Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
2.
Cell ; 158(1): 185-197, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24954535

ABSTRACT

Activating mutations in KRAS are among the most frequent events in diverse human carcinomas and are particularly prominent in human pancreatic ductal adenocarcinoma (PDAC). An inducible Kras(G12D)-driven mouse model of PDAC has established a critical role for sustained Kras(G12D) expression in tumor maintenance, providing a model to determine the potential for and the underlying mechanisms of Kras(G12D)-independent PDAC recurrence. Here, we show that some tumors undergo spontaneous relapse and are devoid of Kras(G12D) expression and downstream canonical MAPK signaling and instead acquire amplification and overexpression of the transcriptional coactivator Yap1. Functional studies established the role of Yap1 and the transcriptional factor Tead2 in driving Kras(G12D)-independent tumor maintenance. The Yap1/Tead2 complex acts cooperatively with E2F transcription factors to activate a cell cycle and DNA replication program. Our studies, along with corroborating evidence from human PDAC models, portend a novel mechanism of escape from oncogenic Kras addiction in PDAC.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Pancreatic Neoplasms/metabolism , Phosphoproteins/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Adenocarcinoma/pathology , Animals , Carcinoma, Pancreatic Ductal/pathology , Cell Cycle , Cell Cycle Proteins , Cell Line, Tumor , DNA Replication , DNA-Binding Proteins/metabolism , Disease Models, Animal , E2F Transcription Factors/metabolism , Humans , Mice , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins/metabolism , TEA Domain Transcription Factors , Transcription Factors/metabolism , YAP-Signaling Proteins , ras Proteins/metabolism
3.
Cell ; 149(3): 656-70, 2012 Apr 27.
Article in English | MEDLINE | ID: mdl-22541435

ABSTRACT

Tumor maintenance relies on continued activity of driver oncogenes, although their rate-limiting role is highly context dependent. Oncogenic Kras mutation is the signature event in pancreatic ductal adenocarcinoma (PDAC), serving a critical role in tumor initiation. Here, an inducible Kras(G12D)-driven PDAC mouse model establishes that advanced PDAC remains strictly dependent on Kras(G12D) expression. Transcriptome and metabolomic analyses indicate that Kras(G12D) serves a vital role in controlling tumor metabolism through stimulation of glucose uptake and channeling of glucose intermediates into the hexosamine biosynthesis and pentose phosphate pathways (PPP). These studies also reveal that oncogenic Kras promotes ribose biogenesis. Unlike canonical models, we demonstrate that Kras(G12D) drives glycolysis intermediates into the nonoxidative PPP, thereby decoupling ribose biogenesis from NADP/NADPH-mediated redox control. Together, this work provides in vivo mechanistic insights into how oncogenic Kras promotes metabolic reprogramming in native tumors and illuminates potential metabolic targets that can be exploited for therapeutic benefit in PDAC.


Subject(s)
Adenocarcinoma/metabolism , Disease Models, Animal , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Animals , Humans , Mice , Proto-Oncogene Proteins p21(ras)/genetics , Transcription, Genetic
4.
Proc Natl Acad Sci U S A ; 120(21): e2209639120, 2023 05 23.
Article in English | MEDLINE | ID: mdl-37186844

ABSTRACT

Renal medullary carcinoma (RMC) is an aggressive kidney cancer that almost exclusively develops in individuals with sickle cell trait (SCT) and is always characterized by loss of the tumor suppressor SMARCB1. Because renal ischemia induced by red blood cell sickling exacerbates chronic renal medullary hypoxia in vivo, we investigated whether the loss of SMARCB1 confers a survival advantage under the setting of SCT. Hypoxic stress, which naturally occurs within the renal medulla, is elevated under the setting of SCT. Our findings showed that hypoxia-induced SMARCB1 degradation protected renal cells from hypoxic stress. SMARCB1 wild-type renal tumors exhibited lower levels of SMARCB1 and more aggressive growth in mice harboring the SCT mutation in human hemoglobin A (HbA) than in control mice harboring wild-type human HbA. Consistent with established clinical observations, SMARCB1-null renal tumors were refractory to hypoxia-inducing therapeutic inhibition of angiogenesis. Further, reconstitution of SMARCB1 restored renal tumor sensitivity to hypoxic stress in vitro and in vivo. Together, our results demonstrate a physiological role for SMARCB1 degradation in response to hypoxic stress, connect the renal medullary hypoxia induced by SCT with an increased risk of SMARCB1-negative RMC, and shed light into the mechanisms mediating the resistance of SMARCB1-null renal tumors against angiogenesis inhibition therapies.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Sickle Cell Trait , Animals , Humans , Mice , Carcinoma, Renal Cell/pathology , Hypoxia/genetics , Hypoxia/metabolism , Kidney/metabolism , Kidney Neoplasms/pathology , Sickle Cell Trait/genetics , Sickle Cell Trait/metabolism , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism
5.
Nature ; 568(7752): 410-414, 2019 04.
Article in English | MEDLINE | ID: mdl-30918400

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) remains recalcitrant to all forms of cancer treatment and carries a five-year survival rate of only 8%1. Inhibition of oncogenic KRAS (hereafter KRAS*), the earliest lesion in disease development that is present in more than 90% of PDACs, and its signalling surrogates has yielded encouraging preclinical results with experimental agents2-4. However, KRAS*-independent disease recurrence following genetic extinction of Kras* in mouse models anticipates the need for co-extinction strategies5,6. Multiple oncogenic processes are initiated at the cell surface, where KRAS* physically and functionally interacts to direct signalling that is essential for malignant transformation and tumour maintenance. Insights into the complexity of the functional cell-surface-protein repertoire (surfaceome) have been technologically limited until recently and-in the case of PDAC-the genetic control of the function and composition of the PDAC surfaceome in the context of KRAS* signalling remains largely unknown. Here we develop an unbiased, functional target-discovery platform to query KRAS*-dependent changes of the PDAC surfaceome, which reveals syndecan 1 (SDC1, also known as CD138) as a protein that is upregulated at the cell surface by KRAS*. Localization of SDC1 at the cell surface-where it regulates macropinocytosis, an essential metabolic pathway that fuels PDAC cell growth-is essential for disease maintenance and progression. Thus, our study forges a mechanistic link between KRAS* signalling and a targetable molecule driving nutrient salvage pathways in PDAC and validates oncogene-driven surfaceome annotation as a strategy to identify cancer-specific vulnerabilities.


Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Pinocytosis , Syndecan-1/metabolism , ADP-Ribosylation Factor 6 , ADP-Ribosylation Factors/metabolism , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Disease Progression , Female , Guanine Nucleotide Exchange Factors/metabolism , Humans , Male , Mice , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Signal Transduction
6.
Nature ; 542(7639): 119-123, 2017 02 02.
Article in English | MEDLINE | ID: mdl-28099419

ABSTRACT

The genome of pancreatic ductal adenocarcinoma (PDAC) frequently contains deletions of tumour suppressor gene loci, most notably SMAD4, which is homozygously deleted in nearly one-third of cases. As loss of neighbouring housekeeping genes can confer collateral lethality, we sought to determine whether loss of the metabolic gene malic enzyme 2 (ME2) in the SMAD4 locus would create cancer-specific metabolic vulnerability upon targeting of its paralogous isoform ME3. The mitochondrial malic enzymes (ME2 and ME3) are oxidative decarboxylases that catalyse the conversion of malate to pyruvate and are essential for NADPH regeneration and reactive oxygen species homeostasis. Here we show that ME3 depletion selectively kills ME2-null PDAC cells in a manner consistent with an essential function for ME3 in ME2-null cancer cells. Mechanistically, integrated metabolomic and molecular investigation of cells deficient in mitochondrial malic enzymes revealed diminished NADPH production and consequent high levels of reactive oxygen species. These changes activate AMP activated protein kinase (AMPK), which in turn directly suppresses sterol regulatory element-binding protein 1 (SREBP1)-directed transcription of its direct targets including the BCAT2 branched-chain amino acid transaminase 2) gene. BCAT2 catalyses the transfer of the amino group from branched-chain amino acids to α-ketoglutarate (α-KG) thereby regenerating glutamate, which functions in part to support de novo nucleotide synthesis. Thus, mitochondrial malic enzyme deficiency, which results in impaired NADPH production, provides a prime 'collateral lethality' therapeutic strategy for the treatment of a substantial fraction of patients diagnosed with this intractable disease.


Subject(s)
Carcinoma, Pancreatic Ductal/genetics , Gene Deletion , Malate Dehydrogenase/deficiency , Pancreatic Neoplasms/genetics , AMP-Activated Protein Kinases/metabolism , Amino Acids, Branched-Chain/metabolism , Animals , Biocatalysis , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/psychology , Carcinoma, Pancreatic Ductal/therapy , Humans , Ketoglutaric Acids/metabolism , Malate Dehydrogenase/genetics , Male , Mice , Minor Histocompatibility Antigens/biosynthesis , Minor Histocompatibility Antigens/genetics , Mitochondria/enzymology , Mitochondria/pathology , NADP/biosynthesis , NADP/metabolism , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Pregnancy Proteins/biosynthesis , Pregnancy Proteins/genetics , Reactive Oxygen Species/metabolism , Sterol Regulatory Element Binding Protein 1/metabolism , Transaminases/biosynthesis , Transaminases/genetics
7.
Nature ; 542(7641): 362-366, 2017 02 16.
Article in English | MEDLINE | ID: mdl-28178232

ABSTRACT

Malignant neoplasms evolve in response to changes in oncogenic signalling. Cancer cell plasticity in response to evolutionary pressures is fundamental to tumour progression and the development of therapeutic resistance. Here we determine the molecular and cellular mechanisms of cancer cell plasticity in a conditional oncogenic Kras mouse model of pancreatic ductal adenocarcinoma (PDAC), a malignancy that displays considerable phenotypic diversity and morphological heterogeneity. In this model, stochastic extinction of oncogenic Kras signalling and emergence of Kras-independent escaper populations (cells that acquire oncogenic properties) are associated with de-differentiation and aggressive biological behaviour. Transcriptomic and functional analyses of Kras-independent escapers reveal the presence of Smarcb1-Myc-network-driven mesenchymal reprogramming and independence from MAPK signalling. A somatic mosaic model of PDAC, which allows time-restricted perturbation of cell fate, shows that depletion of Smarcb1 activates the Myc network, driving an anabolic switch that increases protein metabolism and adaptive activation of endoplasmic-reticulum-stress-induced survival pathways. Increased protein turnover renders mesenchymal sub-populations highly susceptible to pharmacological and genetic perturbation of the cellular proteostatic machinery and the IRE1-α-MKK4 arm of the endoplasmic-reticulum-stress-response pathway. Specifically, combination regimens that impair the unfolded protein responses block the emergence of aggressive mesenchymal subpopulations in mouse and patient-derived PDAC models. These molecular and biological insights inform a potential therapeutic strategy for targeting aggressive mesenchymal features of PDAC.


Subject(s)
Mesoderm/pathology , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Endoplasmic Reticulum Stress/genetics , Female , Genes, myc , Genes, ras , Humans , MAP Kinase Kinase 4/metabolism , MAP Kinase Signaling System , Male , Mesoderm/metabolism , Mice , Mosaicism , Oncogene Protein p55(v-myc)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Proteolysis , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , SMARCB1 Protein/deficiency , SMARCB1 Protein/metabolism , Transcriptome/genetics , Gemcitabine
8.
Gastroenterology ; 161(1): 196-210, 2021 07.
Article in English | MEDLINE | ID: mdl-33745946

ABSTRACT

BACKGROUND & AIMS: Understanding the mechanisms by which tumors adapt to therapy is critical for developing effective combination therapeutic approaches to improve clinical outcomes for patients with cancer. METHODS: To identify promising and clinically actionable targets for managing colorectal cancer (CRC), we conducted a patient-centered functional genomics platform that includes approximately 200 genes and paired this with a high-throughput drug screen that includes 262 compounds in four patient-derived xenografts (PDXs) from patients with CRC. RESULTS: Both screening methods identified exportin 1 (XPO1) inhibitors as drivers of DNA damage-induced lethality in CRC. Molecular characterization of the cellular response to XPO1 inhibition uncovered an adaptive mechanism that limited the duration of response in TP53-mutated, but not in TP53-wild-type CRC models. Comprehensive proteomic and transcriptomic characterization revealed that the ATM/ATR-CHK1/2 axes were selectively engaged in TP53-mutant CRC cells upon XPO1 inhibitor treatment and that this response was required for adapting to therapy and escaping cell death. Administration of KPT-8602, an XPO1 inhibitor, followed by AZD-6738, an ATR inhibitor, resulted in dramatic antitumor effects and prolonged survival in TP53-mutant models of CRC. CONCLUSIONS: Our findings anticipate tremendous therapeutic benefit and support the further evaluation of XPO1 inhibitors, especially in combination with DNA damage checkpoint inhibitors, to elicit an enduring clinical response in patients with CRC harboring TP53 mutations.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , Biomarkers, Tumor/genetics , Colorectal Neoplasms/drug therapy , Karyopherins/antagonists & inhibitors , Mutation , Protein Kinase Inhibitors/administration & dosage , Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors , Tumor Suppressor Protein p53/genetics , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Databases, Genetic , HCT116 Cells , HT29 Cells , Humans , Indoles/administration & dosage , Karyopherins/metabolism , Mice , Morpholines/administration & dosage , Piperazines/administration & dosage , Pyridines/administration & dosage , Pyrimidines/administration & dosage , Receptors, Cytoplasmic and Nuclear/metabolism , Sulfonamides/administration & dosage , Xenograft Model Antitumor Assays , Exportin 1 Protein
9.
Nature ; 514(7524): 628-32, 2014 Oct 30.
Article in English | MEDLINE | ID: mdl-25119024

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers in western countries, with a median survival of 6 months and an extremely low percentage of long-term surviving patients. KRAS mutations are known to be a driver event of PDAC, but targeting mutant KRAS has proved challenging. Targeting oncogene-driven signalling pathways is a clinically validated approach for several devastating diseases. Still, despite marked tumour shrinkage, the frequency of relapse indicates that a fraction of tumour cells survives shut down of oncogenic signalling. Here we explore the role of mutant KRAS in PDAC maintenance using a recently developed inducible mouse model of mutated Kras (Kras(G12D), herein KRas) in a p53(LoxP/WT) background. We demonstrate that a subpopulation of dormant tumour cells surviving oncogene ablation (surviving cells) and responsible for tumour relapse has features of cancer stem cells and relies on oxidative phosphorylation for survival. Transcriptomic and metabolic analyses of surviving cells reveal prominent expression of genes governing mitochondrial function, autophagy and lysosome activity, as well as a strong reliance on mitochondrial respiration and a decreased dependence on glycolysis for cellular energetics. Accordingly, surviving cells show high sensitivity to oxidative phosphorylation inhibitors, which can inhibit tumour recurrence. Our integrated analyses illuminate a therapeutic strategy of combined targeting of the KRAS pathway and mitochondrial respiration to manage pancreatic cancer.


Subject(s)
Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Mitochondria/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Autophagy , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Respiration/drug effects , Cell Survival/drug effects , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Genes, p53/genetics , Glycolysis , Lysosomes/metabolism , Mice , Mitochondria/drug effects , Mutation/genetics , Neoplasm Recurrence, Local/prevention & control , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oxidative Phosphorylation/drug effects , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Recurrence , Signal Transduction , Pancreatic Neoplasms
10.
Recent Results Cancer Res ; 207: 135-56, 2016.
Article in English | MEDLINE | ID: mdl-27557537

ABSTRACT

A major barrier to achieving durable remission and a definitive cure in oncology patients is the emergence of tumor resistance, a common outcome of different disease types, and independent from the therapeutic approach undertaken. In recent years, subpopulations of slow-cycling cells endowed with enhanced tumorigenic potential and multidrug resistance have been isolated in different tumors, and mounting experimental evidence suggests these resistant cells are responsible for tumor relapse. An in-depth metabolic characterization of resistant tumor stem cells revealed that they rely more on mitochondrial respiration and less on glycolysis than other tumor cells, a finding that challenges the assumption that tumors have a primarily glycolytic metabolism and defective mitochondria. The demonstration of a metabolic program in resistant tumorigenic cells that may be present in the majority of tumors has important therapeutic implications and is a critical consideration as we address the challenge of identifying new vulnerabilities that might be exploited therapeutically.


Subject(s)
Drug Resistance, Multiple/physiology , Drug Resistance, Neoplasm/physiology , Neoplasms/metabolism , Glycolysis/physiology , Humans , Mitochondria/metabolism , Neoplasm Recurrence, Local/metabolism , Neoplastic Stem Cells/metabolism
11.
Proc Natl Acad Sci U S A ; 110(10): 3931-6, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23417300

ABSTRACT

DNA damage leads to a halt in proliferation owing to apoptosis or senescence, which prevents transmission of DNA alterations. This cellular response depends on the tumor suppressor p53 and functions as a powerful barrier to tumor development. Adult stem cells are resistant to DNA damage-induced apoptosis or senescence, however, and how they execute this response and suppress tumorigenesis is unknown. We show that irradiation of hematopoietic and mammary stem cells up-regulates the cell cycle inhibitor p21, a known target of p53, which prevents p53 activation and inhibits p53 basal activity, impeding apoptosis and leading to cell cycle entry and symmetric self-renewing divisions. p21 also activates DNA repair, limiting DNA damage accumulation and self-renewal exhaustion. Stem cells with moderate DNA damage and diminished self-renewal persist after irradiation, however. These findings suggest that stem cells have evolved a unique, p21-dependent response to DNA damage that leads to their immediate expansion and limits their long-term survival.


Subject(s)
Cell Division/physiology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Adult Stem Cells/radiation effects , Animals , Apoptosis/physiology , Apoptosis/radiation effects , Cell Cycle Checkpoints/physiology , Cell Cycle Checkpoints/radiation effects , Cell Division/radiation effects , DNA Repair , Female , Hematopoietic Stem Cells/radiation effects , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/radiation effects , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Up-Regulation/radiation effects
12.
Nature ; 457(7225): 51-6, 2009 Jan 01.
Article in English | MEDLINE | ID: mdl-19122635

ABSTRACT

Rare cells with the properties of stem cells are integral to the development and perpetuation of leukaemias. A defining characteristic of stem cells is their capacity to self-renew, which is markedly extended in leukaemia stem cells. The underlying molecular mechanisms, however, are largely unknown. Here we demonstrate that expression of the cell-cycle inhibitor p21 is indispensable for maintaining self-renewal of leukaemia stem cells. Expression of leukaemia-associated oncogenes in mouse haematopoietic stem cells (HSCs) induces DNA damage and activates a p21-dependent cellular response, which leads to reversible cell-cycle arrest and DNA repair. Activated p21 is critical in preventing excess DNA-damage accumulation and functional exhaustion of leukaemic stem cells. These data unravel the oncogenic potential of p21 and suggest that inhibition of DNA repair mechanisms might function as potent strategy for the eradication of the slowly proliferating leukaemia stem cells.


Subject(s)
Cell Cycle , Cyclin-Dependent Kinase Inhibitor p21/metabolism , DNA Damage , Leukemia/pathology , Neoplastic Stem Cells/pathology , Animals , Cell Count , Cell Cycle/genetics , Cell Division , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Cyclin-Dependent Kinase Inhibitor p21/deficiency , Cyclin-Dependent Kinase Inhibitor p21/genetics , DNA Damage/genetics , DNA Repair , Fibroblasts , Gene Expression Regulation, Neoplastic , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/cytology , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Up-Regulation
13.
Sci Adv ; 10(13): eadk5386, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38536927

ABSTRACT

While pancreatic ductal adenocarcinomas (PDACs) are addicted to KRAS-activating mutations, inhibitors of downstream KRAS effectors, such as the MEK1/2 kinase inhibitor trametinib, are devoid of therapeutic effects. However, the extensive rewiring of regulatory circuits driven by the attenuation of the KRAS pathway may induce vulnerabilities of therapeutic relevance. An in-depth molecular analysis of the transcriptional and epigenomic alterations occurring in PDAC cells in the initial hours after MEK1/2 inhibition by trametinib unveiled the induction of endogenous retroviruses (ERVs) escaping epigenetic silencing, leading to the production of double-stranded RNAs and the increased expression of interferon (IFN) genes. We tracked ERV activation to the early induction of the transcription factor ELF3, which extensively bound and activated nonsilenced retroelements and synergized with IRF1 (interferon regulatory factor 1) in the activation of IFNs and IFN-stimulated genes. Trametinib-induced viral mimicry in PDAC may be exploited in the rational design of combination therapies in immuno-oncology.


Subject(s)
Carcinoma, Pancreatic Ductal , Endogenous Retroviruses , Pancreatic Neoplasms , Humans , Endogenous Retroviruses/genetics , Signal Transduction , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism
14.
Nat Commun ; 15(1): 1203, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38331987

ABSTRACT

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover mechanisms through which MM cells overcome DNA damage, we investigate how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting Interleukin enhancer binding factor 2 (ILF2), a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo adaptive metabolic rewiring to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identify the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage. Our study reveals a mechanism of vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation.


Subject(s)
Multiple Myeloma , Humans , Multiple Myeloma/genetics , DNA Helicases/metabolism , Metabolic Reprogramming , DNA Repair , DNA Damage
15.
Sci Adv ; 10(11): eadd9342, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478609

ABSTRACT

Tumors represent ecosystems where subclones compete during tumor growth. While extensively investigated, a comprehensive picture of the interplay of clonal lineages during dissemination is still lacking. Using patient-derived pancreatic cancer cells, we created orthotopically implanted clonal replica tumors to trace clonal dynamics of unperturbed tumor expansion and dissemination. This model revealed the multifaceted nature of tumor growth, with rapid changes in clonal fitness leading to continuous reshuffling of tumor architecture and alternating clonal dominance as a distinct feature of cancer growth. Regarding dissemination, a large fraction of tumor lineages could be found at secondary sites each having distinctive organ growth patterns as well as numerous undescribed behaviors such as abortive colonization. Paired analysis of primary and secondary sites revealed fitness as major contributor to dissemination. From the analysis of pro- and nonmetastatic isogenic subclones, we identified a transcriptomic signature able to identify metastatic cells in human tumors and predict patients' survival.


Subject(s)
Ecosystem , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Gene Expression Profiling , Transcriptome
16.
bioRxiv ; 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37790498

ABSTRACT

KRAS G12C inhibitor (G12Ci) has produced encouraging, albeit modest and transient, clinical benefit in pancreatic ductal adenocarcinoma (PDAC). Identifying and targeting resistance mechanisms to G12Ci treatment is therefore crucial. To better understand the tumor biology of the KRAS G12C allele and possible bypass mechanisms, we developed a novel autochthonous KRAS G12C -driven PDAC model. Compared to the classical KRAS G12D PDAC model, the G12C model exhibit slower tumor growth, yet similar histopathological and molecular features. Aligned with clinical experience, G12Ci treatment of KRAS G12C tumors produced modest impact despite stimulating a 'hot' tumor immune microenvironment. Immunoprofiling revealed that CD24, a 'do-not-eat-me' signal, is significantly upregulated on cancer cells upon G12Ci treatment. Blocking CD24 enhanced macrophage phagocytosis of cancer cells and significantly sensitized tumors to G12Ci treatment. Similar findings were observed in KRAS G12D -driven PDAC. Our study reveals common and distinct oncogenic KRAS allele-specific biology and identifies a clinically actionable adaptive mechanism that may improve the efficacy of oncogenic KRAS inhibitor therapy in PDAC. Significance: Lack of faithful preclinical models limits the exploration of resistance mechanisms to KRAS G12C inhibitor in PDAC. We generated an autochthonous KRAS G12C -driven PDAC model, which revealed allele-specific biology of the KRAS G12C during PDAC development. We identified CD24 as an actionable adaptive mechanisms in cancer cells induced upon KRAS G12C inhibition and blocking CD24 sensitizes PDAC to KRAS inhibitors in preclinical models.

17.
bioRxiv ; 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37786705

ABSTRACT

Mesenchymal plasticity has been extensively described in advanced and metastatic epithelial cancers; however, its functional role in malignant progression, metastatic dissemination and therapy response is controversial. More importantly, the role of epithelial mesenchymal transition (EMT) and cell plasticity in tumor heterogeneity, clonal selection and clonal evolution is poorly understood. Functionally, our work clarifies the contribution of EMT to malignant progression and metastasis in pancreatic cancer. We leveraged ad hoc somatic mosaic genome engineering, lineage tracing and ablation technologies and dynamic genetic reporters to trace and ablate tumor-specific lineages along the phenotypic spectrum of epithelial to mesenchymal plasticity. The experimental evidences clarify the essential contribution of mesenchymal lineages to pancreatic cancer evolution and metastatic dissemination. Spatial genomic analysis combined with single cell transcriptomic and epigenomic profiling of epithelial and mesenchymal lineages reveals that EMT promotes with the emergence of chromosomal instability (CIN). Specifically tumor lineages with mesenchymal features display highly conserved patterns of genomic evolution including complex structural genomic rearrangements and chromotriptic events. Genetic ablation of mesenchymal lineages robustly abolished these mutational processes and evolutionary patterns, as confirmed by cross species analysis of pancreatic and other human epithelial cancers. Mechanistically, we discovered that malignant cells with mesenchymal features display increased chromatin accessibility, particularly in the pericentromeric and centromeric regions, which in turn results in delayed mitosis and catastrophic cell division. Therefore, EMT favors the emergence of high-fitness tumor cells, strongly supporting the concept of a cell-state, lineage-restricted patterns of evolution, where cancer cell sub-clonal speciation is propagated to progenies only through restricted functional compartments. Restraining those evolutionary routes through genetic ablation of clones capable of mesenchymal plasticity and extinction of the derived lineages completely abrogates the malignant potential of one of the most aggressive form of human cancer.

18.
Nat Commun ; 14(1): 2194, 2023 04 17.
Article in English | MEDLINE | ID: mdl-37069167

ABSTRACT

Mitochondria are hubs where bioenergetics, redox homeostasis, and anabolic metabolism pathways integrate through a tightly coordinated flux of metabolites. The contributions of mitochondrial metabolism to tumor growth and therapy resistance are evident, but drugs targeting mitochondrial metabolism have repeatedly failed in the clinic. Our study in pancreatic ductal adenocarcinoma (PDAC) finds that cellular and mitochondrial lipid composition influence cancer cell sensitivity to pharmacological inhibition of electron transport chain complex I. Profiling of patient-derived PDAC models revealed that monounsaturated fatty acids (MUFAs) and MUFA-linked ether phospholipids play a critical role in maintaining ROS homeostasis. We show that ether phospholipids support mitochondrial supercomplex assembly and ROS production; accordingly, blocking de novo ether phospholipid biosynthesis sensitized PDAC cells to complex I inhibition by inducing mitochondrial ROS and lipid peroxidation. These data identify ether phospholipids as a regulator of mitochondrial redox control that contributes to the sensitivity of PDAC cells to complex I inhibition.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Reactive Oxygen Species/metabolism , Phospholipid Ethers/metabolism , Mitochondria/metabolism , Phospholipids/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/metabolism , Homeostasis
19.
bioRxiv ; 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36865225

ABSTRACT

DNA damage resistance is a major barrier to effective DNA-damaging therapy in multiple myeloma (MM). To discover novel mechanisms through which MM cells overcome DNA damage, we investigated how MM cells become resistant to antisense oligonucleotide (ASO) therapy targeting ILF2, a DNA damage regulator that is overexpressed in 70% of MM patients whose disease has progressed after standard therapies have failed. Here, we show that MM cells undergo an adaptive metabolic rewiring and rely on oxidative phosphorylation to restore energy balance and promote survival in response to DNA damage activation. Using a CRISPR/Cas9 screening strategy, we identified the mitochondrial DNA repair protein DNA2, whose loss of function suppresses MM cells' ability to overcome ILF2 ASO-induced DNA damage, as being essential to counteracting oxidative DNA damage and maintaining mitochondrial respiration. Our study revealed a novel vulnerability of MM cells that have an increased demand for mitochondrial metabolism upon DNA damage activation. STATEMENT OF SIGNIFICANCE: Metabolic reprogramming is a mechanism through which cancer cells maintain survival and become resistant to DNA-damaging therapy. Here, we show that targeting DNA2 is synthetically lethal in myeloma cells that undergo metabolic adaptation and rely on oxidative phosphorylation to maintain survival after DNA damage activation.

20.
Nat Cancer ; 4(7): 984-1000, 2023 07.
Article in English | MEDLINE | ID: mdl-37365326

ABSTRACT

Molecular routes to metastatic dissemination are critical determinants of aggressive cancers. Through in vivo CRISPR-Cas9 genome editing, we generated somatic mosaic genetically engineered models that faithfully recapitulate metastatic renal tumors. Disruption of 9p21 locus is an evolutionary driver to systemic disease through the rapid acquisition of complex karyotypes in cancer cells. Cross-species analysis revealed that recurrent patterns of copy number variations, including 21q loss and dysregulation of the interferon pathway, are major drivers of metastatic potential. In vitro and in vivo genomic engineering, leveraging loss-of-function studies, along with a model of partial trisomy of chromosome 21q, demonstrated a dosage-dependent effect of the interferon receptor genes cluster as an adaptive mechanism to deleterious chromosomal instability in metastatic progression. This work provides critical knowledge on drivers of renal cell carcinoma progression and defines the primary role of interferon signaling in constraining the propagation of aneuploid clones in cancer evolution.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , DNA Copy Number Variations/genetics , Chromosomal Instability/genetics , Aneuploidy , Kidney Neoplasms/genetics
SELECTION OF CITATIONS
SEARCH DETAIL