Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
Add more filters

Publication year range
1.
PLoS Comput Biol ; 19(4): e1010424, 2023 04.
Article in English | MEDLINE | ID: mdl-37104528

ABSTRACT

The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.


Subject(s)
Aedes , Chikungunya virus , Dengue , Zika Virus Infection , Zika Virus , Animals , Mosquito Vectors/physiology , Population Dynamics , Yellow fever virus , Dengue/epidemiology
2.
Malar J ; 23(1): 165, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796456

ABSTRACT

BACKGROUND: Mexico has experienced a significant reduction in malaria cases over the past two decades. Certification of localities as malaria-free areas (MFAs) has been proposed as a steppingstone before elimination is achieved throughout the country. The Mexican state of Quintana Roo is a candidate for MFA certification. Monitoring the status of insecticide susceptibility of major vectors is crucial for MFA certification. This study describes the susceptibility status of Anopheles albimanus, main malaria vector, from historically important malaria foci in Quintana Roo, using both phenotypic and genotypic approaches. METHODS: Adult mosquito collections were carried out at three localities: Palmar (Municipality of Othon P. Blanco), Buenavista (Bacalar) and Puerto Morelos (Puerto Morelos). Outdoor human-landing catches were performed by pairs of trained staff from 18:00 to 22:00 during 3-night periods at each locality during the rainy season of 2022. Wild-caught female mosquitoes were exposed to diagnostic doses of deltamethrin, permethrin, malathion, pirimiphos-methyl or bendiocarb using CDC bottle bioassays. Mortality was registered at the diagnostic time and recovery was assessed 24 h after exposure. Molecular analyses targeting the Voltage-Gated Sodium Channel (vgsc) gene and acetylcholinesterase (ace-1) gene were used to screen for target site polymorphisms. An SNP analysis was carried out to identify mutations at position 995 in the vgsc gene and at position 280 in the ace-1 gene. RESULTS: A total of 2828 anophelines were collected. The main species identified were Anopheles albimanus (82%) and Anopheles vestitipennis (16%). Mortalities in the CDC bottle bioassay ranged from 99% to 100% for all the insecticides and mosquito species. Sequence analysis was performed on 35 An. albimanus across the three localities; of those, 25 were analysed for vgsc and 10 for ace-1 mutations. All individuals showed wild type alleles. CONCLUSION: The results demonstrated that An. albimanus populations from historical malaria foci in Quintana Roo are susceptible to the main insecticides used by the Ministry of Health.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticides/pharmacology , Insecticide Resistance/genetics , Mexico , Female , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Malaria/transmission
3.
Clin Trials ; 20(3): 284-292, 2023 06.
Article in English | MEDLINE | ID: mdl-36932663

ABSTRACT

BACKGROUND: An ongoing cluster-randomized trial for the prevention of arboviral diseases utilizes covariate-constrained randomization to balance two treatment arms across four specified covariates and geographic sector. Each cluster is within a census tract of the city of Mérida, Mexico, and there were 133 eligible tracts from which to select 50. As some selected clusters may have been subsequently found unsuitable in the field, we desired a strategy to substitute new clusters while maintaining covariate balance. METHODS: We developed an algorithm that successfully identified a subset of clusters that maximized the average minimum pairwise distance between clusters in order to reduce contamination and balanced the specified covariates both before and after substitutions were made. SIMULATIONS: Simulations were performed to explore some limitations of this algorithm. The number of selected clusters and eligible clusters were varied along with the method of selecting the final allocation pattern. CONCLUSION: The algorithm is presented here as a series of optional steps that can be added to the standard covariate-constrained randomization process in order to achieve spatial dispersion, cluster subsampling, and cluster substitution. Simulation results indicate that these extensions can be used without loss of statistical validity, given a sufficient number of clusters included in the trial.


Subject(s)
Algorithms , Research Design , Humans , Cluster Analysis , Random Allocation , Computer Simulation
4.
Proc Natl Acad Sci U S A ; 117(6): 3319-3325, 2020 02 11.
Article in English | MEDLINE | ID: mdl-31974303

ABSTRACT

Viruses transmitted by Aedes mosquitoes, such as dengue, Zika, and chikungunya, have expanding ranges and seem unabated by current vector control programs. Effective control of these pathogens likely requires integrated approaches. We evaluated dengue management options in an endemic setting that combine novel vector control and vaccination using an agent-based model for Yucatán, Mexico, fit to 37 y of data. Our intervention models are informed by targeted indoor residual spraying (TIRS) experiments; trial outcomes and World Health Organization (WHO) testing guidance for the only licensed dengue vaccine, CYD-TDV; and preliminary results for in-development vaccines. We evaluated several implementation options, including varying coverage levels; staggered introductions; and a one-time, large-scale vaccination campaign. We found that CYD-TDV and TIRS interfere: while the combination outperforms either alone, performance is lower than estimated from their separate benefits. The conventional model hypothesized for in-development vaccines, however, performs synergistically with TIRS, amplifying effectiveness well beyond their independent impacts. If the preliminary performance by either of the in-development vaccines is upheld, a one-time, large-scale campaign followed by routine vaccination alongside aggressive new vector control could enable short-term elimination, with nearly all cases avoided for a decade despite continuous dengue reintroductions. If elimination is impracticable due to resource limitations, less ambitious implementations of this combination still produce amplified, longer-lasting effectiveness over single-approach interventions.


Subject(s)
Dengue Vaccines , Dengue/prevention & control , Immunization Programs , Models, Biological , Mosquito Control/methods , Animals , Dengue/epidemiology , Dengue Vaccines/administration & dosage , Dengue Vaccines/immunology , Dengue Vaccines/therapeutic use , Dengue Virus/immunology , Humans , Mexico , Mosquito Vectors
5.
Emerg Infect Dis ; 28(4): 786-792, 2022 04.
Article in English | MEDLINE | ID: mdl-35318917

ABSTRACT

Report of a human death and exposure of white-tailed deer to Heartland virus (HRTV) in Georgia, USA, prompted the sampling of questing ticks during 2018-2019 in 26 sites near where seropositive deer were captured and the residence of the human case-patient. We processed 9,294 Amblyomma americanum ticks in pools by virus isolation in Vero E6 cells and reverse transcription PCR. Positive pools underwent whole-genome sequencing. Three pools were positive for HRTV (minimum infection rate 0.46/1,000 ticks) and none for Bourbon virus. Cell cultures confirmed HRTV presence in 2 pools. Genome sequencing, achieved for the 3 HRTV isolates, showed high similarity among samples but marked differences with previously sequenced HRTV isolates. The isolation and genomic characterization of HRTV from A. americanum ticks in Georgia confirm virus presence in the state. Clinicians and public health professionals should be aware of this emerging tickborne pathogen.


Subject(s)
Deer , Phlebovirus , Ticks , Amblyomma , Animals , Georgia/epidemiology , Humans
6.
PLoS Comput Biol ; 17(1): e1008627, 2021 01.
Article in English | MEDLINE | ID: mdl-33465065

ABSTRACT

Heterogeneous exposure to mosquitoes determines an individual's contribution to vector-borne pathogen transmission. Particularly for dengue virus (DENV), there is a major difficulty in quantifying human-vector contacts due to the unknown coupled effect of key heterogeneities. To test the hypothesis that the reduction of human out-of-home mobility due to dengue illness will significantly influence population-level dynamics and the structure of DENV transmission chains, we extended an existing modeling framework to include social structure, disease-driven mobility reductions, and heterogeneous transmissibility from different infectious groups. Compared to a baseline model, naïve to human pre-symptomatic infectiousness and disease-driven mobility changes, a model including both parameters predicted an increase of 37% in the probability of a DENV outbreak occurring; a model including mobility change alone predicted a 15.5% increase compared to the baseline model. At the individual level, models including mobility change led to a reduction of the importance of out-of-home onward transmission (R, the fraction of secondary cases predicted to be generated by an individual) by symptomatic individuals (up to -62%) at the expense of an increase in the relevance of their home (up to +40%). An individual's positive contribution to R could be predicted by a GAM including a non-linear interaction between an individual's biting suitability and the number of mosquitoes in their home (>10 mosquitoes and 0.6 individual attractiveness significantly increased R). We conclude that the complex fabric of social relationships and differential behavioral response to dengue illness cause the fraction of symptomatic DENV infections to concentrate transmission in specific locations, whereas asymptomatic carriers (including individuals in their pre-symptomatic period) move the virus throughout the landscape. Our findings point to the difficulty of focusing vector control interventions reactively on the home of symptomatic individuals, as this approach will fail to contain virus propagation by visitors to their house and asymptomatic carriers.


Subject(s)
Dengue/epidemiology , Dengue/transmission , Disease Outbreaks/statistics & numerical data , Mosquito Vectors , Animals , Computational Biology , Dengue/prevention & control , Dengue/virology , Dengue Virus , Female , Humans , Models, Statistical , Mosquito Vectors/physiology , Mosquito Vectors/virology , Population Dynamics
7.
Trop Med Int Health ; 26(12): 1677-1688, 2021 12.
Article in English | MEDLINE | ID: mdl-34587328

ABSTRACT

OBJECTIVE: To evaluate the protective effect of house screening (HS) on indoor Aedes aegypti infestation, abundance and arboviral infection in Merida, Mexico. METHODS: In 2019, we performed a cluster randomised controlled trial (6 control and 6 intervention areas: 100 households/area). Intervention clusters received permanently fixed fiberglass HS on all windows and doors. The study included two cross-sectional entomologic surveys, one baseline (dry season in May 2019) and one post-intervention (PI, rainy season between September and October 2019). The presence and number of indoor Aedes females and blood-fed females (indoor mosquito infestation) as well as arboviral infections with dengue (DENV) and Zika (ZIKV) viruses were evaluated in a subsample of 30 houses within each cluster. RESULTS: HS houses had significantly lower risk for having Aedes aegypti female mosquitoes (odds ratio [OR] = 0.56, 95% CI 0.33-0.97, p = 0.04) and blood-fed females (OR = 0.53, 95% CI 0.28-0.97, p = 0.04) than unscreened households from the control arm. Compared to control houses, HS houses had significantly lower indoor Ae. aegypti abundance (rate ratio [RR] = 0.50, 95% CI 0.30-0.83, p = 0.01), blood-fed Ae. aegypti females (RR = 0.48, 95% CI 0.27-0.85, p = 0.01) and female Ae. aegypti positive for arboviruses (OR = 0.29, 95% CI 0.10-0.86, p = 0.02). The estimated intervention efficacy in reducing Ae. aegypti arbovirus infection was 71%. CONCLUSIONS: These results provide evidence supporting the use of HS as an effective pesticide-free method to control house infestations with Aedes aegypti and reduce the transmission of Aedes-transmitted viruses such as DENV, chikungunya (CHIKV) and ZIKV.


Subject(s)
Aedes/physiology , Housing , Mosquito Control/methods , Aedes/virology , Animals , Cluster Analysis , Cross-Sectional Studies , Dengue Virus/isolation & purification , Female , Host-Pathogen Interactions , Humans , Mexico , Zika Virus/isolation & purification
8.
PLoS Comput Biol ; 16(4): e1007743, 2020 04.
Article in English | MEDLINE | ID: mdl-32310958

ABSTRACT

Recent years have seen rising incidence of dengue and large outbreaks of Zika and chikungunya, which are all caused by viruses transmitted by Aedes aegypti mosquitoes. In most settings, the primary intervention against Aedes-transmitted viruses is vector control, such as indoor, ultra-low volume (ULV) spraying. Targeted indoor residual spraying (TIRS) has the potential to more effectively impact Aedes-borne diseases, but its implementation requires careful planning and evaluation. The optimal time to deploy these interventions and their relative epidemiological effects are, however, not well understood. We used an agent-based model of dengue virus transmission calibrated to data from Iquitos, Peru to assess the epidemiological effects of these interventions under differing strategies for deploying them. Specifically, we compared strategies where spray application was initiated when incidence rose above a threshold based on incidence in recent years to strategies where spraying occurred at the same time(s) each year. In the absence of spraying, the model predicted 361,000 infections [inter-quartile range (IQR): 347,000-383,000] in the period 2000-2010. The ULV strategy with the fewest median infections was spraying twice yearly, in March and October, which led to a median of 172,000 infections [IQR: 158,000-183,000], a 52% reduction from baseline. Compared to spraying once yearly in September, the best threshold-based strategy utilizing ULV had fewer median infections (254,000 vs. 261,000), but required more spraying (351 vs. 274 days). For TIRS, the best strategy was threshold-based, which led to the fewest infections of all strategies tested (9,900; [IQR: 8,720-11,400], a 94% reduction), and required fewer days spraying than the equivalent ULV strategy (280). Although spraying twice each year is likely to avert the most infections, our results indicate that a threshold-based strategy can become an alternative to better balance the translation of spraying effort into impact, particularly if used with a residual insecticide.


Subject(s)
Computational Biology/methods , Dengue/prevention & control , Mosquito Control/methods , Aedes/physiology , Animals , Computer Simulation , Dengue/epidemiology , Dengue/transmission , Disease Outbreaks , Humans , Incidence , Insecticides , Models, Theoretical , Mosquito Vectors , Zika Virus Infection/epidemiology , Zika Virus Infection/prevention & control , Zika Virus Infection/transmission
9.
Emerg Infect Dis ; 26(9): 2077-2086, 2020 09.
Article in English | MEDLINE | ID: mdl-32818402

ABSTRACT

Measuring heterogeneity of dengue illness is necessary to define suitable endpoints in dengue vaccine and therapeutic trials and will help clarify behavioral responses to illness. To quantify heterogeneity in dengue illness, including milder cases, we developed the Dengue Illness Perceptions Response (IPR) survey, which captured detailed symptom data, including intensity, duration, and character, and change in routine activities caused by illness. During 2016-2019, we collected IPR data daily during the acute phase of illness for 79 persons with a positive reverse transcription PCR result for dengue virus RNA. Most participants had mild ambulatory disease. However, we measured substantial heterogeneity in illness experience, symptom duration, and maximum reported intensity of individual symptoms. Symptom intensity was a more valuable predicter of major activity change during dengue illness than symptom presence or absence alone. These data suggest that the IPR measures clinically useful heterogeneity in dengue illness experience and its relation to altered human behavior.


Subject(s)
Dengue Virus , Dengue , Dengue/diagnosis , Dengue/epidemiology , Dengue Virus/genetics , Humans , Peru/epidemiology , Prospective Studies , Surveys and Questionnaires
10.
PLoS Pathog ; 14(5): e1006965, 2018 05.
Article in English | MEDLINE | ID: mdl-29723307

ABSTRACT

Despite estimates that, each year, as many as 300 million dengue virus (DENV) infections result in either no perceptible symptoms (asymptomatic) or symptoms that are sufficiently mild to go undetected by surveillance systems (inapparent), it has been assumed that these infections contribute little to onward transmission. However, recent blood-feeding experiments with Aedes aegypti mosquitoes showed that people with asymptomatic and pre-symptomatic DENV infections are capable of infecting mosquitoes. To place those findings into context, we used models of within-host viral dynamics and human demographic projections to (1) quantify the net infectiousness of individuals across the spectrum of DENV infection severity and (2) estimate the fraction of transmission attributable to people with different severities of disease. Our results indicate that net infectiousness of people with asymptomatic infections is 80% (median) that of people with apparent or inapparent symptomatic infections (95% credible interval (CI): 0-146%). Due to their numerical prominence in the infectious reservoir, clinically inapparent infections in total could account for 84% (CI: 82-86%) of DENV transmission. Of infections that ultimately result in any level of symptoms, we estimate that 24% (95% CI: 0-79%) of onward transmission results from mosquitoes biting individuals during the pre-symptomatic phase of their infection. Only 1% (95% CI: 0.8-1.1%) of DENV transmission is attributable to people with clinically detected infections after they have developed symptoms. These findings emphasize the need to (1) reorient current practices for outbreak response to adoption of pre-emptive strategies that account for contributions of undetected infections and (2) apply methodologies that account for undetected infections in surveillance programs, when assessing intervention impact, and when modeling mosquito-borne virus transmission.


Subject(s)
Dengue/transmission , Aedes/virology , Animals , Dengue/diagnosis , Dengue/virology , Dengue Virus/pathogenicity , Disease Reservoirs/virology , Host-Pathogen Interactions , Humans , Models, Biological , Mosquito Vectors/virology , Viremia/diagnosis , Viremia/transmission , Viremia/virology
11.
PLoS Comput Biol ; 15(3): e1006710, 2019 03.
Article in English | MEDLINE | ID: mdl-30893294

ABSTRACT

Prophylactic vaccination is a powerful tool for reducing the burden of infectious diseases, due to a combination of direct protection of vaccinees and indirect protection of others via herd immunity. Computational models play an important role in devising strategies for vaccination by making projections of its impacts on public health. Such projections are subject to uncertainty about numerous factors, however. For example, many vaccine efficacy trials focus on measuring protection against disease rather than protection against infection, leaving the extent of breakthrough infections (i.e., disease ameliorated but infection unimpeded) among vaccinees unknown. Our goal in this study was to quantify the extent to which uncertainty about breakthrough infections results in uncertainty about vaccination impact, with a focus on vaccines for dengue. To realistically account for the many forms of heterogeneity in dengue virus (DENV) transmission, which could have implications for the dynamics of indirect protection, we used a stochastic, agent-based model for DENV transmission informed by more than a decade of empirical studies in the city of Iquitos, Peru. Following 20 years of routine vaccination of nine-year-old children at 80% coverage, projections of the proportion of disease episodes averted varied by a factor of 1.76 (95% CI: 1.54-2.06) across the range of uncertainty about breakthrough infections. This was equivalent to the range of vaccination impact projected across a range of uncertainty about vaccine efficacy of 0.268 (95% CI: 0.210-0.329). Until uncertainty about breakthrough infections can be addressed empirically, our results demonstrate the importance of accounting for it in models of vaccination impact.


Subject(s)
Dengue/prevention & control , Dengue/transmission , Systems Analysis , Uncertainty , Viral Vaccines/administration & dosage , Calibration , Child , Computer Simulation , Humans , Peru
12.
BMC Infect Dis ; 20(1): 722, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33008314

ABSTRACT

BACKGROUND: Ross River virus (RRV) is responsible for the most common vector-borne disease of humans reported in Australia. The virus circulates in enzootic cycles between multiple species of mosquitoes, wildlife reservoir hosts and humans. Public health concern about RRV is increasing due to rising incidence rates in Australian urban centres, along with increased circulation in Pacific Island countries. Australia experienced its largest recorded outbreak of 9544 cases in 2015, with the majority reported from south east Queensland (SEQ). This study examined potential links between disease patterns and transmission pathways of RRV. METHODS: The spatial and temporal distribution of notified RRV cases, and associated epidemiological features in SEQ, were analysed for the period 2001-2016. This included fine-scale analysis of disease patterns across the suburbs of the capital city of Brisbane, and those of 8 adjacent Local Government Areas, and host spot analyses to identify locations with significantly high incidence. RESULTS: The mean annual incidence rate for the region was 41/100,000 with a consistent seasonal peak in cases between February and May. The highest RRV incidence was in adults aged from 30 to 64 years (mean incidence rate: 59/100,000), and females had higher incidence rates than males (mean incidence rates: 44/100,000 and 34/100,000, respectively). Spatial patterns of disease were heterogeneous between years, and there was a wide distribution of disease across both urban and rural areas of SEQ. Overall, the highest incidence rates were reported from predominantly rural suburbs to the north of Brisbane City, with significant hot spots located in peri-urban suburbs where residential, agricultural and conserved natural land use types intersect. CONCLUSIONS: Although RRV is endemic across all of SEQ, transmission is most concentrated in areas where urban and peri-urban environments intersect. The drivers of RRV transmission across rural-urban landscapes should be prioritised for further investigation, including identification of specific vectors and hosts that mediate human spillover.


Subject(s)
Alphavirus Infections/epidemiology , Ross River virus , Adult , Alphavirus Infections/transmission , Female , Humans , Incidence , Male , Middle Aged , Queensland/epidemiology , Rural Health , Urban Health
13.
Mem Inst Oswaldo Cruz ; 115: e200284, 2020.
Article in English | MEDLINE | ID: mdl-32785481

ABSTRACT

The coronavirus disease of 2019 (COVID-19) pandemic challenges public health systems around the world. Tropical countries will face complex epidemiological scenarios involving the simultaneous transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with viruses transmitted by Aedes aegypti. The occurrence of arboviral diseases with COVID-19 in the Latin America and the Caribbean (LAC) region presents challenges and opportunities for strengthening health services, surveillance and control programs. Financing of training, equipment and reconversion of hospital spaces will have a negative effect on already the limited resource directed to the health sector. The strengthening of the diagnostic infrastructure reappears as an opportunity for the national reference laboratories. Sharing of epidemiological information for the modeling of epidemiological scenarios allows collaboration between health, academic and scientific institutions. The fear of contagion by COVID-19 is constraining people with arboviral diseases to search for care which can lead to an increase in serious cases and could disrupt the operation of vector-control programs due to the reluctance of residents to open their doors to health personnel. Promoting intense community participation along with the incorporation of long lasting innovations in vector control offers new opportunities for control. The COVID-19 pandemic offers challenges and opportunities that must provoke positive behavioral changes and encourage more permanent self-care actions.


Subject(s)
Aedes/microbiology , Aedes/virology , Coronavirus Infections , Coronavirus , Dengue/prevention & control , Pandemics , Pneumonia, Viral , Yellow Fever/prevention & control , Americas , Animals , Betacoronavirus , COVID-19 , Caribbean Region , Coronavirus Infections/epidemiology , Humans , Mosquito Vectors , Pneumonia, Viral/epidemiology , SARS-CoV-2
14.
J Insect Sci ; 20(5)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-33034342

ABSTRACT

This study reports the results of a molecular screening for Wolbachia (Wb) infection in Aedes albopictus (Skuse) populations recently established in the Yucatan Peninsula, Mexico. To do so, collections of free-flying adults with BG traps and emerged adults from eggs after ovitrap field collections were performed in three suburban localities of the city of Merida, Yucatan. Overall, local populations of Ae. albopictus present a natural Wb infection rate of ~40% (18 of 45). Wb infection was detected in both field-collected adults (76.5%, 13 of 17) and eggs reared (17.8%, 5 of 28) and in 37.9% (11/29) of females and 43.7% (7/16) of male Ae. albopictus mosquitoes. An initial screening for Wolbachia strain typing showed that native Ae. albopictus were naturally coinfected with both wAlbA and wAlbB strains. The knowledge of the prevalence and diversity of Wolbachia strains in local populations of Aedes mosquitoes is part of the baseline information required for current and future Wolbachia-based vector control approaches to be conducted in Mexico.


Subject(s)
Aedes/microbiology , Wolbachia/isolation & purification , Animals , Mexico , Mosquito Vectors/microbiology , Pathology, Molecular
15.
Emerg Infect Dis ; 25(8): 1452-1460, 2019 08.
Article in English | MEDLINE | ID: mdl-31310215

ABSTRACT

We report demographic, epidemiologic, and clinical findings for a prospective cohort of pregnant women during the initial phase of Zika virus introduction into Yucatan, Mexico. We monitored 115 pregnant women for signs of active or recent Zika virus infection. The estimated cumulative incidence of Zika virus infection was 0.31 and the ratio of symptomatic to asymptomatic cases was 1.7 (range 1.3-4.0 depending on age group). Exanthema was the most sensitive clinical sign but also the least specific. Conjunctival hyperemia, joint edema, and exanthema were the combination of signs that had the highest specificity but low sensitivity. We did not find evidence of vertical transmission or fetal anomalies, likely because of the low number of pregnant women tested. We also did not find evidence of congenital disease. Our findings emphasize the limited predictive value of clinical features in areas where Zika virus cocirculates with other flaviviruses.


Subject(s)
Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/virology , Zika Virus Infection/epidemiology , Zika Virus Infection/virology , Zika Virus , Adolescent , Adult , Female , Follow-Up Studies , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Mexico/epidemiology , Middle Aged , Odds Ratio , Pregnancy , Pregnancy Complications, Infectious/diagnosis , Pregnancy Outcome , Public Health Surveillance , Symptom Assessment , Young Adult , Zika Virus Infection/diagnosis , Zika Virus Infection/transmission
16.
Biol Lett ; 14(6)2018 06.
Article in English | MEDLINE | ID: mdl-29899128

ABSTRACT

Insecticide resistance has evolved in disease vectors worldwide, creating the urgent need to either develop new control methods or restore insecticide susceptibility to regain use of existing tools. Here we show that phenotypic susceptibility can be restored in a highly resistant field-derived strain of Aedes aegypti in only 10 generations through rearing them in the absence of insecticide.


Subject(s)
Aedes/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Pyrethrins/pharmacology , Aedes/drug effects , Animals , Female , Male , Mosquito Vectors/genetics , Mutation , Phenotype
17.
Proc Natl Acad Sci U S A ; 111(26): E2694-702, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24847073

ABSTRACT

Infectious disease models play a key role in public health planning. These models rely on accurate estimates of key transmission parameters such as the force of infection (FoI), which is the per-capita risk of a susceptible person being infected. The FoI captures the fundamental dynamics of transmission and is crucial for gauging control efforts, such as identifying vaccination targets. Dengue virus (DENV) is a mosquito-borne, multiserotype pathogen that currently infects ∼390 million people a year. Existing estimates of the DENV FoI are inaccurate because they rely on the unrealistic assumption that risk is constant over time. Dengue models are thus unreliable for designing vaccine deployment strategies. Here, we present to our knowledge the first time-varying (daily), serotype-specific estimates of DENV FoIs using a spline-based fitting procedure designed to examine a 12-y, longitudinal DENV serological dataset from Iquitos, Peru (11,703 individuals, 38,416 samples, and 22,301 serotype-specific DENV infections from 1999 to 2010). The yearly DENV FoI varied markedly across time and serotypes (0-0.33), as did daily basic reproductive numbers (0.49-4.72). During specific time periods, the FoI fluctuations correlated across serotypes, indicating that different DENV serotypes shared common transmission drivers. The marked variation in transmission intensity that we detected indicates that intervention targets based on one-time estimates of the FoI could underestimate the level of effort needed to prevent disease. Our description of dengue virus transmission dynamics is unprecedented in detail, providing a basis for understanding the persistence of this rapidly emerging pathogen and improving disease prevention programs.


Subject(s)
Dengue Virus/genetics , Dengue/epidemiology , Dengue/transmission , Models, Biological , Public Health Surveillance/methods , Humans , Longitudinal Studies , Peru/epidemiology , Time Factors
18.
Rev Panam Salud Publica ; 41: e16, 2017.
Article in English | MEDLINE | ID: mdl-31391815

ABSTRACT

Current dengue vector control strategies, focusing on reactive implementation of insecticide-based interventions in response to clinically apparent disease manifestations, tend to be inefficient, short-lived, and unsustainable within the worldwide epidemiological scenario of virus epidemic recrudescence. As a result of a series of expert meetings and deliberations, a paradigm shift is occurring and a new strategy, using risk stratification at the city level in order to concentrate proactive, sustained efforts in areas at high risk for transmission, has emerged. In this article, the authors 1) outline this targeted, proactive intervention strategy, within the context of dengue epidemiology, the dynamics of its transmission, and current Aedes control strategies, and 2) provide support from published literature for the need to empirically test its impact on dengue transmission as well as on the size of disease outbreaks. As chikungunya and Zika viruses continue to expand their range, the need for a science-based, proactive approach for control of urban Aedes spp. mosquitoes will become a central focus of integrated disease management planning.


Las estrategias actuales de control de vectores del dengue, centradas en la ejecución reactiva de intervenciones con insecticidas en respuesta a la aparición de cuadros clínicos evidentes de la enfermedad, suelen ser ineficientes, de duración limitada e insostenibles en el contexto epidemiológico mundial, caracterizado por la recrudescencia de las epidemias virales. Como resultado de una serie de reuniones y deliberaciones entre expertos, está en proceso un cambio de paradigma y ha surgido una nueva estrategia, que consiste en estratificar el riesgo de cada ciudad para concentrar y mantener los esfuerzos proactivos donde hay un alto riesgo de transmisión. En este artículo, los autores 1) describen esta estrategia de intervención específica y proactiva dentro del contexto de las características epidemiológicas del dengue, la dinámica de su transmisión y las estrategias actuales de control de Aedes y 2) fundamentan con fuentes bibliográficas la necesidad de demostrar empíricamente las repercusiones de esta estrategia sobre la transmisión del dengue y el tamaño de los brotes. Dado que los virus del chikunguña y el Zika siguen ampliando su alcance, uno de los objetivos primordiales de la planificación de la atención integrada de estas enfermedades estará determinado por la necesidad de adoptar un enfoque científico y proactivo del control urbano de los mosquitos del género Aedes.

19.
Ecol Lett ; 19(9): 1159-71, 2016 09.
Article in English | MEDLINE | ID: mdl-27353433

ABSTRACT

Identifying drivers of infectious disease patterns and impacts at the broadest scales of organisation is one of the most crucial challenges for modern science, yet answers to many fundamental questions remain elusive. These include what factors commonly facilitate transmission of pathogens to novel host species, what drives variation in immune investment among host species, and more generally what drives global patterns of parasite diversity and distribution? Here we consider how the perspectives and tools of macroecology, a field that investigates patterns and processes at broad spatial, temporal and taxonomic scales, are expanding scientific understanding of global infectious disease ecology. In particular, emerging approaches are providing new insights about scaling properties across all living taxa, and new strategies for mapping pathogen biodiversity and infection risk. Ultimately, macroecology is establishing a framework to more accurately predict global patterns of infectious disease distribution and emergence.


Subject(s)
Communicable Diseases , Host-Pathogen Interactions , Biodiversity , Communicable Diseases/epidemiology , Communicable Diseases/etiology , Communicable Diseases/transmission , Communicable Diseases/veterinary , Ecology/methods
20.
Proc Biol Sci ; 283(1834)2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27412286

ABSTRACT

Pathogens inflict a wide variety of disease manifestations on their hosts, yet the impacts of disease on the behaviour of infected hosts are rarely studied empirically and are seldom accounted for in mathematical models of transmission dynamics. We explored the potential impacts of one of the most common disease manifestations, fever, on a key determinant of pathogen transmission, host mobility, in residents of the Amazonian city of Iquitos, Peru. We did so by comparing two groups of febrile individuals (dengue-positive and dengue-negative) with an afebrile control group. A retrospective, semi-structured interview allowed us to quantify multiple aspects of mobility during the two-week period preceding each interview. We fitted nested models of each aspect of mobility to data from interviews and compared models using likelihood ratio tests to determine whether there were statistically distinguishable differences in mobility attributable to fever or its aetiology. Compared with afebrile individuals, febrile study participants spent more time at home, visited fewer locations, and, in some cases, visited locations closer to home and spent less time at certain types of locations. These multifaceted impacts are consistent with the possibility that disease-mediated changes in host mobility generate dynamic and complex changes in host contact network structure.


Subject(s)
Fever/epidemiology , Travel , Case-Control Studies , Cities , Dengue/epidemiology , Humans , Likelihood Functions , Models, Theoretical , Peru/epidemiology , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL