Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Eur J Med Chem ; 122: 291-301, 2016 Oct 21.
Article in English | MEDLINE | ID: mdl-27376492

ABSTRACT

Breast cancer resistance protein (BCRP/ABCG2) is one of the major transporters involved in the efflux of anticancer compounds, contributing to multidrug resistance (MDR). Inhibition of ABCG2-mediated transport is then considered a promising strategy for overcoming MDR in tumors. We recently identified a chromone derivative, namely MBL-II-141 as a selective ABCG2 inhibitor, with relevant in vivo activity. Here, we report the pharmacomodulation of MBL-II-141, with the aim of identifying key pharmacophoric elements to design more potent selective and non-toxic inhibitors. Through rational structural modifications of MBL-II-141, using simple and affordable chemistry, we obtained highly active and easily-made inhibitors of ABCG2. Among the investigated compounds, derivative 4a, was found to be 3-fold more potent than MBL-II-141. It was similarly efficient as the reference inhibitor Ko143 but with the advantage of a lower intrinsic cytotoxicity, and therefore constitutes the best ABCG2 inhibitor ever reported displaying a very high therapeutic ratio.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors , Breast Neoplasms , Chromones/chemistry , Chromones/pharmacology , Drug Design , Chromones/chemical synthesis , HEK293 Cells , Humans , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL