Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Brief Bioinform ; 19(1): 41-51, 2018 01 01.
Article in English | MEDLINE | ID: mdl-27742664

ABSTRACT

High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org. Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest.


Subject(s)
Embryo, Mammalian/diagnostic imaging , Embryo, Mammalian/physiology , High-Throughput Screening Assays/methods , Image Processing, Computer-Assisted/methods , Molecular Imaging/methods , Software , Animals , Automation , Imaging, Three-Dimensional/methods , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Molecular Imaging/instrumentation , Phenotype
2.
PLoS Genet ; 12(6): e1006070, 2016 06.
Article in English | MEDLINE | ID: mdl-27272319

ABSTRACT

During mammalian development, left-right (L-R) asymmetry is established by a cilia-driven leftward fluid flow within a midline embryonic cavity called the node. This 'nodal flow' is detected by peripherally-located crown cells that each assemble a primary cilium which contain the putative Ca2+ channel PKD2. The interaction of flow and crown cell cilia promotes left side-specific expression of Nodal in the lateral plate mesoderm (LPM). Whilst the PKD2-interacting protein PKD1L1 has also been implicated in L-R patterning, the underlying mechanism by which flow is detected and the genetic relationship between Polycystin function and asymmetric gene expression remains unknown. Here, we characterize a Pkd1l1 mutant line in which Nodal is activated bilaterally, suggesting that PKD1L1 is not required for LPM Nodal pathway activation per se, but rather to restrict Nodal to the left side downstream of nodal flow. Epistasis analysis shows that Pkd1l1 acts as an upstream genetic repressor of Pkd2. This study therefore provides a genetic pathway for the early stages of L-R determination. Moreover, using a system in which cultured cells are supplied artificial flow, we demonstrate that PKD1L1 is sufficient to mediate a Ca2+ signaling response after flow stimulation. Finally, we show that an extracellular PKD domain within PKD1L1 is crucial for PKD1L1 function; as such, destabilizing the domain causes L-R defects in the mouse. Our demonstration that PKD1L1 protein can mediate a response to flow coheres with a mechanosensation model of flow sensation in which the force of fluid flow drives asymmetric gene expression in the embryo.


Subject(s)
Body Patterning/genetics , Cilia/genetics , Membrane Proteins/genetics , Mesoderm/metabolism , Nodal Protein/genetics , TRPP Cation Channels/genetics , Animals , Embryo, Mammalian/cytology , Gene Expression Regulation, Developmental , Intercellular Signaling Peptides and Proteins/genetics , Mesoderm/embryology , Mice , Mice, Inbred C3H , Mice, Transgenic , Nodal Protein/biosynthesis , Protein Structure, Tertiary , TRPP Cation Channels/antagonists & inhibitors
3.
Proc Natl Acad Sci U S A ; 113(10): 2756-61, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26903623

ABSTRACT

The suprachiasmatic nucleus (SCN) defines 24 h of time via a transcriptional/posttranslational feedback loop in which transactivation of Per (period) and Cry (cryptochrome) genes by BMAL1-CLOCK complexes is suppressed by PER-CRY complexes. The molecular/structural basis of how circadian protein complexes function is poorly understood. We describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutation, early doors (Edo), in the PER-ARNT-SIM (PAS) domain dimerization region of period 2 (PER2) (I324N) that accelerates the circadian clock of Per2(Edo/Edo) mice by 1.5 h. Structural and biophysical analyses revealed that Edo alters the packing of the highly conserved interdomain linker of the PER2 PAS core such that, although PER2(Edo) complexes with clock proteins, its vulnerability to degradation mediated by casein kinase 1ε (CSNK1E) is increased. The functional relevance of this mutation is revealed by the ultrashort (<19 h) but robust circadian rhythms in Per2(Edo/Edo); Csnk1e(Tau/Tau) mice and the SCN. These periods are unprecedented in mice. Thus, Per2(Edo) reveals a direct causal link between the molecular structure of the PER2 PAS core and the pace of SCN circadian timekeeping.


Subject(s)
Circadian Clocks/genetics , Circadian Rhythm/genetics , Mutation, Missense , Period Circadian Proteins/genetics , Amino Acid Sequence , Animals , Blotting, Western , COS Cells , Casein Kinase 1 epsilon/genetics , Casein Kinase 1 epsilon/metabolism , Chlorocebus aethiops , Circadian Clocks/physiology , Circadian Rhythm/physiology , Female , HEK293 Cells , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Knockout , Models, Molecular , Molecular Sequence Data , Motor Activity/genetics , Motor Activity/physiology , Period Circadian Proteins/chemistry , Period Circadian Proteins/metabolism , Protein Multimerization , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Suprachiasmatic Nucleus/metabolism , Suprachiasmatic Nucleus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL