Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 172(1-2): 218-233.e17, 2018 01 11.
Article in English | MEDLINE | ID: mdl-29249357

ABSTRACT

Signaling pathways that promote adipose tissue thermogenesis are well characterized, but the limiters of energy expenditure are largely unknown. Here, we show that ablation of the anti-inflammatory cytokine IL-10 improves insulin sensitivity, protects against diet-induced obesity, and elicits the browning of white adipose tissue. Mechanistic studies define bone marrow cells as the source of the IL-10 signal and adipocytes as the target cell type mediating these effects. IL-10 receptor alpha is highly enriched in mature adipocytes and is induced in response to differentiation, obesity, and aging. Assay for transposase-accessible chromatin sequencing (ATAC-seq), ChIP-seq, and RNA-seq reveal that IL-10 represses the transcription of thermogenic genes in adipocytes by altering chromatin accessibility and inhibiting ATF and C/EBPß recruitment to key enhancer regions. These findings expand our understanding of the relationship between inflammatory signaling pathways and adipose tissue function and provide insight into the physiological control of thermogenesis that could inform future therapy.


Subject(s)
Adipocytes/metabolism , Chromatin Assembly and Disassembly , Energy Metabolism , Interleukin-10/metabolism , Thermogenesis , Activating Transcription Factors/metabolism , Animals , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Cells, Cultured , Interleukin-10/genetics , Male , Mice , Mice, Inbred C57BL , Signal Transduction
2.
Cell ; 163(7): 1716-29, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26686653

ABSTRACT

Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.


Subject(s)
Cholesterol/metabolism , Immunity, Innate , Interferon-gamma/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Humans , Interferon beta-1b , Membrane Proteins/metabolism , Mevalonic Acid/metabolism , Mice , Mice, Inbred C57BL , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism
3.
Nature ; 613(7942): 160-168, 2023 01.
Article in English | MEDLINE | ID: mdl-36477540

ABSTRACT

Multilocular adipocytes are a hallmark of thermogenic adipose tissue1,2, but the factors that enforce this cellular phenotype are largely unknown. Here, we show that an adipocyte-selective product of the Clstn3 locus (CLSTN3ß) present in only placental mammals facilitates the efficient use of stored triglyceride by limiting lipid droplet (LD) expansion. CLSTN3ß is an integral endoplasmic reticulum (ER) membrane protein that localizes to ER-LD contact sites through a conserved hairpin-like domain. Mice lacking CLSTN3ß have abnormal LD morphology and altered substrate use in brown adipose tissue, and are more susceptible to cold-induced hypothermia despite having no defect in adrenergic signalling. Conversely, forced expression of CLSTN3ß is sufficient to enforce a multilocular LD phenotype in cultured cells and adipose tissue. CLSTN3ß associates with cell death-inducing DFFA-like effector proteins and impairs their ability to transfer lipid between LDs, thereby restricting LD fusion and expansion. Functionally, increased LD surface area in CLSTN3ß-expressing adipocytes promotes engagement of the lipolytic machinery and facilitates fatty acid oxidation. In human fat, CLSTN3B is a selective marker of multilocular adipocytes. These findings define a molecular mechanism that regulates LD form and function to facilitate lipid utilization in thermogenic adipocytes.


Subject(s)
Adipocytes , Calcium-Binding Proteins , Lipid Metabolism , Membrane Proteins , Animals , Female , Humans , Mice , Adipocytes/cytology , Adipocytes/metabolism , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/metabolism , Calcium-Binding Proteins/deficiency , Calcium-Binding Proteins/metabolism , Membrane Proteins/deficiency , Membrane Proteins/metabolism , Placenta , Triglycerides/metabolism , Endoplasmic Reticulum/metabolism , Lipid Droplets/metabolism , Fatty Acids/metabolism , Hypothermia/metabolism , Thermogenesis
4.
Nature ; 590(7846): 480-485, 2021 02.
Article in English | MEDLINE | ID: mdl-33597756

ABSTRACT

Obesity increases the risk of mortality because of metabolic sequelae such as type 2 diabetes and cardiovascular disease1. Thermogenesis by adipocytes can counteract obesity and metabolic diseases2,3. In thermogenic fat, creatine liberates a molar excess of mitochondrial ADP-purportedly via a phosphorylation cycle4-to drive thermogenic respiration. However, the proteins that control this futile creatine cycle are unknown. Here we show that creatine kinase B (CKB) is indispensable for thermogenesis resulting from the futile creatine cycle, during which it traffics to mitochondria using an internal mitochondrial targeting sequence. CKB is powerfully induced by thermogenic stimuli in both mouse and human adipocytes. Adipocyte-selective inactivation of Ckb in mice diminishes thermogenic capacity, increases predisposition to obesity, and disrupts glucose homeostasis. CKB is therefore a key effector of the futile creatine cycle.


Subject(s)
Adipose Tissue/metabolism , Creatine Kinase, BB Form/metabolism , Creatine/metabolism , Thermogenesis , Adipocytes/metabolism , Adipose Tissue/cytology , Adipose Tissue/enzymology , Animals , Creatine Kinase, BB Form/deficiency , Creatine Kinase, BB Form/genetics , Cyclic AMP/metabolism , Energy Metabolism/genetics , Female , Glucose/metabolism , Homeostasis , Humans , Male , Mice , Mitochondria/metabolism , Obesity/enzymology , Obesity/genetics , Obesity/metabolism , Signal Transduction
5.
Nat Immunol ; 14(5): 489-99, 2013 May.
Article in English | MEDLINE | ID: mdl-23563690

ABSTRACT

Newly activated CD8(+) T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals that mediate metabolic reprogramming remain poorly defined. Here we demonstrate an essential role for sterol regulatory element-binding proteins (SREBPs) in the acquisition of effector-cell metabolism. Without SREBP signaling, CD8(+) T cells were unable to blast, which resulted in attenuated clonal expansion during viral infection. Mechanistic studies indicated that SREBPs were essential for meeting the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs were dispensable for homeostatic proliferation, which indicated a context-specific requirement for SREBPs in effector responses. Our studies provide insights into the molecular signals that underlie the metabolic reprogramming of CD8(+) T cells during the transition from quiescence to activation.


Subject(s)
CD8-Positive T-Lymphocytes/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Adaptive Immunity/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/genetics , Cell Proliferation , Cells, Cultured , Lymphocyte Activation/genetics , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , RNA, Small Interfering/genetics , Signal Transduction/genetics , Signal Transduction/immunology , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/genetics , Transgenes/genetics
6.
EMBO J ; 39(13): e104073, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32432379

ABSTRACT

Respirometry is the gold standard measurement of mitochondrial oxidative function, as it reflects the activity of the electron transport chain complexes working together. However, the requirement for freshly isolated mitochondria hinders the feasibility of respirometry in multi-site clinical studies and retrospective studies. Here, we describe a novel respirometry approach suited for frozen samples by restoring electron transfer components lost during freeze/thaw and correcting for variable permeabilization of mitochondrial membranes. This approach preserves 90-95% of the maximal respiratory capacity in frozen samples and can be applied to isolated mitochondria, permeabilized cells, and tissue homogenates with high sensitivity. We find that primary changes in mitochondrial function, detected in fresh tissue, are preserved in frozen samples years after collection. This approach will enable analysis of the integrated function of mitochondrial Complexes I to IV in one measurement, collected at remote sites or retrospectively in samples residing in tissue biobanks.


Subject(s)
Cryopreservation , Electron Transport Chain Complex Proteins/metabolism , Mitochondria/metabolism , Oxygen Consumption , Zebrafish Proteins/metabolism , Zebrafish/metabolism , Animals , Male , Mice
7.
Mol Syst Biol ; 17(1): e9684, 2021 01.
Article in English | MEDLINE | ID: mdl-33417276

ABSTRACT

To elucidate the contributions of specific lipid species to metabolic traits, we integrated global hepatic lipid data with other omics measures and genetic data from a cohort of about 100 diverse inbred strains of mice fed a high-fat/high-sucrose diet for 8 weeks. Association mapping, correlation, structure analyses, and network modeling revealed pathways and genes underlying these interactions. In particular, our studies lead to the identification of Ifi203 and Map2k6 as regulators of hepatic phosphatidylcholine homeostasis and triacylglycerol accumulation, respectively. Our analyses highlight mechanisms for how genetic variation in hepatic lipidome can be linked to physiological and molecular phenotypes, such as microbiota composition.


Subject(s)
Diet, High-Fat/adverse effects , Fatty Liver/genetics , Glucose/adverse effects , Insulin Resistance/genetics , MAP Kinase Kinase 6/genetics , Nuclear Proteins/genetics , Animals , Disease Models, Animal , Fatty Liver/chemically induced , Fatty Liver/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Variation , Lipidomics , Male , Mice , Phosphatidylcholines/metabolism , Triglycerides/metabolism
8.
J Biol Chem ; 295(44): 15054-15069, 2020 10 30.
Article in English | MEDLINE | ID: mdl-32855239

ABSTRACT

Strategies to increase energy expenditure are an attractive approach to reduce excess fat storage and body weight to improve metabolic health. In mammals, uncoupling protein-1 (UCP1) in brown and beige adipocytes uncouples fatty acid oxidation from ATP generation in mitochondria and promotes energy dissipation as heat. We set out to identify small molecules that enhance UCP1 levels and activity using a high-throughput screen of nearly 12,000 compounds in mouse brown adipocytes. We identified a family of compounds that increase Ucp1 expression and mitochondrial activity (including un-coupled respiration) in mouse brown adipocytes and human brown and white adipocytes. The mechanism of action may be through compound binding to A kinase anchoring protein (AKAP) 1, modulating its localization to mitochondria and its interaction with protein kinase A (PKA), a known node in the ß-adrenergic signaling pathway. In mice, the hit compound increased body temperature, UCP1 protein levels, and thermogenic gene expression. Some of the compound effects on mitochondrial function were UCP1- or AKAP1-independent, suggesting compound effects on multiple nodes of energy regulation. Overall, our results highlight a role for AKAP1 in thermogenesis, uncoupled respiration, and regulation energy balance.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Small Molecule Libraries/pharmacology , Thermogenesis/drug effects , Uncoupling Protein 1/biosynthesis , Adipocytes, Brown/enzymology , Adipocytes, Brown/metabolism , Adipocytes, White/enzymology , Adipocytes, White/metabolism , Animals , Cells, Cultured , Energy Metabolism , Enzyme Activation , Gene Expression Profiling , High-Throughput Screening Assays , Humans , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Reproducibility of Results , Signal Transduction
9.
Immunity ; 36(3): 401-14, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22342844

ABSTRACT

We report that in the presence of signal 1 (NF-κB), the NLRP3 inflammasome was activated by mitochondrial apoptotic signaling that licensed production of interleukin-1ß (IL-1ß). NLRP3 secondary signal activators such as ATP induced mitochondrial dysfunction and apoptosis, resulting in release of oxidized mitochondrial DNA (mtDNA) into the cytosol, where it bound to and activated the NLRP3 inflammasome. The antiapoptotic protein Bcl-2 inversely regulated mitochondrial dysfunction and NLRP3 inflammasome activation. Mitochondrial DNA directly induced NLRP3 inflammasome activation, because macrophages lacking mtDNA had severely attenuated IL-1ß production, yet still underwent apoptosis. Both binding of oxidized mtDNA to the NLRP3 inflammasome and IL-1ß secretion could be competitively inhibited by the oxidized nucleoside 8-OH-dG. Thus, our data reveal that oxidized mtDNA released during programmed cell death causes activation of the NLRP3 inflammasome. These results provide a missing link between apoptosis and inflammasome activation, via binding of cytosolic oxidized mtDNA to the NLRP3 inflammasome.


Subject(s)
Apoptosis/immunology , Carrier Proteins/immunology , Carrier Proteins/metabolism , DNA, Mitochondrial/immunology , DNA, Mitochondrial/metabolism , Inflammasomes/immunology , Inflammasomes/metabolism , Animals , Gene Expression , Interleukin-1beta/biosynthesis , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B/immunology , NLR Family, Pyrin Domain-Containing 3 Protein , Oxidation-Reduction , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , Salmonella typhimurium/immunology , Salmonella typhimurium/pathogenicity , Signal Transduction
10.
Proc Natl Acad Sci U S A ; 115(24): E5566-E5575, 2018 06 12.
Article in English | MEDLINE | ID: mdl-29844188

ABSTRACT

Although significant progress has been made in understanding epigenetic regulation of in vitro adipogenesis, the physiological functions of epigenetic regulators in metabolism and their roles in obesity remain largely elusive. Here, we report that KDM4B (lysine demethylase 4B) in adipose tissues plays a critical role in energy balance, oxidation, lipolysis, and thermogenesis. Loss of KDM4B in mice resulted in obesity associated with reduced energy expenditure and impaired adaptive thermogenesis. Obesity in KDM4B-deficient mice was accompanied by hyperlipidemia, insulin resistance, and pathological changes in the liver and pancreas. Adipocyte-specific deletion of Kdm4b revealed that the adipose tissues were the main sites for KDM4B antiobesity effects. KDM4B directly controlled the expression of multiple metabolic genes, including Ppargc1a and Ppara Collectively, our studies identify KDM4B as an essential epigenetic factor for the regulation of metabolic health and maintaining normal body weight in mice. KDM4B may provide a therapeutic target for treatment of obesity.


Subject(s)
Jumonji Domain-Containing Histone Demethylases/metabolism , Metabolic Diseases/metabolism , Obesity/metabolism , Adipocytes/metabolism , Adipogenesis/physiology , Adipose Tissue/metabolism , Animals , Body Weight/physiology , Diet, High-Fat/adverse effects , Energy Metabolism/physiology , Epigenesis, Genetic/physiology , Insulin Resistance/physiology , Lipolysis/physiology , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Thermogenesis/physiology
11.
J Lipid Res ; 61(3): 413-421, 2020 03.
Article in English | MEDLINE | ID: mdl-31941672

ABSTRACT

Zinc metallopeptidase STE24 (ZMPSTE24) is essential for the conversion of farnesyl-prelamin A to mature lamin A, a key component of the nuclear lamina. In the absence of ZMPSTE24, farnesyl-prelamin A accumulates in the nucleus and exerts toxicity, causing a variety of disease phenotypes. By ∼4 months of age, both male and female Zmpste24-/- mice manifest a near-complete loss of adipose tissue, but it has never been clear whether this phenotype is a direct consequence of farnesyl-prelamin A toxicity in adipocytes. To address this question, we generated a conditional knockout Zmpste24 allele and used it to create adipocyte-specific Zmpste24-knockout mice. To boost farnesyl-prelamin A levels, we bred in the "prelamin A-only" Lmna allele. Gene expression, immunoblotting, and immunohistochemistry experiments revealed that adipose tissue in these mice had decreased Zmpste24 expression along with strikingly increased accumulation of prelamin A. In male mice, Zmpste24 deficiency in adipocytes was accompanied by modest changes in adipose stores (an 11% decrease in body weight, a 23% decrease in body fat mass, and significantly smaller gonadal and inguinal white adipose depots). No changes in adipose stores were detected in female mice, likely because prelamin A expression in adipose tissue is lower in female mice. Zmpste24 deficiency in adipocytes did not alter the number of macrophages in adipose tissue, nor did it alter plasma levels of glucose, triglycerides, or fatty acids. We conclude that ZMPSTE24 deficiency in adipocytes, and the accompanying accumulation of farnesyl-prelamin A, reduces adipose tissue stores, but only modestly and only in male mice.


Subject(s)
Adipose Tissue/metabolism , Lamin Type A/metabolism , Membrane Proteins/metabolism , Metalloendopeptidases/metabolism , Adipose Tissue/chemistry , Alleles , Animals , Cell Nucleus/chemistry , Cell Nucleus/metabolism , Female , Male , Membrane Proteins/deficiency , Membrane Proteins/genetics , Metalloendopeptidases/deficiency , Metalloendopeptidases/genetics , Mice , Mice, Knockout , Mice, Transgenic
12.
Arterioscler Thromb Vasc Biol ; 39(9): 1776-1786, 2019 09.
Article in English | MEDLINE | ID: mdl-31340670

ABSTRACT

OBJECTIVE: Air pollution is associated with increased cardiovascular morbidity and mortality, as well as dyslipidemia and metabolic syndrome. Our goal was to dissect the mechanisms involved. Approach and Results: We assessed the effects of exposure to air pollution on lipid metabolism in mice through assessment of plasma lipids and lipoproteins, oxidized fatty acids 9-HODE (9-hydroxyoctadecadienoic) and 13-HODE (13-hydroxyoctadecadienoic), lipid, and carbohydrate metabolism. Findings were corroborated, and mechanisms were further assessed in HepG2 hepatocytes in culture. ApoE knockout mice exposed to inhaled diesel exhaust (DE, 6 h/d, 5 days/wk for 16 weeks) exhibited elevated plasma cholesterol and triglyceride levels, increased hepatic triglyceride content, and higher hepatic levels of 9-HODE and 13-HODE, as compared to control mice exposed to filtered air. A direct effect of DE exposure on hepatocytes was demonstrated by treatment of HepG2 cells with a methanol extract of DE particles followed by loading with oleic acid. As observed in vivo, this led to increased triglyceride content and significant downregulation of ACAD9 mRNA expression. Treatment of HepG2 cells with DE particles and oleic acid did not alter de novo lipogenesis but inhibited total, mitochondrial, and ATP-linked oxygen consumption rate, indicative of mitochondrial dysfunction. Treatment of isolated mitochondria, prepared from mouse liver, with DE particles and oleic acid also inhibited mitochondrial complex activity and ß-oxidation. CONCLUSIONS: DE exposure leads to dyslipidemia and liver steatosis in ApoE knockout mice, likely due to mitochondrial dysfunction and decreased lipid catabolism.


Subject(s)
Fatty Liver/chemically induced , Hyperlipidemias/chemically induced , Mitochondria/metabolism , Vehicle Emissions/toxicity , Animals , Hep G2 Cells , Humans , Lipid Metabolism/drug effects , Male , Mice , Triglycerides/metabolism
13.
Nature ; 510(7505): 397-401, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24828042

ABSTRACT

Metabolism and ageing are intimately linked. Compared with ad libitum feeding, dietary restriction consistently extends lifespan and delays age-related diseases in evolutionarily diverse organisms. Similar conditions of nutrient limitation and genetic or pharmacological perturbations of nutrient or energy metabolism also have longevity benefits. Recently, several metabolites have been identified that modulate ageing; however, the molecular mechanisms underlying this are largely undefined. Here we show that α-ketoglutarate (α-KG), a tricarboxylic acid cycle intermediate, extends the lifespan of adult Caenorhabditis elegans. ATP synthase subunit ß is identified as a novel binding protein of α-KG using a small-molecule target identification strategy termed drug affinity responsive target stability (DARTS). The ATP synthase, also known as complex V of the mitochondrial electron transport chain, is the main cellular energy-generating machinery and is highly conserved throughout evolution. Although complete loss of mitochondrial function is detrimental, partial suppression of the electron transport chain has been shown to extend C. elegans lifespan. We show that α-KG inhibits ATP synthase and, similar to ATP synthase knockdown, inhibition by α-KG leads to reduced ATP content, decreased oxygen consumption, and increased autophagy in both C. elegans and mammalian cells. We provide evidence that the lifespan increase by α-KG requires ATP synthase subunit ß and is dependent on target of rapamycin (TOR) downstream. Endogenous α-KG levels are increased on starvation and α-KG does not extend the lifespan of dietary-restricted animals, indicating that α-KG is a key metabolite that mediates longevity by dietary restriction. Our analyses uncover new molecular links between a common metabolite, a universal cellular energy generator and dietary restriction in the regulation of organismal lifespan, thus suggesting new strategies for the prevention and treatment of ageing and age-related diseases.


Subject(s)
Caenorhabditis elegans/drug effects , Ketoglutaric Acids/pharmacology , Longevity/physiology , Mitochondrial Proton-Translocating ATPases/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Gene Knockdown Techniques , HEK293 Cells , Humans , Jurkat Cells , Longevity/drug effects , Longevity/genetics , Mice , Mitochondrial Proton-Translocating ATPases/genetics , Protein Binding
14.
J Biol Chem ; 293(13): 4735-4751, 2018 03 30.
Article in English | MEDLINE | ID: mdl-29378845

ABSTRACT

Estrogen receptor α (ERα) action plays an important role in pancreatic ß-cell function and survival; thus, it is considered a potential therapeutic target for the treatment of type 2 diabetes in women. However, the mechanisms underlying the protective effects of ERα remain unclear. Because ERα regulates mitochondrial metabolism in other cell types, we hypothesized that ERα may act to preserve insulin secretion and promote ß-cell survival by regulating mitochondrial-endoplasmic reticulum (EndoRetic) function. We tested this hypothesis using pancreatic islet-specific ERα knockout (PERαKO) mice and Min6 ß-cells in culture with Esr1 knockdown (KD). We found that Esr1-KD promoted reactive oxygen species production that associated with reduced fission/fusion dynamics and impaired mitophagy. Electron microscopy showed mitochondrial enlargement and a pro-fusion phenotype. Mitochondrial cristae and endoplasmic reticulum were dilated in Esr1-KD compared with ERα replete Min6 ß-cells. Increased expression of Oma1 and Chop was paralleled by increased oxygen consumption and apoptosis susceptibility in ERα-KD cells. In contrast, ERα overexpression and ligand activation reduced both Chop and Oma1 expression, likely by ERα binding to consensus estrogen-response element sites in the Oma1 and Chop promoters. Together, our findings suggest that ERα promotes ß-cell survival and insulin secretion through maintenance of mitochondrial fission/fusion-mitophagy dynamics and EndoRetic function, in part by Oma1 and Chop repression.


Subject(s)
Apoptosis , Endoplasmic Reticulum Stress , Estrogen Receptor alpha/metabolism , Insulin-Secreting Cells/metabolism , Mitochondria/metabolism , Mitophagy , Animals , Cell Survival , Estrogen Receptor alpha/genetics , Female , Insulin/genetics , Insulin/metabolism , Metalloproteases/biosynthesis , Metalloproteases/genetics , Mice , Mice, Knockout , Mitochondria/genetics , Mitochondrial Proteins/biosynthesis , Mitochondrial Proteins/genetics , Reactive Oxygen Species/metabolism , Transcription Factor CHOP/biosynthesis , Transcription Factor CHOP/genetics
15.
J Lipid Res ; 59(3): 429-438, 2018 03.
Article in English | MEDLINE | ID: mdl-29295820

ABSTRACT

Diet1 modulates intestinal production of the hormone, fibroblast growth factor (FGF)15, which signals in liver to regulate bile acid synthesis. C57BL/6ByJ mice with a spontaneous Diet1-null mutation are resistant to hypercholesterolemia compared with wild-type C57BL/6J mice through enhanced cholesterol conversion to bile acids. To further characterize the role of Diet1 in metabolism, we generated Diet1-/- mice on the C57BL/6J genetic background. C57BL/6J Diet1-/- mice had elevated bile acid levels, reduced Fgf15 expression, and increased gastrointestinal motility and intestinal luminal water content, which are symptoms of bile acid diarrhea (BAD) in humans. Natural genetic variation in Diet1 mRNA expression levels across 76 inbred mouse strains correlated positively with Ffg15 mRNA and negatively with serum bile acid levels. This led us to investigate the role of DIET1 genetic variation in primary BAD patients. We identified a DIET1 coding variant (rs12256835) that had skewed prevalence between BAD cases and controls. This variant causes an H1721Q amino acid substitution that increases the levels of FGF19 protein secreted from cultured cells. We propose that genetic variation in DIET1 may be a determinant of FGF19 secretion levels, and may affect bile acid metabolism in both physiological and pathological conditions.


Subject(s)
Bile Acids and Salts/metabolism , Carrier Proteins/metabolism , Diarrhea/metabolism , Disease Models, Animal , Fibroblast Growth Factors/metabolism , Adult , Aged , Aged, 80 and over , Animals , Bile Acids and Salts/genetics , Carrier Proteins/genetics , Diarrhea/genetics , Female , Fibroblast Growth Factors/blood , Fibroblast Growth Factors/genetics , Genetic Variation/genetics , Genotype , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Young Adult
16.
Nat Chem Biol ; 12(7): 479-81, 2016 07.
Article in English | MEDLINE | ID: mdl-27159578

ABSTRACT

Increasing the thermogenic activity of adipocytes holds promise as an approach to combating human obesity and related metabolic diseases. We identified induction of mouse PR domain containing 4 (Prdm4) by the small molecule butein as a means to induce expression of uncoupling protein 1 (Ucp1), increase energy expenditure, and stimulate the generation of thermogenic adipocytes. This study highlights a Prdm4-dependent pathway, modulated by small molecules, that stimulates browning of white adipose tissue.


Subject(s)
Adipose Tissue, Brown/drug effects , Adipose Tissue, White/drug effects , Chalcones/pharmacology , DNA-Binding Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Chalcones/chemistry , DNA-Binding Proteins/metabolism , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Mice, Obese , Transcription Factors/metabolism
17.
J Biol Chem ; 291(48): 24880-24891, 2016 Nov 25.
Article in English | MEDLINE | ID: mdl-27694445

ABSTRACT

Phosphatidylcholine (PC) is a major phospholipid of mitochondria, comprising 40-50% of both the outer and the inner membranes. However, PC must be imported from its production organelles because mitochondria lack the enzymes essential for PC biosynthesis. In a previous study, we found that StarD7 mediates the intracellular transfer of PC to mitochondria. Therefore, in this study, we analyzed the contribution of StarD7 to the maintenance of mitochondrial phospholipid content and function using siRNA-mediated knockdown and knock-out (KO) of the StarD7 gene in HEPA-1 cells. Real time analysis of respiratory activity demonstrated that the oxygen consumption rate and activity of mitochondrial complexes were impaired in StarD7-KD cells. To confirm these results, we established StarD7-KO HEPA-1 cells by double nicking using CRISPR/Cas9n. As expected, StarD7-KD and -KO cells showed a significant reduction in mitochondrial PC content. The ATP level and growth rate of KO cells were notably lower compared with wild-type cells when cultured in glucose-free galactose-containing medium to force cells to rely on mitochondrial ATP production. In KO cells, the level of the MTCO1 protein, a primary subunit of complex IV, was reduced without a concomitant decrease in its mRNA, but the level was restored when StarD7-I was overexpressed. StarD7-KO cells showed impaired formation of the mitochondrial supercomplexes and exhibited a disorganized cristae structure, with no changes in optic atrophy 1 protein. These findings indicate that StarD7 plays important roles in maintaining the proper composition of mitochondrial phospholipids as well as mitochondrial function and morphogenesis.


Subject(s)
Carrier Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Oxygen Consumption/physiology , Phosphatidylcholines/metabolism , Adenosine Triphosphate/genetics , Adenosine Triphosphate/metabolism , Animals , Carrier Proteins/genetics , Cell Line, Tumor , Electron Transport Complex IV/genetics , Electron Transport Complex IV/metabolism , Gene Knockdown Techniques , Mice , Mitochondria/genetics , Mitochondrial Proteins/genetics , Phosphatidylcholines/genetics
18.
J Lipid Res ; 57(3): 410-21, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26685326

ABSTRACT

Cholesterol and fatty acid biosynthesis are regulated by the sterol regulatory element-binding proteins (SREBPs), encoded by Srebf1 and Srebf2. We generated mice that were either deficient or hypomorphic for SREBP-2. SREBP-2 deficiency generally caused death during embryonic development. Analyses of Srebf2(-/-) embryos revealed a requirement for SREBP-2 in limb development and expression of morphogenic genes. We encountered only one viable Srebf2(-/-) mouse, which displayed alopecia, attenuated growth, and reduced adipose tissue stores. Hypomorphic SREBP-2 mice (expressing low levels of SREBP-2) survived development, but the female mice exhibited reduced body weight and died between 8 and 12 weeks of age. Male hypomorphic mice were viable but had reduced cholesterol stores in the liver and lower expression of SREBP target genes. Reduced SREBP-2 expression affected SREBP-1 isoforms in a tissue-specific manner. In the liver, reduced SREBP-2 expression nearly abolished Srebf1c transcripts and reduced Srebf1a mRNA levels. In contrast, adipose tissue displayed normal expression of SREBP target genes, likely due to a compensatory increase in Srebf1a expression. Our results establish that SREBP-2 is critical for survival and limb patterning during development. Reduced expression of SREBP-2 from the hypomorphic allele leads to early death in females and reduced cholesterol content in the liver, but not in adipose tissue.


Subject(s)
Embryonic Development/genetics , Gene Expression Regulation, Developmental , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 2/deficiency , Sterol Regulatory Element Binding Protein 2/genetics , Adipose Tissue/metabolism , Adiposity/genetics , Alleles , Animals , Cell Line , Extremities/embryology , Female , Homeostasis/genetics , Lipid Metabolism/genetics , Liver/metabolism , Male , Mice , Mutation , Sex Characteristics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 2/metabolism , Tissue Survival/genetics
19.
J Neurosci Res ; 94(12): 1434-1450, 2016 12.
Article in English | MEDLINE | ID: mdl-27680492

ABSTRACT

The primary energy sources of mammalian cells are proteins, fats, and sugars that are processed by well-known biochemical mechanisms that have been discovered and studied in 1G (terrestrial gravity). Here we sought to determine how simulated microgravity (sim-µG) impacts both energy and lipid metabolism in oligodendrocytes (OLs), the myelin-forming cells in the central nervous system. We report increased mitochondrial respiration and increased glycolysis 24 hr after exposure to sim-µG. Moreover, examination of the secretome after 3 days' exposure of OLs to sim-µG increased the Krebs cycle (Krebs and Weitzman, ) flux in sim-µG. The secretome study also revealed a significant increase in the synthesis of fatty acids and complex lipids such as 1,2-dipalmitoyl-GPC (5.67); lysolipids like 1-oleoyl-GPE (4.48) were also increased by microgravity. Although longer-chain lipids were not observed in this study, it is possible that at longer time points OLs would have continued moving forward toward the synthesis of lipids that constitute myelin. For centuries, basic developmental biology research has been the pillar of an array of discoveries that have led to clinical applications; we believe that studies using microgravity will open new avenues to our understanding of the brain in health and disease-in particular, to the discovery of new molecules and mechanisms impossible to unveil while in 1G. © 2016 Wiley Periodicals, Inc.


Subject(s)
Lipid Metabolism , Mitochondria/metabolism , Oligodendroglia/metabolism , Weightlessness Simulation , Cells, Cultured , Citric Acid Cycle , Energy Metabolism , Glycolysis , Humans , Myelin Sheath/metabolism , Neural Stem Cells/metabolism
20.
FASEB J ; 29(4): 1185-97, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25477283

ABSTRACT

We report the engineering and characterization of paraoxonase-3 knockout mice (Pon3KO). The mice were generally healthy but exhibited quantitative alterations in bile acid metabolism and a 37% increased body weight compared to the wild-type mice on a high fat diet. PON3 was enriched in the mitochondria-associated membrane fraction of hepatocytes. PON3 deficiency resulted in impaired mitochondrial respiration, increased mitochondrial superoxide levels, and increased hepatic expression of inflammatory genes. PON3 deficiency did not influence atherosclerosis development on an apolipoprotein E null hyperlipidemic background, but it did lead to a significant 60% increase in atherosclerotic lesion size in Pon3KO mice on the C57BL/6J background when fed a cholate-cholesterol diet. On the diet, the Pon3KO had significantly increased plasma intermediate-density lipoprotein/LDL cholesterol and bile acid levels. They also exhibited significantly elevated levels of hepatotoxicity markers in circulation, a 58% increase in gallstone weight, a 40% increase in hepatic cholesterol level, and increased mortality. Furthermore, Pon3KO mice exhibited decreased hepatic bile acid synthesis and decreased bile acid levels in the small intestine compared with wild-type mice. Our study suggests a role for PON3 in the metabolism of lipid and bile acid as well as protection against atherosclerosis, gallstone disease, and obesity.


Subject(s)
Aryldialkylphosphatase/deficiency , Atherosclerosis/enzymology , Gallstones/enzymology , Obesity/enzymology , Animals , Apolipoproteins E/deficiency , Apolipoproteins E/genetics , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Atherosclerosis/etiology , Atherosclerosis/genetics , Bile Acids and Salts/metabolism , Chemokine CCL2/metabolism , Cholesterol, Dietary/administration & dosage , Cholic Acid/administration & dosage , Diet/adverse effects , Disease Models, Animal , Female , Gallstones/etiology , Gallstones/genetics , Gene Expression , Genetic Predisposition to Disease , Inflammation Mediators/metabolism , Interleukin-6/metabolism , Intestine, Small/metabolism , Kidney/metabolism , Lipid Metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Liver/metabolism , Obesity/etiology , Obesity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL