Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Immunity ; 57(7): 1696-1709.e10, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38878770

ABSTRACT

Aicardi-Goutières syndrome (AGS) is an autoinflammatory disease characterized by aberrant interferon (IFN)-α production. The major cause of morbidity in AGS is brain disease, yet the primary source and target of neurotoxic IFN-α remain unclear. Here, we demonstrated that the brain was the primary source of neurotoxic IFN-α in AGS and confirmed the neurotoxicity of intracerebral IFN-α using astrocyte-driven Ifna1 misexpression in mice. Using single-cell RNA sequencing, we demonstrated that intracerebral IFN-α-activated receptor (IFNAR) signaling within cerebral endothelial cells caused a distinctive cerebral small vessel disease similar to that observed in individuals with AGS. Magnetic resonance imaging (MRI) and single-molecule ELISA revealed that central and not peripheral IFN-α was the primary determinant of microvascular disease in humans. Ablation of endothelial Ifnar1 in mice rescued microvascular disease, stopped the development of diffuse brain disease, and prolonged lifespan. These results identify the cerebral microvasculature as a primary mediator of IFN-α neurotoxicity in AGS, representing an accessible target for therapeutic intervention.


Subject(s)
Brain , Interferon-alpha , Microvessels , Nervous System Malformations , Receptor, Interferon alpha-beta , Animals , Humans , Mice , Interferon-alpha/metabolism , Brain/metabolism , Brain/pathology , Receptor, Interferon alpha-beta/metabolism , Receptor, Interferon alpha-beta/genetics , Microvessels/pathology , Nervous System Malformations/genetics , Autoimmune Diseases of the Nervous System/immunology , Endothelial Cells/metabolism , Mice, Knockout , Male , Female , Signal Transduction , Mice, Inbred C57BL , Astrocytes/metabolism , Disease Models, Animal
2.
Neuropathol Appl Neurobiol ; 50(4): e13003, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39075830

ABSTRACT

Previous reports have shown that IL-6 and IFN-⍺ induce distinct transcriptomic and morphological changes in microglia. Here, we demonstrate that IL-6 increases tissue surveillance, migration and phagocytosis in primary murine microglia, whereas IFN-⍺ inhibits these functions. Our results provide a crucial link between transcriptome and function. It holds the potential to serve as the foundation for future studies aimed at identifying therapeutic targets for cytokine-mediated neuroinflammatory diseases.


Subject(s)
Interferon-alpha , Interleukin-6 , Microglia , Animals , Mice , Cell Movement/drug effects , Interferon-alpha/metabolism , Interleukin-6/metabolism , Mice, Inbred C57BL , Microglia/metabolism , Microglia/drug effects , Phagocytosis/physiology , Phagocytosis/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL