Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Proc Natl Acad Sci U S A ; 117(14): 8154-8165, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32205441

ABSTRACT

Spinocerebellar ataxia type 3 (SCA3) is a dominantly inherited neurodegenerative disease caused by CAG (encoding glutamine) repeat expansion in the Ataxin-3 (ATXN3) gene. We have shown previously that ATXN3-depleted or pathogenic ATXN3-expressing cells abrogate polynucleotide kinase 3'-phosphatase (PNKP) activity. Here, we report that ATXN3 associates with RNA polymerase II (RNAP II) and the classical nonhomologous end-joining (C-NHEJ) proteins, including PNKP, along with nascent RNAs under physiological conditions. Notably, ATXN3 depletion significantly decreased global transcription, repair of transcribed genes, and error-free double-strand break repair of a 3'-phosphate-containing terminally gapped, linearized reporter plasmid. The missing sequence at the terminal break site was restored in the recircularized plasmid in control cells by using the endogenous homologous transcript as a template, indicating ATXN3's role in PNKP-mediated error-free C-NHEJ. Furthermore, brain extracts from SCA3 patients and mice show significantly lower PNKP activity, elevated p53BP1 level, more abundant strand-breaks in the transcribed genes, and degradation of RNAP II relative to controls. A similar RNAP II degradation is also evident in mutant ATXN3-expressing Drosophila larval brains and eyes. Importantly, SCA3 phenotype in Drosophila was completely amenable to PNKP complementation. Hence, salvaging PNKP's activity can be a promising therapeutic strategy for SCA3.


Subject(s)
Ataxin-3/genetics , DNA End-Joining Repair , DNA Repair Enzymes/metabolism , Machado-Joseph Disease/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , RNA Polymerase II/metabolism , Repressor Proteins/genetics , Aged, 80 and over , Animals , Animals, Genetically Modified , Ataxin-3/metabolism , Brain/pathology , Cell Line , DNA Breaks, Double-Stranded , Disease Models, Animal , Drosophila , Female , Gene Knockdown Techniques , Humans , Induced Pluripotent Stem Cells , Machado-Joseph Disease/metabolism , Machado-Joseph Disease/pathology , Male , Mice , Middle Aged , Mutation , Peptides/genetics , RNA, Small Interfering/metabolism
2.
Nucleic Acids Res ; 48(19): 11016-11029, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33035310

ABSTRACT

Studies of bacterial chromosomes and plasmids indicate that their replication initiator proteins bind to origins of replication at many double-stranded sites and also at AT-rich regions where single-stranded DNA is exposed during origin opening. Single-strand binding apparently promotes origin opening by stabilizing an open structure, but how the initiator participates in this process and the contributions of the several binding sites remain unclear. Here, we show that the initiator protein of Vibrio cholerae specific to chromosome 2 (Chr2) also has single-strand binding activity in the AT-rich region of its origin. Binding is strand specific, depends on repeats of the sequence 5'ATCA and is greatly stabilized in vitro by specific double-stranded sites of the origin. The stability derives from the formation of ternary complexes of the initiator with the single- and double-stranded sites. An IHF site lies between these two kinds of sites in the Chr2 origin and an IHF-induced looping out of the intervening DNA mediates their interaction. Simultaneous binding to two kinds of sites in the origin appears to be a common mechanism by which bacterial replication initiators stabilize an open origin.


Subject(s)
Bacterial Proteins/metabolism , Chromosomes, Bacterial/metabolism , DNA Helicases/metabolism , DNA Replication , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Vibrio cholerae/genetics , Binding Sites , Gene Expression Regulation, Bacterial , Protein Binding , Replication Origin
3.
J Biol Chem ; 295(32): 11082-11098, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32518160

ABSTRACT

Infection with the Gram-negative, microaerophilic bacterium Helicobacter pylori induces an inflammatory response and oxidative DNA damage in gastric epithelial cells that can lead to gastric cancer (GC). However, the underlying pathogenic mechanism is largely unclear. Here, we report that the suppression of Nei-like DNA glycosylase 2 (NEIL2), a mammalian DNA glycosylase that specifically removes oxidized bases, is one mechanism through which H. pylori infection may fuel the accumulation of DNA damage leading to GC. Using cultured cell lines, gastric biopsy specimens, primary cells, and human enteroid-derived monolayers from healthy human stomach, we show that H. pylori infection greatly reduces NEIL2 expression. The H. pylori infection-induced downregulation of NEIL2 was specific, as Campylobacter jejuni had no such effect. Using gastric organoids isolated from the murine stomach in coculture experiments with live bacteria mimicking the infected stomach lining, we found that H. pylori infection is associated with the production of various inflammatory cytokines. This response was more pronounced in Neil2 knockout (KO) mouse cells than in WT cells, suggesting that NEIL2 suppresses inflammation under physiological conditions. Notably, the H. pylori-infected Neil2-KO murine stomach exhibited more DNA damage than the WT. Furthermore, H. pylori-infected Neil2-KO mice had greater inflammation and more epithelial cell damage. Computational analysis of gene expression profiles of DNA glycosylases in gastric specimens linked the reduced Neil2 level to GC progression. Our results suggest that NEIL2 downregulation is a plausible mechanism by which H. pylori infection impairs DNA damage repair, amplifies the inflammatory response, and initiates GC.


Subject(s)
DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Down-Regulation , Gastric Mucosa/metabolism , Genome , Helicobacter Infections/metabolism , Helicobacter pylori/isolation & purification , Inflammation/metabolism , Animals , Antigens, Bacterial/metabolism , Bacterial Proteins/metabolism , DNA Glycosylases/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Disease Progression , Gastric Mucosa/pathology , Helicobacter Infections/microbiology , Helicobacter Infections/pathology , Helicobacter pylori/metabolism , Humans , Mice , RNA, Messenger/genetics
6.
Nat Commun ; 7: 13049, 2016 10 05.
Article in English | MEDLINE | ID: mdl-27703167

ABSTRACT

DNA double-strand breaks (DSBs) leading to loss of nucleotides in the transcribed region can be lethal. Classical non-homologous end-joining (C-NHEJ) is the dominant pathway for DSB repair (DSBR) in adult mammalian cells. Here we report that during such DSBR, mammalian C-NHEJ proteins form a multiprotein complex with RNA polymerase II and preferentially associate with the transcribed genes after DSB induction. Depletion of C-NHEJ factors significantly abrogates DSBR in transcribed but not in non-transcribed genes. We hypothesized that nascent RNA can serve as a template for restoring the missing sequences, thus allowing error-free DSBR. We indeed found pre-mRNA in the C-NHEJ complex. Finally, when a DSB-containing plasmid with several nucleotides deleted within the E. coli lacZ gene was allowed time to repair in lacZ-expressing mammalian cells, a functional lacZ plasmid could be recovered from control but not C-NHEJ factor-depleted cells, providing important mechanistic insights into C-NHEJ-mediated error-free DSBR of the transcribed genome.


Subject(s)
DNA Breaks, Double-Stranded , DNA End-Joining Repair , RNA/genetics , DNA-Binding Proteins/metabolism , Escherichia coli/metabolism , Gene Expression Regulation, Bacterial , HEK293 Cells , Humans , Lac Operon , Plasmids , RNA Polymerase II/metabolism , RNA, Small Interfering/metabolism , Reproducibility of Results , Ribonuclease H/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL