Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell ; 171(6): 1259-1271.e11, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29107330

ABSTRACT

Immune evasion is a hallmark of cancer. Losing the ability to present neoantigens through human leukocyte antigen (HLA) loss may facilitate immune evasion. However, the polymorphic nature of the locus has precluded accurate HLA copy-number analysis. Here, we present loss of heterozygosity in human leukocyte antigen (LOHHLA), a computational tool to determine HLA allele-specific copy number from sequencing data. Using LOHHLA, we find that HLA LOH occurs in 40% of non-small-cell lung cancers (NSCLCs) and is associated with a high subclonal neoantigen burden, APOBEC-mediated mutagenesis, upregulation of cytolytic activity, and PD-L1 positivity. The focal nature of HLA LOH alterations, their subclonal frequencies, enrichment in metastatic sites, and occurrence as parallel events suggests that HLA LOH is an immune escape mechanism that is subject to strong microenvironmental selection pressures later in tumor evolution. Characterizing HLA LOH with LOHHLA refines neoantigen prediction and may have implications for our understanding of resistance mechanisms and immunotherapeutic approaches targeting neoantigens. VIDEO ABSTRACT.


Subject(s)
Carcinoma, Non-Small-Cell Lung/immunology , HLA Antigens/genetics , Lung Neoplasms/immunology , Tumor Escape , Adult , Aged , Aged, 80 and over , Antigen Presentation , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/therapy , Cohort Studies , Female , HLA Antigens/immunology , Humans , Loss of Heterozygosity , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , Male , Middle Aged , Mutation , Polymorphism, Single Nucleotide
2.
Nature ; 616(7957): 543-552, 2023 04.
Article in English | MEDLINE | ID: mdl-37046093

ABSTRACT

Intratumour heterogeneity (ITH) fuels lung cancer evolution, which leads to immune evasion and resistance to therapy1. Here, using paired whole-exome and RNA sequencing data, we investigate intratumour transcriptomic diversity in 354 non-small cell lung cancer tumours from 347 out of the first 421 patients prospectively recruited into the TRACERx study2,3. Analyses of 947 tumour regions, representing both primary and metastatic disease, alongside 96 tumour-adjacent normal tissue samples implicate the transcriptome as a major source of phenotypic variation. Gene expression levels and ITH relate to patterns of positive and negative selection during tumour evolution. We observe frequent copy number-independent allele-specific expression that is linked to epigenomic dysfunction. Allele-specific expression can also result in genomic-transcriptomic parallel evolution, which converges on cancer gene disruption. We extract signatures of RNA single-base substitutions and link their aetiology to the activity of the RNA-editing enzymes ADAR and APOBEC3A, thereby revealing otherwise undetected ongoing APOBEC activity in tumours. Characterizing the transcriptomes of primary-metastatic tumour pairs, we combine multiple machine-learning approaches that leverage genomic and transcriptomic variables to link metastasis-seeding potential to the evolutionary context of mutations and increased proliferation within primary tumour regions. These results highlight the interplay between the genome and transcriptome in influencing ITH, lung cancer evolution and metastasis.


Subject(s)
Evolution, Molecular , Genome, Human , Lung Neoplasms , Neoplasm Metastasis , Transcriptome , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Genomics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Metastasis/genetics , Transcriptome/genetics , Alleles , Machine Learning , Genome, Human/genetics
3.
Nature ; 616(7955): 159-167, 2023 04.
Article in English | MEDLINE | ID: mdl-37020004

ABSTRACT

A complete understanding of how exposure to environmental substances promotes cancer formation is lacking. More than 70 years ago, tumorigenesis was proposed to occur in a two-step process: an initiating step that induces mutations in healthy cells, followed by a promoter step that triggers cancer development1. Here we propose that environmental particulate matter measuring ≤2.5 µm (PM2.5), known to be associated with lung cancer risk, promotes lung cancer by acting on cells that harbour pre-existing oncogenic mutations in healthy lung tissue. Focusing on EGFR-driven lung cancer, which is more common in never-smokers or light smokers, we found a significant association between PM2.5 levels and the incidence of lung cancer for 32,957 EGFR-driven lung cancer cases in four within-country cohorts. Functional mouse models revealed that air pollutants cause an influx of macrophages into the lung and release of interleukin-1ß. This process results in a progenitor-like cell state within EGFR mutant lung alveolar type II epithelial cells that fuels tumorigenesis. Ultradeep mutational profiling of histologically normal lung tissue from 295 individuals across 3 clinical cohorts revealed oncogenic EGFR and KRAS driver mutations in 18% and 53% of healthy tissue samples, respectively. These findings collectively support a tumour-promoting role for  PM2.5 air pollutants  and provide impetus for public health policy initiatives to address air pollution to reduce disease burden.


Subject(s)
Adenocarcinoma of Lung , Air Pollutants , Air Pollution , Cell Transformation, Neoplastic , Lung Neoplasms , Animals , Mice , Adenocarcinoma of Lung/chemically induced , Adenocarcinoma of Lung/genetics , Air Pollutants/adverse effects , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cell Transformation, Neoplastic/chemically induced , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Environmental Exposure , ErbB Receptors/genetics , Lung Neoplasms/chemically induced , Lung Neoplasms/genetics , Particulate Matter/adverse effects , Particulate Matter/analysis , Particle Size , Cohort Studies , Macrophages, Alveolar/drug effects , Alveolar Epithelial Cells/drug effects , Alveolar Epithelial Cells/pathology
4.
Nature ; 616(7957): 553-562, 2023 04.
Article in English | MEDLINE | ID: mdl-37055640

ABSTRACT

Circulating tumour DNA (ctDNA) can be used to detect and profile residual tumour cells persisting after curative intent therapy1. The study of large patient cohorts incorporating longitudinal plasma sampling and extended follow-up is required to determine the role of ctDNA as a phylogenetic biomarker of relapse in early-stage non-small-cell lung cancer (NSCLC). Here we developed ctDNA methods tracking a median of 200 mutations identified in resected NSCLC tissue across 1,069 plasma samples collected from 197 patients enrolled in the TRACERx study2. A lack of preoperative ctDNA detection distinguished biologically indolent lung adenocarcinoma with good clinical outcome. Postoperative plasma analyses were interpreted within the context of standard-of-care radiological surveillance and administration of cytotoxic adjuvant therapy. Landmark analyses of plasma samples collected within 120 days after surgery revealed ctDNA detection in 25% of patients, including 49% of all patients who experienced clinical relapse; 3 to 6 monthly ctDNA surveillance identified impending disease relapse in an additional 20% of landmark-negative patients. We developed a bioinformatic tool (ECLIPSE) for non-invasive tracking of subclonal architecture at low ctDNA levels. ECLIPSE identified patients with polyclonal metastatic dissemination, which was associated with a poor clinical outcome. By measuring subclone cancer cell fractions in preoperative plasma, we found that subclones seeding future metastases were significantly more expanded compared with non-metastatic subclones. Our findings will support (neo)adjuvant trial advances and provide insights into the process of metastatic dissemination using low-ctDNA-level liquid biopsy.


Subject(s)
Biomarkers, Tumor , Carcinoma, Non-Small-Cell Lung , Circulating Tumor DNA , Lung Neoplasms , Mutation , Neoplasm Metastasis , Small Cell Lung Carcinoma , Humans , Biomarkers, Tumor/blood , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/blood , Circulating Tumor DNA/genetics , Cohort Studies , Lung Neoplasms/blood , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/diagnosis , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Phylogeny , Small Cell Lung Carcinoma/pathology , Liquid Biopsy
5.
Nature ; 616(7957): 534-542, 2023 04.
Article in English | MEDLINE | ID: mdl-37046095

ABSTRACT

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Clonal Evolution , Clone Cells , Evolution, Molecular , Lung Neoplasms , Neoplasm Metastasis , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Clone Cells/pathology , Cohort Studies , Disease Progression , Lung Neoplasms/pathology , Neoplasm Metastasis/diagnosis , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local
6.
Nature ; 616(7957): 525-533, 2023 04.
Article in English | MEDLINE | ID: mdl-37046096

ABSTRACT

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Adenocarcinoma of Lung/etiology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/etiology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/etiology , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Neoplasm Recurrence, Local/genetics , Phylogeny , Treatment Outcome , Smoking/genetics , Smoking/physiopathology , Mutagenesis , DNA Copy Number Variations
7.
Nature ; 616(7957): 563-573, 2023 04.
Article in English | MEDLINE | ID: mdl-37046094

ABSTRACT

B cells are frequently found in the margins of solid tumours as organized follicles in ectopic lymphoid organs called tertiary lymphoid structures (TLS)1,2. Although TLS have been found to correlate with improved patient survival and response to immune checkpoint blockade (ICB), the underlying mechanisms of this association remain elusive1,2. Here we investigate lung-resident B cell responses in patients from the TRACERx 421 (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy) and other lung cancer cohorts, and in a recently established immunogenic mouse model for lung adenocarcinoma3. We find that both human and mouse lung adenocarcinomas elicit local germinal centre responses and tumour-binding antibodies, and further identify endogenous retrovirus (ERV) envelope glycoproteins as a dominant anti-tumour antibody target. ERV-targeting B cell responses are amplified by ICB in both humans and mice, and by targeted inhibition of KRAS(G12C) in the mouse model. ERV-reactive antibodies exert anti-tumour activity that extends survival in the mouse model, and ERV expression predicts the outcome of ICB in human lung adenocarcinoma. Finally, we find that effective immunotherapy in the mouse model requires CXCL13-dependent TLS formation. Conversely, therapeutic CXCL13 treatment potentiates anti-tumour immunity and synergizes with ICB. Our findings provide a possible mechanistic basis for the association of TLS with immunotherapy response.


Subject(s)
Endogenous Retroviruses , Immunotherapy , Lung Neoplasms , Animals , Humans , Mice , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/therapy , Adenocarcinoma of Lung/virology , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Carcinoma, Non-Small-Cell Lung/virology , Disease Models, Animal , Endogenous Retroviruses/immunology , Immunotherapy/methods , Lung/immunology , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Lung Neoplasms/virology , Tumor Microenvironment , B-Lymphocytes/immunology , Cohort Studies , Antibodies/immunology , Antibodies/therapeutic use
8.
Nature ; 567(7749): 479-485, 2019 03.
Article in English | MEDLINE | ID: mdl-30894752

ABSTRACT

The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.


Subject(s)
Antigens, Neoplasm/immunology , Evolution, Molecular , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Tumor Escape/immunology , Adenocarcinoma/genetics , Adenocarcinoma/immunology , Adenocarcinoma/pathology , Antigen Presentation/immunology , Antigens, Neoplasm/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Male , Prognosis , Tumor Microenvironment/immunology
11.
Nature ; 545(7655): 446-451, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28445469

ABSTRACT

The early detection of relapse following primary surgery for non-small-cell lung cancer and the characterization of emerging subclones, which seed metastatic sites, might offer new therapeutic approaches for limiting tumour recurrence. The ability to track the evolutionary dynamics of early-stage lung cancer non-invasively in circulating tumour DNA (ctDNA) has not yet been demonstrated. Here we use a tumour-specific phylogenetic approach to profile the ctDNA of the first 100 TRACERx (Tracking Non-Small-Cell Lung Cancer Evolution Through Therapy (Rx)) study participants, including one patient who was also recruited to the PEACE (Posthumous Evaluation of Advanced Cancer Environment) post-mortem study. We identify independent predictors of ctDNA release and analyse the tumour-volume detection limit. Through blinded profiling of postoperative plasma, we observe evidence of adjuvant chemotherapy resistance and identify patients who are very likely to experience recurrence of their lung cancer. Finally, we show that phylogenetic ctDNA profiling tracks the subclonal nature of lung cancer relapse and metastasis, providing a new approach for ctDNA-driven therapeutic studies.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Cell Lineage/genetics , DNA, Neoplasm/blood , DNA, Neoplasm/genetics , Evolution, Molecular , Lung Neoplasms/genetics , Neoplasm Metastasis/diagnosis , Neoplasm Recurrence, Local/diagnosis , Biopsy/methods , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/surgery , Cell Tracking , Clone Cells/metabolism , Clone Cells/pathology , DNA Mutational Analysis , Disease Progression , Drug Resistance, Neoplasm/genetics , Early Detection of Cancer/methods , Humans , Limit of Detection , Lung Neoplasms/blood , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Multiplex Polymerase Chain Reaction , Neoplasm Metastasis/genetics , Neoplasm Metastasis/pathology , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Postoperative Care/methods , Reproducibility of Results , Tumor Burden
12.
N Engl J Med ; 376(22): 2109-2121, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28445112

ABSTRACT

BACKGROUND: Among patients with non-small-cell lung cancer (NSCLC), data on intratumor heterogeneity and cancer genome evolution have been limited to small retrospective cohorts. We wanted to prospectively investigate intratumor heterogeneity in relation to clinical outcome and to determine the clonal nature of driver events and evolutionary processes in early-stage NSCLC. METHODS: In this prospective cohort study, we performed multiregion whole-exome sequencing on 100 early-stage NSCLC tumors that had been resected before systemic therapy. We sequenced and analyzed 327 tumor regions to define evolutionary histories, obtain a census of clonal and subclonal events, and assess the relationship between intratumor heterogeneity and recurrence-free survival. RESULTS: We observed widespread intratumor heterogeneity for both somatic copy-number alterations and mutations. Driver mutations in EGFR, MET, BRAF, and TP53 were almost always clonal. However, heterogeneous driver alterations that occurred later in evolution were found in more than 75% of the tumors and were common in PIK3CA and NF1 and in genes that are involved in chromatin modification and DNA damage response and repair. Genome doubling and ongoing dynamic chromosomal instability were associated with intratumor heterogeneity and resulted in parallel evolution of driver somatic copy-number alterations, including amplifications in CDK4, FOXA1, and BCL11A. Elevated copy-number heterogeneity was associated with an increased risk of recurrence or death (hazard ratio, 4.9; P=4.4×10-4), which remained significant in multivariate analysis. CONCLUSIONS: Intratumor heterogeneity mediated through chromosome instability was associated with an increased risk of recurrence or death, a finding that supports the potential value of chromosome instability as a prognostic predictor. (Funded by Cancer Research UK and others; TRACERx ClinicalTrials.gov number, NCT01888601 .).


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Chromosomal Instability , Genetic Heterogeneity , Lung Neoplasms/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Carcinoma, Non-Small-Cell Lung/mortality , DNA Copy Number Variations , Disease-Free Survival , Evolution, Molecular , Exome , Female , Humans , Lung Neoplasms/mortality , Male , Phylogeny , Prognosis , Prospective Studies , Risk Factors , Sequence Analysis, DNA/methods
13.
Int J Cancer ; 143(1): 160-166, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29569246

ABSTRACT

Pre-clinical non-small cell lung cancer (NSCLC) models are poorly representative of the considerable inter- and intra-tumor heterogeneity of the disease in patients. Primary cell-based in vitro models of NSCLC are therefore desirable for novel therapy development and personalized cancer medicine. Methods have been described to generate rapidly proliferating epithelial cell cultures from multiple human epithelia using 3T3-J2 feeder cell culture in the presence of Y-27632, a RHO-associated protein kinase (ROCK) inhibitor, in what are known as "conditional reprograming conditions" (CRC) or 3T3 + Y. In some cancer studies, variations of this methodology have allowed primary tumor cell expansion across a number of cancer types but other studies have demonstrated the preferential expansion of normal epithelial cells from tumors in such conditions. Here, we report our experience regarding the derivation of primary NSCLC cell cultures from 12 lung adenocarcinoma patients enrolled in the Tracking Cancer Evolution through Therapy (TRACERx) clinical study and discuss these in the context of improving the success rate for in vitro cultivation of cells from NSCLC tumors.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Coculture Techniques/methods , Epithelial Cells/cytology , Lung Neoplasms/pathology , 3T3 Cells , Aged , Aged, 80 and over , Amides/pharmacology , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Cell Proliferation , Epithelial Cells/pathology , High-Throughput Nucleotide Sequencing , Humans , Lung Neoplasms/genetics , Male , Mice , Middle Aged , Neoplasm Transplantation , Pyridines/pharmacology , Respiratory Mucosa/cytology , Sequence Analysis, DNA , Tumor Cells, Cultured
14.
Breast Cancer Res ; 16(2): R36, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24708766

ABSTRACT

INTRODUCTION: Triple-negative breast cancer (TNBC) is aggressive and lacks targeted therapies. Phosphatidylinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathways are frequently activated in TNBC patient tumors at the genome, gene expression and protein levels, and mTOR inhibitors have been shown to inhibit growth in TNBC cell lines. We describe a panel of patient-derived xenografts representing multiple TNBC subtypes and use them to test preclinical drug efficacy of two mTOR inhibitors, sirolimus (rapamycin) and temsirolimus (CCI-779). METHODS: We generated a panel of seven patient-derived orthotopic xenografts from six primary TNBC tumors and one metastasis. Patient tumors and corresponding xenografts were compared by histology, immunohistochemistry, array comparative genomic hybridization (aCGH) and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) sequencing; TNBC subtypes were determined. Using a previously published logistic regression approach, we generated a rapamycin response signature from Connectivity Map gene expression data and used it to predict rapamycin sensitivity in 1,401 human breast cancers of different intrinsic subtypes, prompting in vivo testing of mTOR inhibitors and doxorubicin in our TNBC xenografts. RESULTS: Patient-derived xenografts recapitulated histology, biomarker expression and global genomic features of patient tumors. Two primary tumors had PIK3CA coding mutations, and five of six primary tumors showed flanking intron single nucleotide polymorphisms (SNPs) with conservation of sequence variations between primary tumors and xenografts, even on subsequent xenograft passages. Gene expression profiling showed that our models represent at least four of six TNBC subtypes. The rapamycin response signature predicted sensitivity for 94% of basal-like breast cancers in a large dataset. Drug testing of mTOR inhibitors in our xenografts showed 77 to 99% growth inhibition, significantly more than doxorubicin; protein phosphorylation studies indicated constitutive activation of the mTOR pathway that decreased with treatment. However, no tumor was completely eradicated. CONCLUSIONS: A panel of patient-derived xenograft models covering a spectrum of TNBC subtypes was generated that histologically and genomically matched original patient tumors. Consistent with in silico predictions, mTOR inhibitor testing in our TNBC xenografts showed significant tumor growth inhibition in all, suggesting that mTOR inhibitors can be effective in TNBC, but will require use with additional therapies, warranting investigation of optimal drug combinations.


Subject(s)
Antineoplastic Agents/therapeutic use , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triple Negative Breast Neoplasms/drug therapy , Xenograft Model Antitumor Assays/methods , Animals , Blotting, Western , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Comparative Genomic Hybridization , DNA Mutational Analysis , Doxorubicin/therapeutic use , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , Immunohistochemistry , MCF-7 Cells , Mice , Mutation , Oligonucleotide Array Sequence Analysis , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/drug effects , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , Sirolimus/analogs & derivatives , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Transcriptome/drug effects , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/metabolism
15.
Nat Cancer ; 5(2): 347-363, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38200244

ABSTRACT

The introduction of the International Association for the Study of Lung Cancer grading system has furthered interest in histopathological grading for risk stratification in lung adenocarcinoma. Complex morphology and high intratumoral heterogeneity present challenges to pathologists, prompting the development of artificial intelligence (AI) methods. Here we developed ANORAK (pyrAmid pooliNg crOss stReam Attention networK), encoding multiresolution inputs with an attention mechanism, to delineate growth patterns from hematoxylin and eosin-stained slides. In 1,372 lung adenocarcinomas across four independent cohorts, AI-based grading was prognostic of disease-free survival, and further assisted pathologists by consistently improving prognostication in stage I tumors. Tumors with discrepant patterns between AI and pathologists had notably higher intratumoral heterogeneity. Furthermore, ANORAK facilitates the morphological and spatial assessment of the acinar pattern, capturing acinus variations with pattern transition. Collectively, our AI method enabled the precision quantification and morphology investigation of growth patterns, reflecting intratumoral histological transitions in lung adenocarcinoma.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Artificial Intelligence , Neoplasm Staging , Lung Neoplasms/pathology
16.
Cancer Discov ; 14(6): 1018-1047, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38581685

ABSTRACT

Understanding the role of the tumor microenvironment (TME) in lung cancer is critical to improving patient outcomes. We identified four histology-independent archetype TMEs in treatment-naïve early-stage lung cancer using imaging mass cytometry in the TRACERx study (n = 81 patients/198 samples/2.3 million cells). In immune-hot adenocarcinomas, spatial niches of T cells and macrophages increased with clonal neoantigen burden, whereas such an increase was observed for niches of plasma and B cells in immune-excluded squamous cell carcinomas (LUSC). Immune-low TMEs were associated with fibroblast barriers to immune infiltration. The fourth archetype, characterized by sparse lymphocytes and high tumor-associated neutrophil (TAN) infiltration, had tumor cells spatially separated from vasculature and exhibited low spatial intratumor heterogeneity. TAN-high LUSC had frequent PIK3CA mutations. TAN-high tumors harbored recently expanded and metastasis-seeding subclones and had a shorter disease-free survival independent of stage. These findings delineate genomic, immune, and physical barriers to immune surveillance and implicate neutrophil-rich TMEs in metastasis. SIGNIFICANCE: This study provides novel insights into the spatial organization of the lung cancer TME in the context of tumor immunogenicity, tumor heterogeneity, and cancer evolution. Pairing the tumor evolutionary history with the spatially resolved TME suggests mechanistic hypotheses for tumor progression and metastasis with implications for patient outcome and treatment. This article is featured in Selected Articles from This Issue, p. 897.


Subject(s)
Lung Neoplasms , Tumor Microenvironment , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Tumor Microenvironment/immunology , T-Lymphocytes/immunology , Myeloid Cells/immunology , Female , Male , Immune Evasion
17.
Nat Commun ; 15(1): 4653, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38821942

ABSTRACT

Patient-derived xenograft (PDX) models are widely used in cancer research. To investigate the genomic fidelity of non-small cell lung cancer PDX models, we established 48 PDX models from 22 patients enrolled in the TRACERx study. Multi-region tumor sampling increased successful PDX engraftment and most models were histologically similar to their parent tumor. Whole-exome sequencing enabled comparison of tumors and PDX models and we provide an adapted mouse reference genome for improved removal of NOD scid gamma (NSG) mouse-derived reads from sequencing data. PDX model establishment caused a genomic bottleneck, with models often representing a single tumor subclone. While distinct tumor subclones were represented in independent models from the same tumor, individual PDX models did not fully recapitulate intratumor heterogeneity. On-going genomic evolution in mice contributed modestly to the genomic distance between tumors and PDX models. Our study highlights the importance of considering primary tumor heterogeneity when using PDX models and emphasizes the benefit of comprehensive tumor sampling.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Genetic Heterogeneity , Lung Neoplasms , Mice, Inbred NOD , Mice, SCID , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Animals , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Female , Exome Sequencing , Genomics/methods , Male , Xenograft Model Antitumor Assays , Heterografts , Disease Models, Animal , Aged , Middle Aged
18.
Cancer Res ; 83(9): 1410-1425, 2023 05 02.
Article in English | MEDLINE | ID: mdl-36853169

ABSTRACT

Beyond tertiary lymphoid structures, a significant number of immune-rich areas without germinal center-like structures are observed in non-small cell lung cancer. Here, we integrated transcriptomic data and digital pathology images to study the prognostic implications, spatial locations, and constitution of immune rich areas (immune hotspots) in a cohort of 935 patients with lung cancer from The Cancer Genome Atlas. A high intratumoral immune hotspot score, which measures the proportion of immune hotspots interfacing with tumor islands, was correlated with poor overall survival in lung squamous cell carcinoma but not in lung adenocarcinoma. Lung squamous cell carcinomas with high intratumoral immune hotspot scores were characterized by consistent upregulation of B-cell signatures. Spatial statistical analyses conducted on serial multiplex IHC slides further revealed that only 4.87% of peritumoral immune hotspots and 0.26% of intratumoral immune hotspots were tertiary lymphoid structures. Significantly lower densities of CD20+CXCR5+ and CD79b+ B cells and less diverse immune cell interactions were found in intratumoral immune hotspots compared with peritumoral immune hotspots. Furthermore, there was a negative correlation between the percentages of CD8+ T cells and T regulatory cells in intratumoral but not in peritumoral immune hotspots, with tertiary lymphoid structures excluded. These findings suggest that the intratumoral immune hotspots reflect an immunosuppressive niche compared with peritumoral immune hotspots, independent of the distribution of tertiary lymphoid structures. A balance toward increased intratumoral immune hotspots is indicative of a compromised antitumor immune response and poor outcome in lung squamous cell carcinoma. SIGNIFICANCE: Intratumoral immune hotspots beyond tertiary lymphoid structures reflect an immunosuppressive microenvironment, different from peritumoral immune hotspots, warranting further study in the context of immunotherapies.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/pathology , Prognosis , Carcinoma, Squamous Cell/pathology , Lung/pathology , Tumor Microenvironment
19.
Nat Med ; 29(4): 833-845, 2023 04.
Article in English | MEDLINE | ID: mdl-37045996

ABSTRACT

Lung adenocarcinomas (LUADs) display a broad histological spectrum from low-grade lepidic tumors through to mid-grade acinar and papillary and high-grade solid, cribriform and micropapillary tumors. How morphology reflects tumor evolution and disease progression is poorly understood. Whole-exome sequencing data generated from 805 primary tumor regions and 121 paired metastatic samples across 248 LUADs from the TRACERx 421 cohort, together with RNA-sequencing data from 463 primary tumor regions, were integrated with detailed whole-tumor and regional histopathological analysis. Tumors with predominantly high-grade patterns showed increased chromosomal complexity, with higher burden of loss of heterozygosity and subclonal somatic copy number alterations. Individual regions in predominantly high-grade pattern tumors exhibited higher proliferation and lower clonal diversity, potentially reflecting large recent subclonal expansions. Co-occurrence of truncal loss of chromosomes 3p and 3q was enriched in predominantly low-/mid-grade tumors, while purely undifferentiated solid-pattern tumors had a higher frequency of truncal arm or focal 3q gains and SMARCA4 gene alterations compared with mixed-pattern tumors with a solid component, suggesting distinct evolutionary trajectories. Clonal evolution analysis revealed that tumors tend to evolve toward higher-grade patterns. The presence of micropapillary pattern and 'tumor spread through air spaces' were associated with intrathoracic recurrence, in contrast to the presence of solid/cribriform patterns, necrosis and preoperative circulating tumor DNA detection, which were associated with extra-thoracic recurrence. These data provide insights into the relationship between LUAD morphology, the underlying evolutionary genomic landscape, and clinical and anatomical relapse risk.


Subject(s)
Adenocarcinoma of Lung , Adenocarcinoma , Lung Neoplasms , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Neoplasm Recurrence, Local/pathology , Adenocarcinoma of Lung/genetics , Disease Progression , DNA Helicases , Nuclear Proteins , Transcription Factors
20.
Nat Med ; 29(4): 846-858, 2023 04.
Article in English | MEDLINE | ID: mdl-37045997

ABSTRACT

Cancer-associated cachexia (CAC) is a major contributor to morbidity and mortality in individuals with non-small cell lung cancer. Key features of CAC include alterations in body composition and body weight. Here, we explore the association between body composition and body weight with survival and delineate potential biological processes and mediators that contribute to the development of CAC. Computed tomography-based body composition analysis of 651 individuals in the TRACERx (TRAcking non-small cell lung Cancer Evolution through therapy (Rx)) study suggested that individuals in the bottom 20th percentile of the distribution of skeletal muscle or adipose tissue area at the time of lung cancer diagnosis, had significantly shorter lung cancer-specific survival and overall survival. This finding was validated in 420 individuals in the independent Boston Lung Cancer Study. Individuals classified as having developed CAC according to one or more features at relapse encompassing loss of adipose or muscle tissue, or body mass index-adjusted weight loss were found to have distinct tumor genomic and transcriptomic profiles compared with individuals who did not develop such features. Primary non-small cell lung cancers from individuals who developed CAC were characterized by enrichment of inflammatory signaling and epithelial-mesenchymal transitional pathways, and differentially expressed genes upregulated in these tumors included cancer-testis antigen MAGEA6 and matrix metalloproteinases, such as ADAMTS3. In an exploratory proteomic analysis of circulating putative mediators of cachexia performed in a subset of 110 individuals from TRACERx, a significant association between circulating GDF15 and loss of body weight, skeletal muscle and adipose tissue was identified at relapse, supporting the potential therapeutic relevance of targeting GDF15 in the management of CAC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Male , Humans , Cachexia/complications , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Proteomics , Neoplasm Recurrence, Local/pathology , Body Composition , Body Weight , Muscle, Skeletal/metabolism , Antigens, Neoplasm/metabolism , Neoplasm Proteins
SELECTION OF CITATIONS
SEARCH DETAIL