Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Mol Cell ; 61(3): 461-473, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26833089

ABSTRACT

Detailed genomic contact maps have revealed that chromosomes are structurally organized in megabase-sized topologically associated domains (TADs) that encompass smaller subTADs. These domains segregate in the nuclear space to form active and inactive nuclear compartments, but cause and consequence of compartmentalization are largely unknown. Here, we combined lacO/lacR binding platforms with allele-specific 4C technologies to track their precise position in the three-dimensional genome upon recruitment of NANOG, SUV39H1, or EZH2. We observed locked genomic loci resistant to spatial repositioning and unlocked loci that could be repositioned to different nuclear subcompartments with distinct chromatin signatures. Focal protein recruitment caused the entire subTAD, but not surrounding regions, to engage in new genomic contacts. Compartment switching was found uncoupled from transcription changes, and the enzymatic modification of histones per se was insufficient for repositioning. Collectively, this suggests that trans-associated factors influence three-dimensional compartmentalization independent of their cis effect on local chromatin composition and activity.


Subject(s)
Cell Nucleus/metabolism , Chromosome Segregation , Embryonic Stem Cells/metabolism , Genetic Loci , Lac Operon , Lac Repressors/metabolism , Animals , Cells, Cultured , Chromatin/metabolism , Chromatin Assembly and Disassembly , Enhancer of Zeste Homolog 2 Protein , Gene Expression Regulation , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Lac Repressors/genetics , Methyltransferases/genetics , Methyltransferases/metabolism , Mice, 129 Strain , Mice, Inbred C57BL , Nanog Homeobox Protein , Polycomb Repressive Complex 2/genetics , Polycomb Repressive Complex 2/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transfection
2.
Blood ; 138(2): 160-177, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33831168

ABSTRACT

Transcriptional deregulation is a central event in the development of acute myeloid leukemia (AML). To identify potential disturbances in gene regulation, we conducted an unbiased screen of allele-specific expression (ASE) in 209 AML cases. The gene encoding GATA binding protein 2 (GATA2) displayed ASE more often than any other myeloid- or cancer-related gene. GATA2 ASE was strongly associated with CEBPA double mutations (DMs), with 95% of cases presenting GATA2 ASE. In CEBPA DM AML with GATA2 mutations, the mutated allele was preferentially expressed. We found that GATA2 ASE was a somatic event lost in complete remission, supporting the notion that it plays a role in CEBPA DM AML. Acquisition of GATA2 ASE involved silencing of 1 allele via promoter methylation and concurrent overactivation of the other allele, thereby preserving expression levels. Notably, promoter methylation was also lost in remission along with GATA2 ASE. In summary, we propose that GATA2 ASE is acquired by epigenetic mechanisms and is a prerequisite for the development of AML with CEBPA DMs. This finding constitutes a novel example of an epigenetic hit cooperating with a genetic hit in the pathogenesis of AML.


Subject(s)
Alleles , CCAAT-Enhancer-Binding Proteins/genetics , Epigenesis, Genetic , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Mutation/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Cohort Studies , DNA Methylation/genetics , Enhancer Elements, Genetic/genetics , Female , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Remission Induction , Young Adult
3.
Am J Hum Genet ; 101(3): 326-339, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28844486

ABSTRACT

During pregnancy, cell-free DNA (cfDNA) in maternal blood encompasses a small percentage of cell-free fetal DNA (cffDNA), an easily accessible source for determination of fetal disease status in risk families through non-invasive procedures. In case of monogenic heritable disease, background maternal cfDNA prohibits direct observation of the maternally inherited allele. Non-invasive prenatal diagnostics (NIPD) of monogenic diseases therefore relies on parental haplotyping and statistical assessment of inherited alleles from cffDNA, techniques currently unavailable for routine clinical practice. Here, we present monogenic NIPD (MG-NIPD), which requires a blood sample from both parents, for targeted locus amplification (TLA)-based phasing of heterozygous variants selectively at a gene of interest. Capture probes-based targeted sequencing of cfDNA from the pregnant mother and a tailored statistical analysis enables predicting fetal gene inheritance. MG-NIPD was validated for 18 pregnancies, focusing on CFTR, CYP21A2, and HBB. In all cases we could predict the inherited alleles with >98% confidence, even at relatively early stages (8 weeks) of pregnancy. This prediction and the accuracy of parental haplotyping was confirmed by sequencing of fetal material obtained by parallel invasive procedures. MG-NIPD is a robust method that requires standard instrumentation and can be implemented in any clinic to provide families carrying a severe monogenic disease with a prenatal diagnostic test based on a simple blood draw.


Subject(s)
Adrenal Hyperplasia, Congenital/diagnosis , Biomarkers/blood , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Polymorphism, Single Nucleotide , Prenatal Diagnosis/methods , Steroid 21-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/blood , Adrenal Hyperplasia, Congenital/genetics , Cells, Cultured , Cystic Fibrosis/blood , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/blood , DNA/blood , DNA/genetics , Female , Haplotypes , Humans , Pregnancy , Steroid 21-Hydroxylase/blood
4.
Genome Res ; 25(7): 958-69, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25883320

ABSTRACT

Despite recent progress in genome topology knowledge, the role of repeats, which make up the majority of mammalian genomes, remains elusive. Satellite repeats are highly abundant sequences that cluster around centromeres, attract pericentromeric heterochromatin, and aggregate into nuclear chromocenters. These nuclear landmark structures are assumed to form a repressive compartment in the nucleus to which genes are recruited for silencing. We have designed a strategy for genome-wide identification of pericentromere-associated domains (PADs) in different mouse cell types. The ∼1000 PADs and non-PADs have similar chromatin states in embryonic stem cells, but during lineage commitment, chromocenters progressively associate with constitutively inactive genomic regions at the nuclear periphery. This suggests that PADs are not actively recruited to chromocenters, but that chromocenters are themselves attracted to inactive chromatin compartments. However, we also found that experimentally induced proximity of an active locus to chromocenters was sufficient to cause gene repression. Collectively, our data suggest that rather than driving nuclear organization, pericentromeric satellite repeats mostly co-segregate with inactive genomic regions into nuclear compartments where they can contribute to stable maintenance of the repressed status of proximal chromosomal regions.


Subject(s)
Centromere/genetics , Genomics , Minisatellite Repeats , Animals , Euchromatin , Gene Expression Regulation , Genomics/methods , Heterochromatin , Mice , Transcriptional Activation
5.
Sci Rep ; 13(1): 6874, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37106015

ABSTRACT

DNA methylation is important for establishing and maintaining cell identity and for genomic stability. This is achieved by regulating the accessibility of regulatory and transcriptional elements and the compaction of subtelomeric, centromeric, and other inactive genomic regions. Carcinogenesis is accompanied by a global loss in DNA methylation, which facilitates the transformation of cells. Cancer hypomethylation may also cause genomic instability, for example through interference with the protective function of telomeres and centromeres. However, understanding the role(s) of hypomethylation in tumor evolution is incomplete because the precise mutational consequences of global hypomethylation have thus far not been systematically assessed. Here we made genome-wide inventories of all possible genetic variation that accumulates in single cells upon the long-term global hypomethylation by CRISPR interference-mediated conditional knockdown of DNMT1. Depletion of DNMT1 resulted in a genomewide reduction in DNA methylation. The degree of DNA methylation loss was similar to that observed in many cancer types. Hypomethylated cells showed reduced proliferation rates, increased transcription of genes, reactivation of the inactive X-chromosome and abnormal nuclear morphologies. Prolonged hypomethylation was accompanied by increased chromosomal instability. However, there was no increase in mutational burden, enrichment for certain mutational signatures or accumulation of structural variation to the genome. In conclusion, the primary consequence of hypomethylation is genomic instability, which in cancer leads to increased tumor heterogeneity and thereby fuels cancer evolution.


Subject(s)
DNA Methylation , Genomic Instability , Humans , Mutation , Carcinogenesis , DNA
6.
Cell Rep ; 42(4): 112373, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37060567

ABSTRACT

Monoallelic inactivation of CCCTC-binding factor (CTCF) in human cancer drives altered methylated genomic states, altered CTCF occupancy at promoter and enhancer regions, and deregulated global gene expression. In patients with T cell acute lymphoblastic leukemia (T-ALL), we find that acquired monoallelic CTCF-inactivating events drive subtle and local genomic effects in nearly half of t(5; 14) (q35; q32.2) rearranged patients, especially when CTCF-binding sites are preserved in between the BCL11B enhancer and the TLX3 oncogene. These solitary intervening sites insulate TLX3 from the enhancer by inducing competitive looping to multiple binding sites near the TLX3 promoter. Reduced CTCF levels or deletion of the intervening CTCF site abrogates enhancer insulation by weakening competitive looping while favoring TLX3 promoter to BCL11B enhancer looping, which elevates oncogene expression levels and leukemia burden.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin , Enhancer Elements, Genetic/genetics , Mutation , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
7.
Nat Protoc ; 15(2): 364-397, 2020 02.
Article in English | MEDLINE | ID: mdl-31932773

ABSTRACT

We present the experimental protocol and data analysis toolbox for multi-contact 4C (MC-4C), a new proximity ligation method tailored to study the higher-order chromatin contact patterns of selected genomic sites. Conventional chromatin conformation capture (3C) methods fragment proximity ligation products for efficient analysis of pairwise DNA contacts. By contrast, MC-4C is designed to preserve and collect large concatemers of proximity ligated fragments for long-molecule sequencing on an Oxford Nanopore or Pacific Biosciences platform. Each concatemer of proximity ligation products represents a snapshot topology of a different individual allele, revealing its multi-way chromatin interactions. By inverse PCR with primers specific for a fragment of interest (the viewpoint) and DNA size selection, sequencing is selectively targeted to thousands of different complex interactions containing this viewpoint. A tailored statistical analysis toolbox is able to generate background models and three-way interaction profiles from the same dataset. These profiles can be used to distinguish whether contacts between more than two regulatory sequences are mutually exclusive or, conversely, simultaneously occurring at chromatin hubs. The entire procedure can be completed in 2 w, and requires standard molecular biology and data analysis skills and equipment, plus access to a third-generation sequencing platform.


Subject(s)
Chromatin/chemistry , Chromatin/genetics , Sequence Analysis, DNA/methods , Humans , K562 Cells , Molecular Conformation
8.
Nat Genet ; 50(8): 1151-1160, 2018 08.
Article in English | MEDLINE | ID: mdl-29988121

ABSTRACT

Chromatin folding contributes to the regulation of genomic processes such as gene activity. Existing conformation capture methods characterize genome topology through analysis of pairwise chromatin contacts in populations of cells but cannot discern whether individual interactions occur simultaneously or competitively. Here we present multi-contact 4C (MC-4C), which applies Nanopore sequencing to study multi-way DNA conformations of individual alleles. MC-4C distinguishes cooperative from random and competing interactions and identifies previously missed structures in subpopulations of cells. We show that individual elements of the ß-globin superenhancer can aggregate into an enhancer hub that can simultaneously accommodate two genes. Neighboring chromatin domain loops can form rosette-like structures through collision of their CTCF-bound anchors, as seen most prominently in cells lacking the cohesin-unloading factor WAPL. Here, massive collision of CTCF-anchored chromatin loops is believed to reflect 'cohesin traffic jams'. Single-allele topology studies thus help us understand the mechanisms underlying genome folding and functioning.


Subject(s)
Chromatin/genetics , Enhancer Elements, Genetic/genetics , Alleles , Animals , CCCTC-Binding Factor/genetics , Mice , Nucleic Acid Conformation , Regulatory Sequences, Nucleic Acid/genetics , beta-Globins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL