; 29(12): 17737-17756, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34676475

ABSTRACT

Raw and modified fibrous clay minerals palygorskite (Pal) and sepiolite (Sep) were tested for their ability to remove ammonium from ammonium polluted water. Palygorskite and sepiolite underwent thermal treatment at 400°C (T-Pal and T-Sep respectively). Raw and thermally treated samples were characterized using XRD, SEM, BET, FTIR, TGA, zeta potential, and XRF. The techniques verified the effect of thermal treatment on sample structures and the enhancement of negative charge. Both raw and thermally activated materials were applied in batch kinetic experiments, and found to be efficient adsorbents in their raw forms, since Pal and Sep achieved 60 and 80% NH4+-N removal respectively within 20 min of contact for initial NH4+-N concentration of 4 mg/L. Similar removal rates were gained for other concentrations representative of contaminated aquifers that were examined, ranging from 1 to 8 mg/L. Results for the modified T-Pal and T-Sep minerals showed up to 20% higher removal rate. Saturation tests indicated the positive effect of thermal treatment on the minerals since T-Pal and T-Sep removal efficiency reached 85% and remained stable for 24 h. However, competitive ions in real water samples can influence the NH4+-N removal efficiency of the examined samples. At almost all the examined samples, the nonlinear Freundlich isotherm and linear pseudo-second kinetic models showed better fitted all examined samples thus indicating heterogeneous chemisorption.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Clay , Hydrogen-Ion Concentration , Kinetics , Minerals , Water Pollutants, Chemical/analysis , Water Purification/methods
5.
Environ Sci Pollut Res Int ; 25(18): 17957-17966, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29680892

ABSTRACT

A mixed cyanobacterial-mixotrophic algal population, dominated by the filamentous cyanobacterium Leptolyngbya sp. and the microalga Ochromonas (which contributed to the total photosynthetic population with rates of less than 5%), was studied under non-aseptic conditions for its efficiency to remove organic and inorganic compounds from different types of wastes/wastewaters while simultaneously producing lipids. Second cheese whey, poplar sawdust, and grass hydrolysates were used in lab-scale experiments, in photobioreactors that operated under aerobic conditions with different initial nutrient (C, N and P) concentrations. Nutrient removal rates, biomass productivity, and the maximum oil production rates were determined. The highest lipid production was achieved using the biologically treated dairy effluent (up to 14.8% oil in dry biomass corresponding to 124 mg L-1) which also led to high nutrient removal rates (up to 94%). Lipids synthesized by the microbial consortium contained high percentages of saturated and mono-unsaturated fatty acids (up to 75% in total lipids) for all the substrates tested, which implies that the produced biomass may be harnessed as a source of biodiesel.


Subject(s)
Cyanobacteria/chemistry , Lipids/chemistry , Whey/chemistry , Biofuels , Biomass , Microalgae , Microbial Consortia , Photobioreactors , Wastewater
6.
Chemosphere ; 186: 257-268, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28780453

ABSTRACT

The use of Constructed Wetlands (CWs) has been nowadays expanded from municipal to industrial and agro-industrial wastewaters. The main limitations of CWs remain the relatively high area requirements compared to mechanical treatment technologies and the potential occurrence of the clogging phenomenon. This study presents the findings of an innovative CW design where novel materials were used. Four pilot-scale CW units were designed, built and operated for two years. Each unit consisted of two compartments, the first of which (two thirds of the total unit length) contained either fine gravel (in two units) or random type high density polyethylene (HDPE) (in the other two units). This plastic media type was tested in a CW system for the first time. The second compartment of all four units contained natural zeolite. Two units (one with fine gravel and one with HDPE) were planted with common reeds, while the other two were kept unplanted. Second cheese whey was introduced into the units, which were operated under hydraulic residence times (HRT) of 2 and 4 days. After a two-year operation and monitoring period, pollutant removal rates were approximately 80%, 75% and 90% for COD, ammonium and ortho-phosphate, respectively, while temperature and HRT had no significant effect on pollutant removal. CWs containing the plastic media achieved the same removal rates as those containing gravel, despite receiving three times higher hydraulic surface loads (0.08 m/d) and four times higher organic surface loads (620 g/m2/d). This reveals that the use of HDPE plastic media could reduce CW surface area requirements by 75%.


Subject(s)
Environmental Restoration and Remediation/methods , Facility Design and Construction/methods , Waste Disposal, Fluid/methods , Wetlands , Plastics , Wastewater
7.
Environ Sci Pollut Res Int ; 24(2): 1085-1092, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27294700

ABSTRACT

The production of table olives is a significant economic activity in Mediterranean countries. Table olive processing generates large volumes of rinsing water that are characterized by high organic matter and phenol contents. Due to these characteristics, a combination of more than one technology is imperative to ensure efficient treatment with low operational cost. Previously, biological filters were combined with electrooxidation to treat table olive washing water. Although this combination was successful in reducing pollutant loads, its cost could be further reduced. Constructed wetlands could be an eligible treatment method for integrated table olive washing water treatment as they have proved tolerant to high organic matter and phenol loads. Two pilot-scale horizontal subsurface constructed wetlands, one planted and one unplanted, were combined with a biological filter and electrooxidation over a boron-doped diamond anode to treat table olive washing water. In the biological filter inlet, chemical oxygen demand (COD) concentrations ranged from 5500 to 15,000 mg/L, while mean COD influent concentration in the constructed wetlands was 2800 mg/L. The wetlands proved to be an efficient intermediate treatment stage, since COD removal levels for the planted unit reached 99 % (mean 70 %), while the unplanted unit presented removal rates of around 65 %. Moreover, the concentration of phenols in the effluent was typically below 100 mg/L. The integrated trickling filter-constructed wetland-electrooxidation treatment system examined here could mineralize and decolorize table olive washing water and fully remove its phenolic content.


Subject(s)
Olea , Water Pollutants, Chemical/chemistry , Water Purification/methods , Wetlands , Agriculture , Biological Oxygen Demand Analysis , Filtration , Mediterranean Region , Phenols/chemistry
8.
J Hazard Mater ; 281: 95-105, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25160055

ABSTRACT

In the present study, indigenous microorganisms from industrial sludge were used to reduce the activity of Cr(VI). Molasses, a by-product of sugar processing, was selected as the carbon source (instead of sugar used in a previous work) as it is a low-cost energy source for bioprocesses. Initially, experiments were carried out in suspended growth batch reactors for Cr(VI) concentrations of 1.5-110 mg/L. The time required for complete Cr(VI) reduction increased with initial Cr(VI) concentration. Initial molasses concentration was also found to influence the Cr(VI) reduction rate. The optimal concentration for all initial Cr(VI) concentrations tested was 0.8 gC/L. Experiments were also carried out in packed-bed reactors. Three different operating modes were used to investigate the optimal performance and efficiency of the filter, i.e. batch, continuous and SBR with recirculation. The latter mode with a recirculation rate of 0.5L/min lead to significantly high Cr(VI) reduction rates (up to 135 g/m(2)d). The results of this work were compared with those of a similar work using sugar as the carbon source and indicate that molasses could prove a feasible technological solution to a serious environmental problem.


Subject(s)
Bioreactors , Chromium/metabolism , Molasses , Water Pollutants, Chemical/metabolism , Carbon , Industrial Waste , Oxidation-Reduction , Sewage , Water Purification/methods
9.
J Hazard Mater ; 281: 106-113, 2015 Jan 08.
Article in English | MEDLINE | ID: mdl-25199438

ABSTRACT

The present work was conducted to study integrated chromium removal from aqueous solutions in horizontal subsurface (HSF) constructed wetlands. Two pilot-scale HSF constructed wetlands (CWs) units were built and operated. One unit was planted with common reeds (Phragmites australis) and one was kept unplanted. Influent concentrations of Cr(VI) ranged from 0.5 to 10mg/L. The effect of temperature and hydraulic residence time (8-0.5 days) on Cr(VI) removal were studied. Temperature was proved to affect Cr(VI) removal in both units. In the planted unit maximum Cr(VI) removal efficiencies of 100% were recorded at HRT's of 1 day with Cr(VI) concentrations of 5, 2.5 and 1mg/L, while a significantly lower removal rate was recorded in the unplanted unit. Harvested reed biomass from the CWs was co-composted with olive mill wastes. The final product had excellent physicochemical characteristics (C/N: 14.1-14.7, germination index (GI): 145-157%, Cr: 8-10mg/kg dry mass), fulfills EU requirements and can be used as a fertilizer in organic farming.


Subject(s)
Chromium , Poaceae , Water Pollutants, Chemical , Water Purification/methods , Chromium/metabolism , Food-Processing Industry , Industrial Waste , Olea , Poaceae/metabolism , Soil , Temperature , Wastewater , Water Pollutants, Chemical/metabolism , Wetlands
10.
Waste Manag ; 43: 61-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26174354

ABSTRACT

The present study aimed at developing an integrated mathematical model for the composting process of olive mill waste. The multi-component model was developed to simulate the composting of three-phase olive mill solid waste with olive leaves and different materials as bulking agents. The modeling system included heat transfer, organic substrate degradation, oxygen consumption, carbon dioxide production, water content change, and biological processes. First-order kinetics were used to describe the hydrolysis of insoluble organic matter, followed by formation of biomass. Microbial biomass growth was modeled with a double-substrate limitation by hydrolyzed available organic substrate and oxygen using Monod kinetics. The inhibitory factors of temperature and moisture content were included in the system. The production and consumption of nitrogen and phosphorous were also included in the model. In order to evaluate the kinetic parameters, and to validate the model, six pilot-scale composting experiments in controlled laboratory conditions were used. Low values of hydrolysis rates were observed (0.002841/d) coinciding with the high cellulose and lignin content of the composting materials used. Model simulations were in good agreement with the experimental results. Sensitivity analysis was performed and the modeling efficiency was determined to further evaluate the model predictions. Results revealed that oxygen simulations were more sensitive on the input parameters of the model compared to those of water, temperature and insoluble organic matter. Finally, the Nash and Sutcliff index (E), showed that the experimental data of insoluble organic matter (E>0.909) and temperature (E>0.678) were better simulated than those of water.


Subject(s)
Industrial Waste/analysis , Olea/chemistry , Soil , Biodegradation, Environmental , Biomass , Calibration , Cellulose/chemistry , Food Industry , Humidity , Hydrogen Peroxide/chemistry , Hydrolysis , Kinetics , Lignin/chemistry , Models, Theoretical , Oxygen/chemistry , Oxygen Consumption , Reproducibility of Results , Temperature , Waste Disposal, Fluid/methods
SELECTION OF CITATIONS
SEARCH DETAIL