Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Nucleic Acids Res ; 51(6): e35, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36718861

ABSTRACT

DNA-protein crosslinks (DPCs), formed by the covalent conjugation of proteins to DNA, are toxic lesions that interfere with DNA metabolic processing and transcription. The development of an accurate biochemical assay for DPC isolation is a priority for the mechanistic understanding of their repair. Here, we propose the STAR assay for the direct quantification of DPCs, sensitive to physiologically relevant treatment conditions. Implementing the STAR assay revealed the formation of small cross-linked peptides on DNA, created by the proteolytic degradation of DPCs by SPRTN. The initial proteolytic degradation of DPCs is required for the downstream activation of DNA repair, which is mediated through the phosphorylation of H2Ax. This leads to the accumulation of DNA repair factors on chromatin and the subsequent complete removal of the cross-linked peptides. These results confirmed that the repair of DPCs is a two-step process, starting with proteolytic resection by SPRTN, followed by the repair of the underlying damage to the DNA.


Subject(s)
DNA Damage , DNA-Binding Proteins , DNA-Binding Proteins/genetics , DNA/genetics , DNA/metabolism , DNA Repair , Proteolysis , Peptide Hydrolases/genetics
2.
Am J Hum Genet ; 108(6): 1069-1082, 2021 06 03.
Article in English | MEDLINE | ID: mdl-34022130

ABSTRACT

BCAS3 microtubule-associated cell migration factor (BCAS3) is a large, highly conserved cytoskeletal protein previously proposed to be critical in angiogenesis and implicated in human embryogenesis and tumorigenesis. Here, we established BCAS3 loss-of-function variants as causative for a neurodevelopmental disorder. We report 15 individuals from eight unrelated families with germline bi-allelic loss-of-function variants in BCAS3. All probands share a global developmental delay accompanied by pyramidal tract involvement, microcephaly, short stature, strabismus, dysmorphic facial features, and seizures. The human phenotype is less severe compared with the Bcas3 knockout mouse model and cannot be explained by angiogenic defects alone. Consistent with being loss-of-function alleles, we observed absence of BCAS3 in probands' primary fibroblasts. By comparing the transcriptomic and proteomic data based on probands' fibroblasts with those of the knockout mouse model, we identified similar dysregulated pathways resulting from over-representation analysis, while the dysregulation of some proposed key interactors could not be confirmed. Together with the results from a tissue-specific Drosophila loss-of-function model, we demonstrate a vital role for BCAS3 in neural tissue development.


Subject(s)
Loss of Function Mutation , Loss of Heterozygosity , Neoplasm Proteins/genetics , Neurodevelopmental Disorders/etiology , Adolescent , Adult , Animals , Cell Movement , Child , Child, Preschool , Drosophila , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Male , Mice , Mice, Knockout , Neoplasm Proteins/metabolism , Neurodevelopmental Disorders/metabolism , Neurodevelopmental Disorders/pathology , Pedigree , Proteome/analysis , Young Adult
3.
Am J Respir Crit Care Med ; 207(1): 38-49, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35926164

ABSTRACT

Rationale: Coronavirus disease 2019 (COVID-19) can lead to acute respiratory distress syndrome with fatal outcomes. Evidence suggests that dysregulated immune responses, including autoimmunity, are key pathogenic factors. Objectives: To assess whether IgA autoantibodies target lung-specific proteins and contribute to disease severity. Methods: We collected 147 blood, 9 lung tissue, and 36 BAL fluid samples from three tertiary hospitals in Switzerland and one in Germany. Severe COVID-19 was defined by the need to administer oxygen. We investigated the presence of IgA autoantibodies and their effects on pulmonary surfactant in COVID-19 using the following methods: immunofluorescence on tissue samples, immunoprecipitations followed by mass spectrometry on BAL fluid samples, enzyme-linked immunosorbent assays on blood samples, and surface tension measurements with medical surfactant. Measurements and Main Results: IgA autoantibodies targeting pulmonary surfactant proteins B and C were elevated in patients with severe COVID-19 but not in patients with influenza or bacterial pneumonia. Notably, pulmonary surfactant failed to reduce surface tension after incubation with either plasma or purified IgA from patients with severe COVID-19. Conclusions: Our data suggest that patients with severe COVID-19 harbor IgA autoantibodies against pulmonary surfactant proteins B and C and that these autoantibodies block the function of lung surfactant, potentially contributing to alveolar collapse and poor oxygenation.


Subject(s)
COVID-19 , Pulmonary Surfactants , Humans , Pulmonary Surfactants/metabolism , Bronchoalveolar Lavage Fluid/chemistry , Surface-Active Agents , Autoantibodies , Immunoglobulin A
4.
New Phytol ; 239(6): 2320-2334, 2023 09.
Article in English | MEDLINE | ID: mdl-37222268

ABSTRACT

Biotic and abiotic interactions shape natural microbial communities. The mechanisms behind microbe-microbe interactions, particularly those protein based, are not well understood. We hypothesize that released proteins with antimicrobial activity are a powerful and highly specific toolset to shape and defend plant niches. We have studied Albugo candida, an obligate plant parasite from the protist Oomycota phylum, for its potential to modulate the growth of bacteria through release of antimicrobial proteins into the apoplast. Amplicon sequencing and network analysis of Albugo-infected and uninfected wild Arabidopsis thaliana samples revealed an abundance of negative correlations between Albugo and other phyllosphere microbes. Analysis of the apoplastic proteome of Albugo-colonized leaves combined with machine learning predictors enabled the selection of antimicrobial candidates for heterologous expression and study of their inhibitory function. We found for three candidate proteins selective antimicrobial activity against Gram-positive bacteria isolated from A. thaliana and demonstrate that these inhibited bacteria are precisely important for the stability of the community structure. We could ascribe the antibacterial activity of the candidates to intrinsically disordered regions and positively correlate it with their net charge. This is the first report of protist proteins with antimicrobial activity under apoplastic conditions that therefore are potential biocontrol tools for targeted manipulation of the microbiome.


Subject(s)
Anti-Infective Agents , Arabidopsis , Oomycetes , Parasites , Animals , Arabidopsis/microbiology , Plants , Anti-Infective Agents/pharmacology , Bacteria , Plant Leaves/microbiology
5.
Cell Mol Life Sci ; 79(8): 401, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35794401

ABSTRACT

Machado-Joseph disease (MJD) is characterized by a pathological expansion of the polyglutamine (polyQ) tract within the ataxin-3 protein. Despite its primarily cytoplasmic localization, polyQ-expanded ataxin-3 accumulates in the nucleus and forms intranuclear aggregates in the affected neurons. Due to these histopathological hallmarks, the nucleocytoplasmic transport machinery has garnered attention as an important disease relevant mechanism. Here, we report on MJD cell model-based analysis of the nuclear transport receptor karyopherin subunit beta-1 (KPNB1) and its implications in the molecular pathogenesis of MJD. Although directly interacting with both wild-type and polyQ-expanded ataxin-3, modulating KPNB1 did not alter the intracellular localization of ataxin-3. Instead, overexpression of KPNB1 reduced ataxin-3 protein levels and the aggregate load, thereby improving cell viability. On the other hand, its knockdown and inhibition resulted in the accumulation of soluble and insoluble ataxin-3. Interestingly, the reduction of ataxin-3 was apparently based on protein fragmentation independent of the classical MJD-associated proteolytic pathways. Label-free quantitative proteomics and knockdown experiments identified mitochondrial protease CLPP as a potential mediator of the ataxin-3-degrading effect induced by KPNB1. We confirmed reduction of KPNB1 protein levels in MJD by analyzing two MJD transgenic mouse models and induced pluripotent stem cells (iPSCs) derived from MJD patients. Our results reveal a yet undescribed regulatory function of KPNB1 in controlling the turnover of ataxin-3, thereby highlighting a new potential target of therapeutic value for MJD.


Subject(s)
Ataxin-3 , Endopeptidase Clp , Machado-Joseph Disease , Mitochondria , beta Karyopherins , Animals , Ataxin-3/genetics , Ataxin-3/metabolism , Endopeptidase Clp/genetics , Endopeptidase Clp/metabolism , Endopeptidases/genetics , Endopeptidases/metabolism , Machado-Joseph Disease/genetics , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Mice , Mitochondria/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , beta Karyopherins/genetics , beta Karyopherins/metabolism
6.
Genet Med ; 24(10): 2079-2090, 2022 10.
Article in English | MEDLINE | ID: mdl-35986737

ABSTRACT

PURPOSE: Biallelic variants in UCHL1 have been associated with a progressive early-onset neurodegenerative disorder, autosomal recessive spastic paraplegia type 79. In this study, we investigated heterozygous UCHL1 variants on the basis of results from cohort-based burden analyses. METHODS: Gene-burden analyses were performed on exome and genome data of independent cohorts of patients with hereditary ataxia and spastic paraplegia from Germany and the United Kingdom in a total of 3169 patients and 33,141 controls. Clinical data of affected individuals and additional independent families were collected and evaluated. Patients' fibroblasts were used to perform mass spectrometry-based proteomics. RESULTS: UCHL1 was prioritized in both independent cohorts as a candidate gene for an autosomal dominant disorder. We identified a total of 34 cases from 18 unrelated families, carrying 13 heterozygous loss-of-function variants (15 families) and an inframe insertion (3 families). Affected individuals mainly presented with spasticity (24/31), ataxia (28/31), neuropathy (11/21), and optic atrophy (9/17). The mass spectrometry-based proteomics showed approximately 50% reduction of UCHL1 expression in patients' fibroblasts. CONCLUSION: Our bioinformatic analysis, in-depth clinical and genetic workup, and functional studies established haploinsufficiency of UCHL1 as a novel disease mechanism in spastic ataxia.


Subject(s)
Cerebellar Ataxia , Optic Atrophy , Spastic Paraplegia, Hereditary , Spinocerebellar Ataxias , Ubiquitin Thiolesterase , Ataxia/genetics , Cerebellar Ataxia/genetics , Humans , Loss of Function Mutation , Muscle Spasticity/genetics , Mutation , Optic Atrophy/genetics , Pedigree , Spastic Paraplegia, Hereditary/genetics , Spinocerebellar Ataxias/genetics , Ubiquitin Thiolesterase/genetics
7.
PLoS Genet ; 14(7): e1007514, 2018 07.
Article in English | MEDLINE | ID: mdl-29985927

ABSTRACT

The stringent response is characterized by (p)ppGpp synthesis resulting in repression of translation and reprogramming of the transcriptome. In Staphylococcus aureus, (p)ppGpp is synthesized by the long RSH (RelA/SpoT homolog) enzyme, RelSau or by one of the two short synthetases (RelP, RelQ). RSH enzymes are characterized by an N-terminal enzymatic domain bearing distinct motifs for (p)ppGpp synthetase or hydrolase activity and a C-terminal regulatory domain (CTD) containing conserved motifs (TGS, DC and ACT). The intramolecular switch between synthetase and hydrolase activity of RelSau is crucial for the adaption of S. aureus to stress (stringent) or non-stress (relaxed) conditions. We elucidated the role of the CTD in the enzymatic activities of RelSau. Growth pattern, transcriptional analyses and in vitro assays yielded the following results: i) in vivo, under relaxed conditions, as well as in vitro, the CTD inhibits synthetase activity but is not required for hydrolase activity; ii) under stringent conditions, the CTD is essential for (p)ppGpp synthesis; iii) RelSau lacking the CTD exhibits net hydrolase activity when expressed in S. aureus but net (p)ppGpp synthetase activity when expressed in E. coli; iv) the TGS and DC motifs within the CTD are required for correct stringent response, whereas the ACT motif is dispensable, v) Co-immunoprecipitation indicated that the CTD interacts with the ribosome, which is largely dependent on the TGS motif. In conclusion, RelSau primarily exists in a synthetase-OFF/hydrolase-ON state, the TGS motif within the CTD is required to activate (p)ppGpp synthesis under stringent conditions.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Hydrolases/genetics , Ligases/genetics , Staphylococcus aureus/physiology , Adaptation, Physiological/genetics , Amino Acid Motifs/physiology , Bacterial Proteins/metabolism , Hydrolases/metabolism , Ligases/metabolism , Ribosomes/metabolism , Stress, Physiological/physiology
8.
J Virol ; 92(4)2018 02 15.
Article in English | MEDLINE | ID: mdl-29167339

ABSTRACT

The papillomavirus E2 protein regulates transcription, replication, and nuclear retention of viral genomes. Phosphorylation of E2 in the hinge region has been suggested to modulate protein stability, DNA-binding activity, and chromosomal attachment. The papillomavirus E8^E2 protein shares the hinge domain with E2 and acts as a repressor of viral replication. Mass spectrometry analyses of human papillomavirus 31 (HPV31) E8^E2 and E2 proteins identify phosphorylated S78, S81, and S100 in E8^E2 and S266 and S269 in E2 in their hinge regions. Phos-tag analyses of wild-type and mutant proteins indicate that S78 is a major phosphorylation site in E8^E2, but the corresponding S266 in E2 is not. Phosphorylation at S78 regulates E8^E2's repression activity of reporter constructs, whereas the corresponding E2 mutants do not display a phenotype. Phosphorylation at S78 does not alter E8^E2's protein stability, nuclear localization, or binding to DNA or to cellular NCoR/SMRT complexes. Surprisingly, in the context of HPV31 genomes, mutation of E8^E2 S78 does not modulate viral replication or transcription in undifferentiated or differentiated cells. However, comparative transcriptome analyses of differentiated HPV31 E8^E2 S78A and S78E cell lines reveal that the expression of a small number of cellular genes is changed. Validation experiments suggest that the transcription of the cellular LYPD2 gene is altered in a phospho-S78 E8^E2-dependent manner. In summary, our data suggest that phosphorylation of S78 in E8^E2 regulates its repression activity by a novel mechanism, and this seems to be important for the modulation of host cell gene expression but not viral replication.IMPORTANCE Posttranslational modification of viral proteins is a common feature to modulate their activities. Phosphorylation of serine residues S298 and S301 in the hinge region of the bovine papillomavirus type 1 E2 protein has been shown to restrict viral replication. The papillomavirus E8^E2 protein shares the hinge domain with E2 and acts as a repressor of viral replication. A large fraction of HPV31 E8^E2 is phosphorylated at S78 in the hinge region, and this is important for E8^E2's repression activity. Surprisingly, phosphorylation at S78 in E8^E2 has no impact on viral replication in tissue culture but rather seems to modulate the expression of a small number of cellular genes. This may indicate that phosphorylation of viral transcription factors serves to broaden their target gene specificity.


Subject(s)
DNA Replication , DNA-Binding Proteins/chemistry , Human papillomavirus 31 , Phosphorylation , Viral Proteins/chemistry , Gene Expression Regulation, Viral , Genome, Viral , HeLa Cells , Humans , Keratinocytes/virology , Mutation , Transcription, Genetic , Virus Replication
10.
Kidney Int ; 87(4): 728-37, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25493954

ABSTRACT

Calcitriol, a powerful regulator of phosphate metabolism and immune response, is generated by 25-hydroxyvitamin D 1α-hydroxylase in the kidney and macrophages. Renal 1α-hydroxylase expression is suppressed by Klotho and FGF23, the expression of which is stimulated by calcitriol. Interferon γ (INFγ) regulates 1α-hydroxylase expression in macrophages through transcription factor interferon regulatory factor-1. INFγ-signaling includes Janus kinase 3 (JAK3) but a role of JAK3 in the regulation of 1α-hydroxylase expression and mineral metabolism has not been shown. Thus, the impact of JAK3 deficiency on calcitriol formation and phosphate metabolism was measured. Renal interferon regulatory factor-1 and 1α-hydroxylase transcript levels, serum calcitriol and FGF23 levels, intestinal phosphate absorption as well as absolute and fractional renal phosphate excretion were significantly higher in jak3 knockout than in wild-type mice. Coexpression of JAK3 increased the phosphate-induced current in renal sodium-phosphate cotransporter-expressing Xenopus oocytes. Thus, JAK3 is a powerful regulator of 1α-hydroxylase expression and phosphate transport. Its deficiency leads to marked derangement of phosphate metabolism.


Subject(s)
25-Hydroxyvitamin D3 1-alpha-Hydroxylase/genetics , Calcitriol/blood , Janus Kinase 3/metabolism , Kidney/enzymology , Phosphates/metabolism , RNA, Messenger/metabolism , 25-Hydroxyvitamin D3 1-alpha-Hydroxylase/analysis , Animals , Calbindins/genetics , Calcitriol/biosynthesis , Feces/chemistry , Female , Fibroblast Growth Factor-23 , Fibroblast Growth Factors/blood , Interferon Regulatory Factor-1/analysis , Interferon Regulatory Factor-1/genetics , Intestinal Mucosa/metabolism , Janus Kinase 3/deficiency , Janus Kinase 3/genetics , Kidney/chemistry , Male , Mice , Mice, Knockout , Oocytes/enzymology , Phosphates/analysis , Sodium-Phosphate Cotransporter Proteins, Type IIa/metabolism , Up-Regulation , Xenopus
11.
Mol Cell Proteomics ; 12(6): 1709-22, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23436904

ABSTRACT

Identifying the building blocks of mammalian tissues is a precondition for understanding their function. In particular, global and quantitative analysis of the proteome of mammalian tissues would point to tissue-specific mechanisms and place the function of each protein in a whole-organism perspective. We performed proteomic analyses of 28 mouse tissues using high-resolution mass spectrometry and used a mix of mouse tissues labeled via stable isotope labeling with amino acids in cell culture as a "spike-in" internal standard for accurate protein quantification across these tissues. We identified a total of 7,349 proteins and quantified 6,974 of them. Bioinformatic data analysis showed that physiologically related tissues clustered together and that highly expressed proteins represented the characteristic tissue functions. Tissue specialization was reflected prominently in the proteomic profiles and is apparent already in their hundred most abundant proteins. The proportion of strictly tissue-specific proteins appeared to be small. However, even proteins with household functions, such as those in ribosomes and spliceosomes, can have dramatic expression differences among tissues. We describe a computational framework with which to correlate proteome profiles with physiological functions of the tissue. Our data will be useful to the broad scientific community as an initial atlas of protein expression of a mammalian species.


Subject(s)
Amino Acids/chemistry , Peptide Mapping , Proteome/chemistry , Amino Acids/metabolism , Animals , Gene Expression , Gene Expression Profiling , Isotope Labeling , Mass Spectrometry , Mice , Mice, Inbred C57BL , Organ Specificity , Proteome/genetics , Proteome/metabolism , Tissue Culture Techniques
12.
Cell Physiol Biochem ; 32(5): 1403-16, 2013.
Article in English | MEDLINE | ID: mdl-24296356

ABSTRACT

BACKGROUND: The proton-activated G protein-coupled receptor GPR4 is expressed in many tissues including white adipose tissue. GPR4 is activated by extracellular protons in the physiological pH range (i.e. pH 7.7 - 6.8) and is coupled to the production of cAMP. METHODS: We examined mice lacking GPR4 and examined glucose tolerance and insulin sensitivity in young and aged mice as well as in mice fed with a high fat diet. Expression profiles of pro- and anti-inflammatory cytokines in white adipose tissue, liver and skeletal muscle was assessed. RESULTS: Here we show that mice lacking GPR4 have an improved intraperitoneal glucose tolerance test and increased insulin sensitivity. Insulin levels were comparable but leptin levels were increased in GPR4 KO mice. Gpr4-/- showed altered expression of PPARa, IL-6, IL-10, TNFa, and TGF-1b in skeletal muscle, white adipose tissue, and liver. High fat diet abolished the differences in glucose tolerance and insulin sensitivity between Gpr4+/+ and Gpr4-/- mice. In contrast, in aged mice (12 months old), the positive effect of GPR4 deficiency on glucose tolerance and insulin sensitivity was maintained. Liver and adipose tissue showed no major differences in the mRNA expression of pro- and anti-inflammatory factors between aged mice of both genotypes. CONCLUSION: Thus, GPR4 deficiency improves glucose tolerance and insulin sensitivity. The effect may involve an altered balance between pro- and anti-inflammatory factors in insulin target tissues.


Subject(s)
Insulin Resistance/physiology , Protein Disulfide-Isomerases/metabolism , Adipose Tissue, White/metabolism , Aging , Animals , Diet, High-Fat , Gene Expression Regulation , Glucose/metabolism , Glucose Tolerance Test , Homeostasis , Hydrogen-Ion Concentration , Interleukin-10/genetics , Interleukin-6/genetics , Liver/metabolism , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Obesity/etiology , Obesity/genetics , PPAR alpha/genetics , Protein Disulfide-Isomerases/genetics , Protons , Tumor Necrosis Factor-alpha/genetics
13.
Front Mol Neurosci ; 16: 1133271, 2023.
Article in English | MEDLINE | ID: mdl-37273907

ABSTRACT

Lysine residues are one of the main sites for posttranslational modifications of proteins, and lysine ubiquitination of the Machado-Joseph disease protein ataxin-3 is implicated in its cellular function and polyglutamine expansion-dependent toxicity. Despite previously undertaken efforts, the individual roles of specific lysine residues of the ataxin-3 sequence are not entirely understood and demand further analysis. By retaining single lysine residues of otherwise lysine-free wild-type and polyglutamine-expanded ataxin-3, we assessed the effects of a site-limited modifiability on ataxin-3 protein levels, aggregation propensity, localization, and stability. We confirmed earlier findings that levels of lysine-free ataxin-3 are reduced due to its decreased stability, which led to a diminished load of SDS-insoluble species of its polyglutamine-expanded form. The isolated presence of several single lysine residues within the N-terminus of polyglutamine-expanded ataxin-3 significantly restored its aggregate levels, with highest fold changes induced by the presence of lysine 8 or lysine 85, respectively. Ataxin-3 lacking all lysine residues presented a slightly increased nuclear localization, which was counteracted by the reintroduction of lysine 85, whereas presence of either lysine 8 or lysine 85 led to a significantly higher ataxin-3 stability. Moreover, lysine-free ataxin-3 showed increased toxicity and binding to K48-linked polyubiquitin chains, whereas the reintroduction of lysine 85, located between the ubiquitin-binding sites 1 and 2 of ataxin-3, normalized its binding affinity. Overall, our data highlight the relevance of lysine residues 8 and 85 of ataxin-3 and encourage further analyses, to evaluate the potential of modulating posttranslational modifications of these sites for influencing pathophysiological characteristics of the Machado-Joseph disease protein.

14.
Cell Physiol Biochem ; 29(3-4): 313-24, 2012.
Article in English | MEDLINE | ID: mdl-22508039

ABSTRACT

The Ovarian cancer G protein-coupled Receptor 1 (OGR1; GPR68) is proton-sensitive in the pH range of 6.8 - 7.8. However, its physiological function is not defined to date. OGR1 signals via inositol trisphosphate and intracellular calcium, albeit downstream events are unclear. To elucidate OGR1 function further, we transfected HEK293 cells with active OGR1 receptor or a mutant lacking 5 histidine residues (H5Phe-OGR1). An acute switch of extracellular pH from 8 to 7.1 (10 nmol/l vs 90 nmol/l protons) stimulated NHE and H(+)-ATPase activity in OGR1-transfected cells, but not in H5Phe-OGR1-transfected cells. ZnCl(2) and CuCl(2) that both inhibit OGR1 reduced the stimulatory effect. The activity was blocked by chelerythrine, whereas the ERK1/2 inhibitor PD 098059 had no inhibitory effect. OGR1 activation increased intracellular calcium in transfected HEK293 cells. We next isolated proximal tubules from kidneys of wild-type and OGR1-deficient mice and measured the effect of extracellular pH on NHE activity in vitro. Deletion of OGR1 affected the pH-dependent proton extrusion, however, in the opposite direction as expected from cell culture experiments. Upregulated expression of the pH-sensitive kinase Pyk2 in OGR1 KO mouse proximal tubule cells may compensate for the loss of OGR1. Thus, we present the first evidence that OGR1 modulates the activity of two major plasma membrane proton transport systems. OGR1 may be involved in the regulation of plasma membrane transport proteins and intra- and/or extracellular pH.


Subject(s)
Epithelium/metabolism , Gene Expression Regulation , Proton-Translocating ATPases/metabolism , Receptors, G-Protein-Coupled/metabolism , Sodium-Hydrogen Exchangers/metabolism , Animals , Benzophenanthridines/pharmacology , Calcium/metabolism , Cell Membrane/genetics , Cell Membrane/metabolism , Chlorides/pharmacology , Enzyme Activation , Female , Flavonoids/pharmacology , Focal Adhesion Kinase 2/metabolism , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Kidney Tubules, Proximal/metabolism , MAP Kinase Signaling System , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Proton-Translocating ATPases/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Sodium-Hydrogen Exchanger 3 , Sodium-Hydrogen Exchangers/antagonists & inhibitors , Transfection , Zinc Compounds/pharmacology
15.
Mol Membr Biol ; 28(2): 79-89, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21231794

ABSTRACT

The heterotetrameric K(+)-channel KCNQ1/KCNE1 is expressed in heart, skeletal muscle, liver and several epithelia including the renal proximal tubule. In the heart, it contributes to the repolarization of cardiomyocytes. The repolarization is impaired in ischemia. Ischemia stimulates the AMP-activated protein kinase (AMPK), a serine/threonine kinase, sensing energy depletion and stimulating several cellular mechanisms to enhance energy production and to limit energy utilization. AMPK has previously been shown to downregulate the epithelial Na(+) channel ENaC, an effect mediated by the ubiquitin ligase Nedd4-2. The present study explored whether AMPK regulates KCNQ1/KCNE1. To this end, cRNA encoding KCNQ1/KCNE1 was injected into Xenopus oocytes with and without additional injection of wild type AMPK (AMPKα1 + AMPKß1 + AMPKγ1), of the constitutively active (γR70Q)AMPK (α1ß1γ1(R70Q)), of the kinase dead mutant (αK45R)AMPK (α1(K45R)ß1γ1), or of the ubiquitin ligase Nedd4-2. KCNQ1/KCNE1 activity was determined in two electrode voltage clamp experiments. Moreover, KCNQ1 abundance in the cell membrane was determined by immunostaining and subsequent confocal imaging. As a result, wild type and constitutively active AMPK significantly reduced KCNQ1/KCNE1-mediated currents and reduced KCNQ1 abundance in the cell membrane. Similarly, Nedd4-2 decreased KCNQ1/KCNE1-mediated currents and KCNQ1 protein abundance in the cell membrane. Activation of AMPK in isolated perfused proximal renal tubules by AICAR (10 mM) was followed by significant depolarization. In conclusion, AMPK is a potent regulator of KCNQ1/KCNE1.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , KCNQ1 Potassium Channel/antagonists & inhibitors , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Blotting, Western , Cell Membrane/metabolism , Fluorescent Antibody Technique , Humans , Ion Channel Gating , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Kidney Tubules, Proximal/metabolism , Microscopy, Confocal , Mutagenesis, Site-Directed , Nedd4 Ubiquitin Protein Ligases , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , RNA, Complementary , Ribonucleotides/pharmacology , Xenopus , Xenopus Proteins
16.
Biomater Adv ; 139: 213014, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35882160

ABSTRACT

Patients with severe lung diseases are highly dependent on lung support systems. Despite many improvements, long-term use is not possible, mainly because of the strong body defence reactions (e.g. coagulation, complement system, inflammation and cell activation). The systematic characterization of adsorbed proteins on the gas exchange membrane of the lung system over time can provide insights into the course of various defence reactions and identify possible targets for surface modifications. Using comprehensive mass spectrometry analyses of desorbed proteins, we were able to identify for the first time binding profiles of over 500 proteins over a period of six hours on non-coated and heparin-coated PMP hollow fiber membranes. We observed a higher degree of remodeling of the protein layer on the non-coated membrane than on the coated membrane. In general, there was a higher protein binding on the coated membrane with exception of proteins with a heparin-binding site. Focusing on the most important pathways showed that almost all coagulation factors bound in higher amounts to the non-coated membranes. Furthermore, we could show that the initiator proteins of the complement system bound stronger to the heparinized membranes, but the subsequently activated proteins bound stronger to the non-coated membranes, thus complement activation on heparinized surfaces is mainly due to the alternative complement pathway. Our results provide a comprehensive insight into plasma protein adsorption on oxygenator membranes over time and point to new ways to better understand the processes on the membranes and to develop new specific surface modifications.


Subject(s)
Heparin , Oxygenators, Membrane , Adsorption , Blood Proteins/chemistry , Heparin/administration & dosage , Humans , Oxygenators
17.
JCI Insight ; 7(21)2022 11 08.
Article in English | MEDLINE | ID: mdl-36107633

ABSTRACT

Acute kidney injury (AKI) represents a common complication in critically ill patients that is associated with increased morbidity and mortality. In a murine AKI model induced by ischemia/reperfusion injury (IRI), we show that glutamine significantly decreases kidney damage and improves kidney function. We demonstrate that glutamine causes transcriptomic and proteomic reprogramming in murine renal tubular epithelial cells (TECs), resulting in decreased epithelial apoptosis, decreased neutrophil recruitment, and improved mitochondrial functionality and respiration provoked by an ameliorated oxidative phosphorylation. We identify the proteins glutamine gamma glutamyltransferase 2 (Tgm2) and apoptosis signal-regulating kinase (Ask1) as the major targets of glutamine in apoptotic signaling. Furthermore, the direct modulation of the Tgm2-HSP70 signalosome and reduced Ask1 activation resulted in decreased JNK activation, leading to diminished mitochondrial intrinsic apoptosis in TECs. Glutamine administration attenuated kidney damage in vivo during AKI and TEC viability in vitro under inflammatory or hypoxic conditions.


Subject(s)
Acute Kidney Injury , Glutamine , Humans , Mice , Animals , Glutamine/pharmacology , Glutamine/metabolism , Proteomics , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism , Apoptosis/physiology , Oxidative Stress , Epithelial Cells/metabolism
18.
J Proteome Res ; 10(4): 1690-7, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21214270

ABSTRACT

Activation of AMP-activated protein kinase (AMPK) upon energy depletion stimulates energy production and limits energy utilization. Erythrocytes lacking AMPK are susceptible to suicidal cell death (eryptosis). A hallmark of eryptosis is cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface, which can be identified from annexin V-binding. AMPKα1-deficient mice (ampk(-/-)) suffer from anemia due to accelerated clearance of erythrocytes from circulating blood. To determine the link between AMPK and the eryptotic phenotype, we performed a global proteome analysis of erythrocytes from ampk(-/-) mice and wild-type mice using high-accuracy mass spectrometry and label-free quantitation and measured changes of expression levels of 812 proteins. Notably, the p21-activated kinase 2 (PAK2), previously implicated in apoptosis, was detected as downregulated in erythrocytes of ampk(-/-) mice, pointing to its potential role in eryptosis. To validate this, we showed that specific inactivation of PAK2 with the inhibitor IPA3 in human and murine ampk(+/+) erythrocytes increases the binding of annexin V and augments the stimulating effect of glucose deprivation on annexin V-binding. Inhibition of PAK2 failed to significantly modify annexin V-binding in ampk(-/-) erythrocytes, showing that AMPK and PAK2 exert similar phenotypes upon inactivation in erythrocytes. This study presents the first large-scale analysis of protein expression in erythrocytes from AMPKα1-deficient mice and reveals a role of PAK2 kinase in eryptosis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Cell Death/physiology , Erythrocytes/chemistry , Erythrocytes/enzymology , Erythrocytes/physiology , Proteome/analysis , p21-Activated Kinases/metabolism , AMP-Activated Protein Kinases/genetics , Animals , Humans , Mass Spectrometry/methods , Mice , Mice, Knockout , Proteomics/methods , p21-Activated Kinases/genetics
19.
Front Immunol ; 12: 787468, 2021.
Article in English | MEDLINE | ID: mdl-35111157

ABSTRACT

During pregnancy, maternal immune system has to balance tightly between protection against pathogens and tolerance towards a semi-allogeneic organism. Dysfunction of this immune adaptation can lead to severe complications such as pregnancy loss, preeclampsia or fetal growth restriction. In the present study we analyzed the impact of the murine MHC class Ib molecule Qa-2 on pregnancy outcome in vivo. We demonstrate that lack of Qa-2 led to intrauterine growth restriction and increased abortion rates especially in late pregnancy accompanied by a disturbed trophoblast invasion and altered spiral artery remodeling as well as protein aggregation in trophoblast cells indicating a preeclampsia-like phenotype. Furthermore, lack of Qa-2 caused imbalanced immunological adaptation to pregnancy with altered immune cell and especially T-cell homeostasis, reduced Treg numbers and decreased accumulation and functional activation of myeloid-derived suppressor cells. Lastly, we show that application of sHLA-G reduced abortion rates in Qa-2 deficient mice by inducing MDSC. Our results highlight the importance of an interaction between HLA-G and MDSC for pregnancy success and the therapeutic potential of HLA-G for treatment of immunological pregnancy complications.


Subject(s)
HLA-G Antigens/immunology , Histocompatibility Antigens Class I/immunology , Myeloid-Derived Suppressor Cells/immunology , Abortion, Induced/methods , Abortion, Spontaneous/immunology , Adolescent , Adult , Animals , Cells, Cultured , Female , Humans , Immune Tolerance/immunology , Leukocytes, Mononuclear/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Pre-Eclampsia/immunology , Pregnancy , Pregnancy Outcome , Trophoblasts/immunology , Young Adult
20.
J Am Soc Nephrol ; 20(8): 1705-13, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19470676

ABSTRACT

Hypercalciuria increases the risk for urolithiasis, but renal adaptive mechanisms reduce this risk. For example, transient receptor potential vanilloid 5 knockout (TPRV5(-/-)) mice lack kidney stones despite urinary calcium (Ca(2+)) wasting and hyperphosphaturia, perhaps as a result of their significant polyuria and urinary acidification. Here, we investigated the mechanisms linking hypercalciuria with these adaptive mechanisms. Exposure of dissected mouse outer medullary collecting ducts to high (5.0 mM) extracellular Ca(2+) stimulated H(+)-ATPase activity. In TRPV5(-/-) mice, activation of the renal Ca(2+)-sensing receptor promoted H(+)-ATPase-mediated H(+) excretion and downregulation of aquaporin 2, leading to urinary acidification and polyuria, respectively. Gene ablation of the collecting duct-specific B1 subunit of H(+)-ATPase in TRPV5(-/-) mice abolished the enhanced urinary acidification, which resulted in severe tubular precipitations of Ca(2+)-phosphate in the renal medulla. In conclusion, activation of Ca(2+)-sensing receptor by increased luminal Ca(2+) leads to urinary acidification and polyuria. These beneficial adaptations facilitate the excretion of large amounts of soluble Ca(2+), which is crucial to prevent the formation of kidney stones.


Subject(s)
Hypercalciuria/urine , Nephrolithiasis/urine , Receptors, Calcium-Sensing/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Animals , Aquaporin 2/metabolism , Calcium/urine , Calcium Channels/genetics , Hydrogen-Ion Concentration , Intestinal Mucosa/metabolism , Kidney/metabolism , Kidney Tubules, Collecting/enzymology , Mice , Mice, Knockout , Phenotype , Phosphate Transport Proteins/metabolism , TRPV Cation Channels/genetics , Vacuolar Proton-Translocating ATPases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL