Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Oncogene ; 43(21): 1608-1619, 2024 May.
Article in English | MEDLINE | ID: mdl-38565943

ABSTRACT

Cancer cells employ adaptive mechanisms to survive various stressors, including genotoxic drugs. Understanding the factors promoting survival is crucial for developing effective treatments. In this study, we unveil a previously unexplored long non-coding RNA, JUNI (JUN-DT, LINC01135), which is upregulated by genotoxic drugs through the activation of stress-activated MAPKs, JNK, and p38 and consequently exerts positive control over the expression of its adjacent gene product c-Jun, a well-known oncoprotein, which transduces signals to multiple transcriptional outputs. JUNI regulates cellular migration and has a crucial role in conferring cellular resistance to chemotherapeutic drugs or UV radiation. Depletion of JUNI markedly increases the sensitivity of cultured cells and spheroids to chemotherapeutic agents. We identified 57 proteins interacting with JUNI. The activity of one of them the MAPK phosphatase and inhibitor, DUSP14, is counteracted by JUNI, thereby, facilitating efficient JNK phosphorylation and c-Jun induction when cells are exposed to UV radiation. The antagonistic interplay with DUSP14 contributes not only to c-Jun induction but also augments the survival of UV-exposed cells. In summary, we introduce JUNI as a novel stress-inducible regulator of c-Jun, positioning it as a potential target for enhancing the sensitivity of cancer cells to chemotherapy.


Subject(s)
Cell Movement , Cell Survival , Dual-Specificity Phosphatases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Dual-Specificity Phosphatases/metabolism , Dual-Specificity Phosphatases/genetics , Cell Movement/genetics , Cell Survival/radiation effects , Cell Survival/genetics , Cell Survival/drug effects , Proto-Oncogene Proteins c-jun/metabolism , Proto-Oncogene Proteins c-jun/genetics , Cell Line, Tumor , Ultraviolet Rays/adverse effects , MAP Kinase Signaling System/genetics , Gene Expression Regulation, Neoplastic , JNK Mitogen-Activated Protein Kinases/metabolism
2.
EMBO Rep ; 12(6): 549-57, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21525955

ABSTRACT

In the Drosophila circadian clock, the CLOCK/CYCLE complex activates the period and timeless genes that negatively feedback on CLOCK/CYCLE activity. The 24-h pace of this cycle depends on the stability of the clock proteins. RING-domain E3 ubiquitin ligases have been shown to destabilize PERIOD or TIMELESS. Here we identify a clock function for the circadian trip (ctrip) gene, which encodes a HECT-domain E3 ubiquitin ligase. ctrip expression in the brain is mostly restricted to clock neurons and its downregulation leads to long-period activity rhythms in constant darkness. This altered behaviour is associated with high CLOCK levels and persistence of phosphorylated PERIOD during the subjective day. The control of CLOCK protein levels does not require PERIOD. Thus, CTRIP seems to regulate the pace of the oscillator by controlling the stability of both the activator and the repressor of the feedback loop.


Subject(s)
CLOCK Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/enzymology , Gene Expression Regulation , Period Circadian Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , Base Sequence , Biological Clocks/genetics , Brain/metabolism , Down-Regulation , Drosophila/metabolism , Female , Gene Order , Male , Molecular Sequence Data , Motor Activity/physiology , Neurons/metabolism , Protein Stability , RNA Interference , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics
3.
J Neurosci ; 31(48): 17406-15, 2011 Nov 30.
Article in English | MEDLINE | ID: mdl-22131402

ABSTRACT

In Drosophila, opsin visual photopigments as well as blue-light-sensitive cryptochrome (CRY) contribute to the synchronization of circadian clocks. We focused on the relatively simple larval brain, with nine clock neurons per hemisphere: five lateral neurons (LNs), four of which express the pigment-dispersing factor (PDF) neuropeptide, and two pairs of dorsal neurons (DN1s and DN2s). CRY is present only in the PDF-expressing LNs and the DN1s. The larval visual organ expresses only two rhodopsins (RH5 and RH6) and projects onto the LNs. We recently showed that PDF signaling is required for light to synchronize the CRY(-) larval DN2s. We now show that, in the absence of functional CRY, synchronization of the DN1s also requires PDF, suggesting that these neurons have no direct connection with the visual system. In contrast, the fifth (PDF(-)) LN does not require the PDF-expressing cells to receive visual system inputs. All clock neurons are light-entrained by light-dark cycles in the rh5(2);cry(b), rh6(1) cry(b), and rh5(2);rh6(1) double mutants, whereas the triple mutant is circadianly blind. Thus, any one of the three photosensitive molecules is sufficient, and there is no other light input for the larval clock. Finally, we show that constant activation of the visual system can suppress molecular oscillations in the four PDF-expressing LNs, whereas, in the adult, this effect of constant light requires CRY. A surprising diversity and specificity of light input combinations thus exists even for this simple clock network.


Subject(s)
Brain/physiology , Drosophila/physiology , Neurons/physiology , Photoreceptor Cells, Invertebrate/physiology , Animals , Animals, Genetically Modified , Behavior, Animal/physiology , CLOCK Proteins/genetics , Drosophila Proteins/genetics , Larva/physiology , Photic Stimulation/methods , Photoperiod , Rhodopsin/genetics
4.
Methods Mol Biol ; 2488: 125-143, 2022.
Article in English | MEDLINE | ID: mdl-35347687

ABSTRACT

The TGF-ß pathway is known to behave as a classical morphogen, meaning that it can dictate cell fate decisions in a dose-dependent manner. Recent observations however showed that in addition to the absolute value of morphogen concentration, cells could also extract information from its temporal variations. In the present article we describe how to use automated microfluidics cell culture to stimulate cells with precisely defined temporal profiles of morphogens and how to engineer mouse embryonic stem cells with fluorescent reporters of pathway activity to record in real time their response to the applied stimulations. The combination of automated cell culture and of live cell reporter provides a complete toolbox to study how cells encode the information carried by time-varying TGF-ß signals.


Subject(s)
Microfluidics , Mouse Embryonic Stem Cells , Animals , Cell Differentiation , Mice , Mouse Embryonic Stem Cells/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL