Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 154(4): 827-42, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23953114

ABSTRACT

The epidemic of heart failure has stimulated interest in understanding cardiac regeneration. Evidence has been reported supporting regeneration via transplantation of multiple cell types, as well as replication of postmitotic cardiomyocytes. In addition, the adult myocardium harbors endogenous c-kit(pos) cardiac stem cells (eCSCs), whose relevance for regeneration is controversial. Here, using different rodent models of diffuse myocardial damage causing acute heart failure, we show that eCSCs restore cardiac function by regenerating lost cardiomyocytes. Ablation of the eCSC abolishes regeneration and functional recovery. The regenerative process is completely restored by replacing the ablated eCSCs with the progeny of one eCSC. eCSCs recovered from the host and recloned retain their regenerative potential in vivo and in vitro. After regeneration, selective suicide of these exogenous CSCs and their progeny abolishes regeneration, severely impairing ventricular performance. These data show that c-kit(pos) eCSCs are necessary and sufficient for the regeneration and repair of myocardial damage.


Subject(s)
Adult Stem Cells/transplantation , Heart Failure/therapy , Myocytes, Cardiac/cytology , Adult Stem Cells/metabolism , Animals , Bone Marrow Cells/metabolism , Green Fluorescent Proteins/analysis , Heart/physiology , Heart Failure/chemically induced , Humans , Isoproterenol , Male , Mice , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Rats , Stem Cell Factor/metabolism
2.
J Transl Med ; 22(1): 33, 2024 01 07.
Article in English | MEDLINE | ID: mdl-38185632

ABSTRACT

BACKGROUND: The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neutralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity. METHODS: A T-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRß repertoire in peripheral blood mononuclear cells of previously vaccinated (n = 8) or unvaccinated (n = 6) COVID-19 patients. RESULTS: Diversity and clonality of the TCRß repertoire showed no significant differences between vaccinated and unvaccinated groups. When comparing the TCRß data to public databases, 692 unique TCRß sequences linked to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCRß clonotypes related to spike regions S135-177, S264-276, S319-350, and S448-472 appear notably more prevalent in the vaccinated group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 variants of concern, don't hinder their cross-reactive recognition by associated TCRß clonotypes. CONCLUSIONS: Our findings reveal distinct TCRß signatures in vaccinated and unvaccinated individuals with COVID-19. These differences might be associated with disease severity and could influence clinical outcomes. TRIAL REGISTRATION: FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , Epitopes , Receptors, Antigen, T-Cell/genetics
3.
J Transl Med ; 22(1): 208, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413989

ABSTRACT

BACKGROUND: Mitochondrial alterations, often dependent on unbalanced mitochondrial dynamics, feature in the pathobiology of human cancers, including multiple myeloma (MM). Flavanones are natural flavonoids endowed with mitochondrial targeting activities. Herein, we investigated the capability of Hesperetin (Hes) and Naringenin (Nar), two aglycones of Hesperidin and Naringin flavanone glycosides, to selectively target Drp1, a pivotal regulator of mitochondrial dynamics, prompting anti-MM activity. METHODS: Molecular docking analyses were performed on the crystallographic structure of Dynamin-1-like protein (Drp1), using Hes and Nar molecular structures. Cell viability and apoptosis were assessed in MM cell lines, or in co-culture systems with primary bone marrow stromal cells, using Cell Titer Glo and Annexin V-7AAD staining, respectively; clonogenicity was determined using methylcellulose colony assays. Transcriptomic analyses were carried out using the Ion AmpliSeq™ platform; mRNA and protein expression levels were determined by quantitative RT-PCR and western blotting, respectively. Mitochondrial architecture was assessed by transmission electron microscopy. Real time measurement of oxygen consumption was performed by high resolution respirometry in living cells. In vivo anti-tumor activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Hes and Nar were found to accommodate within the GTPase binding site of Drp1, and to inhibit Drp1 expression and activity, leading to hyperfused mitochondria with reduced OXPHOS. In vitro, Hes and Nar reduced MM clonogenicity and viability, even in the presence of patient-derived bone marrow stromal cells, triggering ER stress and apoptosis. Interestingly, Hes and Nar rewired MM cell metabolism through the down-regulation of master transcriptional activators (SREBF-1, c-MYC) of lipogenesis genes. An extract of Tacle, a Citrus variety rich in Hesperidin and Naringin, was capable to recapitulate the phenotypic and molecular perturbations of each flavanone, triggering anti-MM activity in vivo. CONCLUSION: Hes and Nar inhibit proliferation, rewire the metabolism and induce apoptosis of MM cells via antagonism of the mitochondrial fission driver Drp1. These results provide a framework for the development of natural anti-MM therapeutics targeting aberrant mitochondrial dependencies.


Subject(s)
Flavanones , Hesperidin , Multiple Myeloma , Mice , Animals , Humans , Hesperidin/pharmacology , Mitochondrial Dynamics , Multiple Myeloma/drug therapy , Molecular Docking Simulation , Mice, Inbred NOD , Mice, SCID , Flavanones/pharmacology , Flavanones/therapeutic use , Flavanones/chemistry
4.
J Med Virol ; 96(6): e29708, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38804179

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) persistence in COVID-19 patients could play a key role in the emergence of variants of concern. The rapid intra-host evolution of SARS-CoV-2 may result in an increased transmissibility, immune and therapeutic escape which could be a direct consequence of COVID-19 epidemic currents. In this context, a longitudinal retrospective study on eight consecutive COVID-19 patients with persistent SARS-CoV-2 infection, from January 2022 to March 2023, was conducted. To characterize the intra- and inter-host viral evolution, whole genome sequencing and phylogenetic analysis were performed on nasopharyngeal samples collected at different time points. Phylogenetic reconstruction revealed an accelerated SARS-CoV-2 intra-host evolution and emergence of antigenically divergent variants. The Bayesian inference and principal coordinate analysis analysis showed a host-based genomic structuring among antigenically divergent variants, that might reflect the positive effect of containment practices, within the critical hospital area. All longitudinal antigenically divergent isolates shared a wide range of amino acidic (aa) changes, particularly in the Spike (S) glycoprotein, that increased viral transmissibility (K417N, S477N, N501Y and Q498R), enhanced infectivity (R346T, S373P, R408S, T478K, Q498R, Y505H, D614G, H655Y, N679K and P681H), caused host immune escape (S371L, S375F, T376A, K417N, and K444T/R) and displayed partial or complete resistance to treatments (G339D, R346K/T, S371F/L, S375F, T376A, D405N, N440K, G446S, N460K, E484A, F486V, Q493R, G496S and Q498R). These results suggest that multiple novel variants which emerge in the patient during persistent infection, might spread to another individual and continue to evolve. A pro-active genomic surveillance of persistent SARS-CoV-2 infected patients is recommended to identify genetically divergent lineages before their diffusion.


Subject(s)
COVID-19 , Phylogeny , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/virology , COVID-19/transmission , COVID-19/epidemiology , SARS-CoV-2/genetics , SARS-CoV-2/classification , Retrospective Studies , Male , Female , Spike Glycoprotein, Coronavirus/genetics , Middle Aged , Longitudinal Studies , Genome, Viral/genetics , Aged , Whole Genome Sequencing , Evolution, Molecular , Hospitalization , Nasopharynx/virology , Bayes Theorem , Adult
5.
Diabetes Metab Res Rev ; 40(4): e3811, 2024 May.
Article in English | MEDLINE | ID: mdl-38751148

ABSTRACT

AIMS: Individuals with type 1 diabetes (T1D) do not appear to have an elevated risk of severe Coronavirus Disease 19 (COVID-19). Pre-existing immune reactivity to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in unexposed individuals may serve as a protective factor. Hence, our study was designed to evaluate the existence of T cells with reactivity against SARS-CoV-2 antigens in unexposed patients with T1D. MATERIALS AND METHODS: Peripheral blood mononuclear cells (PBMCs) were collected from SARS-CoV-2 unexposed patients with T1D and healthy control subjects. SARS-CoV-2 specific T cells were identified in PBMCs by ex-vivo interferon (IFN)γ-ELISpot and flow cytometric assays. The epitope specificity of T cells in T1D was inferred through T Cell Receptor sequencing and GLIPH2 clustering analysis. RESULTS: T1D patients unexposed to SARS-CoV-2 exhibited higher rates of virus-specific T cells than controls. The T cells primarily responded to peptides from the ORF7/8, ORF3a, and nucleocapsid proteins. Nucleocapsid peptides predominantly indicated a CD4+ response, whereas ORF3a and ORF7/8 peptides elicited both CD4+ and CD8+ responses. The GLIPH2 clustering analysis of TCRß sequences suggested that TCRß clusters, associated with the autoantigens proinsulin and Zinc transporter 8 (ZnT-8), might share specificity towards ORF7b and ORF3a viral epitopes. Notably, PBMCs from three T1D patients exhibited T cell reactivity against both ORF7b/ORF3a viral epitopes and proinsulin/ZnT-8 autoantigens. CONCLUSIONS: The increased frequency of SAR-CoV-2- reactive T cells in T1D patients might protect against severe COVID-19 and overt infections. These results emphasise the long-standing association between viral infections and T1D.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , SARS-CoV-2 , Humans , Diabetes Mellitus, Type 1/immunology , SARS-CoV-2/immunology , COVID-19/immunology , Male , Female , Adult , T-Lymphocytes/immunology , Middle Aged , Case-Control Studies , Epitopes, T-Lymphocyte/immunology , Young Adult
6.
J Transl Med ; 21(1): 635, 2023 09 19.
Article in English | MEDLINE | ID: mdl-37726810

ABSTRACT

A large body of evidence indicates the existence of a complex pathophysiological relationship between cardiovascular diseases and cancer. Mitochondria are crucial organelles whose optimal activity is determined by quality control systems, which regulate critical cellular events, ranging from intermediary metabolism and calcium signaling to mitochondrial dynamics, cell death and mitophagy. Emerging data indicate that impaired mitochondrial quality control drives myocardial dysfunction occurring in several heart diseases, including cardiac hypertrophy, myocardial infarction, ischaemia/reperfusion damage and metabolic cardiomyopathies. On the other hand, diverse human cancers also dysregulate mitochondrial quality control to promote their initiation and progression, suggesting that modulating mitochondrial homeostasis may represent a promising therapeutic strategy both in cardiology and oncology. In this review, first we briefly introduce the physiological mechanisms underlying the mitochondrial quality control system, and then summarize the current understanding about the impact of dysregulated mitochondrial functions in cardiovascular diseases and cancer. We also discuss key mitochondrial mechanisms underlying the increased risk of cardiovascular complications secondary to the main current anticancer strategies, highlighting the potential of strategies aimed at alleviating mitochondrial impairment-related cardiac dysfunction and tumorigenesis. It is hoped that this summary can provide novel insights into precision medicine approaches to reduce cardiovascular and cancer morbidities and mortalities.


Subject(s)
Cardiovascular Diseases , Heart Diseases , Neoplasms , Humans , Neoplasms/complications , Carcinogenesis , Mitochondria
7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36901856

ABSTRACT

Male infertility has been recognized as a global health problem. Semen analysis, although considered the golden standard, may not provide a confident male infertility diagnosis alone. Hence, there is the urgent request for an innovative and reliable platform to detect biomarkers of infertility. The rapid expansion of mass spectrometry (MS) technology in the field of the 'omics' disciplines, has incredibly proved the great potential of MS-based diagnostic tests to revolutionize the future of pathology, microbiology and laboratory medicine. Despite the increasing success in the microbiology area, MS-biomarkers of male infertility currently remain a proteomic challenge. In order to address this issue, this review encompasses proteomics investigations by untargeted approaches with a special focus on experimental designs and strategies (bottom-up and top-down) for seminal fluid proteome profiling. The studies reported here witness the efforts of the scientific community to address these investigations aimed at the discovery of MS-biomarkers of male infertility. Proteomics untargeted approaches, depending on the study design, might provide a great plethora of biomarkers not only for a male infertility diagnosis, but also to address a new MS-biomarkers classification of infertility subtypes. From the early detection to the evaluation of infertility grade, new MS-derived biomarkers might also predict long-term outcomes and clinical management of infertility.


Subject(s)
Infertility, Male , Semen , Male , Humans , Semen/chemistry , Proteomics/methods , Infertility, Male/diagnosis , Mass Spectrometry , Biomarkers/analysis
8.
Int J Mol Sci ; 24(2)2023 Jan 06.
Article in English | MEDLINE | ID: mdl-36674648

ABSTRACT

The main cause of morbidity and mortality in diabetes mellitus (DM) is cardiovascular complications. Diabetic cardiomyopathy (DCM) remains incompletely understood. Animal models have been crucial in exploring DCM pathophysiology while identifying potential therapeutic targets. Streptozotocin (STZ) has been widely used to produce experimental models of both type 1 and type 2 DM (T1DM and T2DM). Here, we compared these two models for their effects on cardiac structure, function and transcriptome. Different doses of STZ and diet chows were used to generate T1DM and T2DM in C57BL/6J mice. Normal euglycemic and nonobese sex- and age-matched mice served as controls (CTRL). Immunohistochemistry, RT-PCR and RNA-seq were employed to compare hearts from the three animal groups. STZ-induced T1DM and T2DM affected left ventricular function and myocardial performance differently. T1DM displayed exaggerated apoptotic cardiomyocyte (CM) death and reactive hypertrophy and fibrosis, along with increased cardiac oxidative stress, CM DNA damage and senescence, when compared to T2DM in mice. T1DM and T2DM affected the whole cardiac transcriptome differently. In conclusion, the STZ-induced T1DM and T2DM mouse models showed significant differences in cardiac remodeling, function and the whole transcriptome. These differences could be of key relevance when choosing an animal model to study specific features of DCM.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Diabetic Cardiomyopathies , Mice , Animals , Diabetic Cardiomyopathies/genetics , Streptozocin/adverse effects , Diabetes Mellitus, Type 1/chemically induced , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/chemically induced , Mice, Inbred C57BL , Disease Models, Animal
9.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771100

ABSTRACT

Multiple myeloma (MM) is an aggressive and incurable disease for most patients, characterized by periods of treatment, remission and relapse. The introduction of new classes of drugs, such as proteasome inhibitors (PIs), has improved survival outcomes in these patient populations. The proteasome is the core of the ubiquitin-proteasome system (UPS), a complex and conserved pathway involved in the control of multiple cellular processes, including cell cycle control, transcription, DNA damage repair, protein quality control and antigen presentation. To date, PIs represent the gold standard for the treatment of MM. Bortezomib was the first PI approved by the FDA, followed by next generation of PIs, namely carfilzomib and ixazomib. Natural agents play an important role in anti-tumor drug discovery, and many of them have recently been reported to inhibit the proteasome, thus representing a new potential source of anti-MM drugs. Based on the pivotal biological role of the proteasome and on PIs' significance in the management of MM, in this review we aim to briefly summarize recent evidence on natural compounds capable of inhibiting the proteasome, thus triggering anti-MM activity.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proteasome Endopeptidase Complex , Antineoplastic Agents/adverse effects , Bortezomib/therapeutic use
10.
BMC Infect Dis ; 22(1): 793, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36266619

ABSTRACT

BACKGROUND: Monoclonal antibodies (mAbs) and antivirals have been approved for early therapy of coronavirus disease (COVID-19), however, in the real-life setting, there are difficulties to prescribe these therapies within few days from symptom onset as recommended, and effectiveness of combined use of these drugs have been hypothesised in most-at-risk patients (such as those immunocompromised) but data supporting this strategy are limited. METHODS: We describe the real-life experience of SARS-CoV-2 antivirals and/or monoclonal antibodies (mAbs) and focus on the hospitalisation rate due to the progression of COVID-19. Clinical results obtained through our risk-stratification algorithm and benefits achieved through a strategic proximity territorial centre are provided. We also report a case series with an in-depth evaluation of SARS-CoV-2 genome in relationship with treatment strategy and clinical evolution of patients. RESULTS: Two hundred eighty-eight patients were analysed; 94/288 (32.6%) patients were treated with mAb monotherapy, 171/288 (59.4%) patients were treated with antivirals, and 23/288 (8%) patients received both mAbs and one antiviral drug. Haematological malignancies were more frequent in patients treated with combination therapy than in the other groups (p = 0.0003). There was a substantial increase in the number of treated patients since the opening of the centre dedicated to early therapies for COVID-19. The provided disease-management and treatment appeared to be effective since 98.6% patients recovered without hospital admission. Moreover, combination therapy with mAbs and antivirals seemed successful because all patients admitted to the hospital for COVID-19 did not receive such therapies, while none of the most-at-risk patients treated with combination therapy were hospitalized or reported adverse events. CONCLUSIONS: A low rate of COVID-19 progression requiring hospital admission was observed in patients included in this study. The dedicated COVID-19 proximity territorial service appeared to strengthen the regional sanitary system, avoiding the overwhelming of other services. Importantly, our results also support early combination therapy: it is possible that this strategy reduces the emergence of escape mutants of SARS-CoV-2, thereby increasing efficacy of early treatment, especially in immunocompromised individuals.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Secondary Prevention , Retrospective Studies , Antiviral Agents/therapeutic use , Antibodies, Monoclonal/therapeutic use
11.
Int J Mol Sci ; 23(19)2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36232638

ABSTRACT

Radiotherapy represents a highly targeted and efficient treatment choice in many cancer types, both with curative and palliative intents. Nevertheless, radioresistance, consisting in the adaptive response of the tumor to radiation-induced damage, represents a major clinical problem. A growing body of the literature suggests that mechanisms related to mitochondrial changes and metabolic remodeling might play a major role in radioresistance development. In this work, the main contributors to the acquired cellular radioresistance and their relation with mitochondrial changes in terms of reactive oxygen species, hypoxia, and epigenetic alterations have been discussed. We focused on recent findings pointing to a major role of mitochondria in response to radiotherapy, along with their implication in the mechanisms underlying radioresistance and radiosensitivity, and briefly summarized some of the recently proposed mitochondria-targeting strategies to overcome the radioresistant phenotype in cancer.


Subject(s)
Neoplasms , Cell Line, Tumor , Humans , Hypoxia/metabolism , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/radiotherapy , Radiation Tolerance/genetics , Reactive Oxygen Species/metabolism
12.
J Transl Med ; 19(1): 79, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33596963

ABSTRACT

BACKGROUND: The Sars-CoV-2 can cause severe pneumonia with multiorgan disease; thus, the identification of clinical and laboratory predictors of the progression towards severe and fatal forms of this illness is needed. Here, we retrospectively evaluated and integrated laboratory parameters of 45 elderly subjects from a long-term care facility with Sars-CoV-2 outbreak and spread, to identify potential common patterns of systemic response able to better stratify patients' clinical course and outcome. METHODS: Baseline white blood cells, granulocytes', lymphocytes', and platelets' counts, hemoglobin, total iron, ferritin, D-dimer, and interleukin-6 concentration were used to generate a principal component analysis. Statistical analysis was performed by using R statistical package version 4.0. RESULTS: We identified 3 laboratory patterns of response, renamed as low-risk, intermediate-risk, and high-risk, strongly associated with patients' survival (p < 0.01). D-dimer, iron status, lymphocyte/monocyte count represented the main markers discriminating high- and low-risk groups. Patients belonging to the high-risk group presented a significantly longer time to ferritin decrease (p: 0.047). Iron-to-ferritin-ratio (IFR) significantly segregated recovered and dead patients in the intermediate-risk group (p: 0.012). CONCLUSIONS: Our data suggest that a combination of few laboratory parameters, i.e. iron status, D-dimer and lymphocyte/monocyte count at admission and during the hospital stay, can predict clinical progression in COVID-19.


Subject(s)
COVID-19/diagnosis , COVID-19/therapy , Fibrin Fibrinogen Degradation Products/analysis , Iron/blood , Lymphocytes/pathology , Monocytes/pathology , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/mortality , Female , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Leukocyte Count , Long-Term Care , Male , Middle Aged , Platelet Count , Prognosis , Retrospective Studies , SARS-CoV-2/physiology , Treatment Outcome
13.
Eur Heart J ; 41(45): 4332-4345, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32330934

ABSTRACT

AIMS: Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. METHODS AND RESULTS: Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft's in immunodeficient NOD/SCID mice. CONCLUSION: Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease.


Subject(s)
Heart Neoplasms , Myxoma , Animals , Mice , Mice, Inbred NOD , Mice, SCID , Stem Cells
14.
Int J Mol Sci ; 22(24)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34947977

ABSTRACT

Organoids are tiny, self-organized, three-dimensional tissue cultures that are derived from the differentiation of stem cells. The growing interest in the use of organoids arises from their ability to mimic the biology and physiology of specific tissue structures in vitro. Organoids indeed represent promising systems for the in vitro modeling of tissue morphogenesis and organogenesis, regenerative medicine and tissue engineering, drug therapy testing, toxicology screening, and disease modeling. Although 2D cell cultures have been used for more than 50 years, even for their simplicity and low-cost maintenance, recent years have witnessed a steep rise in the availability of organoid model systems. Exploiting the ability of cells to re-aggregate and reconstruct the original architecture of an organ makes it possible to overcome many limitations of 2D cell culture systems. In vitro replication of the cellular micro-environment of a specific tissue leads to reproducing the molecular, biochemical, and biomechanical mechanisms that directly influence cell behavior and fate within that specific tissue. Lineage-specific self-organizing organoids have now been generated for many organs. Currently, growing cardiac organoid (cardioids) from pluripotent stem cells and cardiac stem/progenitor cells remains an open challenge due to the complexity of the spreading, differentiation, and migration of cardiac muscle and vascular layers. Here, we summarize the evolution of biological model systems from the generation of 2D spheroids to 3D organoids by focusing on the generation of cardioids based on the currently available laboratory technologies and outline their high potential for cardiovascular research.


Subject(s)
Adult Stem Cells/cytology , Organ Culture Techniques/methods , Organoids/cytology , Cell Differentiation , Heart/physiology , Humans , Models, Biological , Pluripotent Stem Cells/cytology , Regeneration , Spheroids, Cellular/cytology
15.
Int J Mol Sci ; 22(21)2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34769070

ABSTRACT

Polyphenols from olive oil are endowed with several biological activities. Chemical modifications have been recently applied to these compounds to improve their therapeutic activity in different pathological settings, including cancer. Herein, we describe the in vitro effects on multiple myeloma (MM) cells of oleil hydroxytyrosol (HTOL), a synthetic fatty ester of natural hydroxytyrosol with oleic acid. HTOL reduced the viability of various human MM cell lines (HMCLs), even when co-cultured with bone marrow stromal cells, triggering ER stress, UPR and apoptosis, while it was not cytotoxic against healthy peripheral blood mononuclear cells or B lymphocytes. Whole-transcriptome profiling of HTOL-treated MM cells, coupled with protein expression analyses, indicate that HTOL antagonizes key survival pathways for malignant plasma cells, including the undruggable IRF4-c-MYC oncogenic axis. Accordingly, c-MYC gain- and loss-of-function strategies demonstrate that HTOL anti-tumor activity was, at least in part, due to c-MYC targeting. Taken together, these findings underscore the anti-MM potential of HTOL, providing the molecular framework for further investigation of HTOL-based treatments as novel anti-cancer agents.


Subject(s)
Antineoplastic Agents/pharmacology , Multiple Myeloma/drug therapy , Phenylethyl Alcohol/analogs & derivatives , Plasma Cells/drug effects , Antineoplastic Agents/chemistry , Cell Line, Tumor , Humans , Multiple Myeloma/metabolism , Multiple Myeloma/pathology , Phenylethyl Alcohol/chemistry , Phenylethyl Alcohol/pharmacology , Plasma Cells/metabolism , Plasma Cells/pathology , Signal Transduction/drug effects
16.
RNA Biol ; 14(3): 305-316, 2017 03 04.
Article in English | MEDLINE | ID: mdl-27858503

ABSTRACT

Extracellular vesicles (EVs) contain a wide range of RNA types with a reported prevalence of non-coding RNA. To date a comprehensive characterization of the protein coding transcripts in EVs is still lacking. We performed RNA-Sequencing (RNA-Seq) of 2 EV populations and identified a small fraction of transcripts that were expressed at significantly different levels in large oncosomes and exosomes, suggesting they may mediate specialized functions. However, these 2 EV populations exhibited a common mRNA signature that, in comparison to their donor cells, was significantly enriched in mRNAs encoding E2F transcriptional targets and histone proteins. These mRNAs are primarily expressed in the S-phase of the cell cycle, suggesting that they may be packaged into EVs during S-phase. In silico analysis using subcellular compartment transcriptome data from the ENCODE cell line compendium revealed that EV mRNAs originate from a cytoplasmic RNA pool. The EV signature was independently identified in plasma of patients with breast cancer by RNA-Seq. Furthermore, several transcripts differentially expressed in EVs from patients versus controls mirrored differential expression between normal and breast cancer tissues. Altogether, this largest high-throughput profiling of EV mRNA demonstrates that EVs carry tumor-specific alterations and can be interrogated as a source of cancer-derived cargo.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Extracellular Vesicles/metabolism , RNA, Messenger/genetics , Breast Neoplasms/blood , Cell Cycle/genetics , Cell Line, Tumor , Computational Biology/methods , Cytosol/metabolism , E2F4 Transcription Factor/metabolism , Female , Gene Expression Profiling , Gene Ontology , High-Throughput Nucleotide Sequencing , Humans , Protein Sorting Signals/genetics , RNA, Messenger/blood , Transcriptome , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
18.
Perfusion ; 31(7): 584-92, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27000150

ABSTRACT

BACKGROUND: Several factors have been historically advocated to explain the coagulative and inflammatory disorders following cardiopulmonary bypass (CPB). In this paper, we describe the presence of circulating non-hematological cells, introduced within the bloodstream during CPB. We defined the origin of the cells and tested their impact on coagulation. METHODS: We collected peripheral arterial blood samples in twenty consecutive coronary artery bypass graft cases at four different surgical moments and assessed the presence and nature of circulating cells with the use of the CELLSEARCH® Test, immunocytochemistry and immunofluorescence, evaluating the expression of cytokeratin and calretinin. The effect of the circulating non-hematological cells on coagulation was tested in vitro, using the ROTEM assay. RESULTS: A mean of 263.85 ± 57.5 (median 258.5) cells were present in the samples following the suction of blood from the surgical field while all the other samples were negative (zero cells) (p<0.00001). Immunologic tests confirmed the mesothelial origin of the cells. The ROTEM® assay of the blood samples contaminated by the mesothelial cells presented longer clotting times (53.4 ± 8.2 secs 48.3 ± 8.9 sec, p=0.05), longer clot formation times (137.1 ± 31.5 sec vs 111.9 ± 25.2 sec, p=0.009), smaller alfa angle amplitudes (66.7 ± 9.1° vs 71.1 ± 5.1°, p=0.04) and maximum clot firmness times (59.0 ± 5.4 sec vs 61.9 ±4.6 sec, p=0.004) than the controls. CONCLUSION: The presence of circulating non-hematological cells during CPB with a mesothelial immunophenotype alters in vitro coagulation assays. This finding can help to further understand the pathophysiology of CPB.


Subject(s)
Blood Coagulation , Cardiopulmonary Bypass/methods , Epithelial Cells/cytology , Aged , Blood Coagulation Tests , Calbindin 2/analysis , Cardiopulmonary Bypass/adverse effects , Coronary Artery Bypass/adverse effects , Coronary Artery Bypass/methods , Epithelial Cells/pathology , Female , Humans , Immunomagnetic Separation , Keratins/analysis , Male , Middle Aged , Prospective Studies , Thrombelastography
19.
Int J Mol Sci ; 17(11)2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27827994

ABSTRACT

The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.


Subject(s)
Alternative Splicing , Carrier Proteins/genetics , Protein Biosynthesis , Transcriptome , Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Biological Transport , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/metabolism , Cell Movement , Cullin Proteins/genetics , Cullin Proteins/metabolism , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , K562 Cells , Nucleosomes/metabolism , Nucleosomes/ultrastructure , Organ Specificity , Proteasome Endopeptidase Complex/metabolism , Protein Domains , Proteolysis , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
20.
Blood ; 121(13): 2452-61, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23349393

ABSTRACT

The Polycomb group (PcG) protein BMI1 is a key factor in regulating hematopoietic stem cell (HSC) and leukemic stem cell self-renewal and functions in the context of the Polycomb repressive complex 1 (PRC1). In humans, each of the 5 subunits of PRC1 has paralog family members of which many reside in PRC1 complexes, likely in a mutually exclusive manner, pointing toward a previously unanticipated complexity of Polycomb-mediated silencing. We used an RNA interference screening approach to test the functionality of these paralogs in human hematopoiesis. Our data demonstrate a lack of redundancy between various paralog family members, suggestive of functional diversification between PcG proteins. By using an in vivo biotinylation tagging approach followed by liquid chromatography-tandem mass spectrometry to identify PcG interaction partners, we confirmed the existence of multiple specific PRC1 complexes. We find that CBX2 is a nonredundant CBX paralog vital for HSC and progenitor function that directly regulates the expression of the cyclin-dependent kinase inhibitor p21, independently of BMI1 that dominantly controls expression of the INK4A/ARF locus. Taken together, our data show that different PRC1 paralog family members have nonredundant and locus-specific gene regulatory activities that are essential for human hematopoiesis.


Subject(s)
Cell Cycle Proteins/physiology , Gene Silencing , Genetic Loci/genetics , Hematopoietic Stem Cells/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cells, Cultured , Female , Fetal Blood/cytology , Fetal Blood/metabolism , Gene Expression Regulation, Developmental , Gene Silencing/physiology , Hematopoiesis/genetics , Hematopoietic Stem Cells/physiology , Humans , Infant, Newborn , Multigene Family/genetics , Multigene Family/physiology , Pregnancy , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/physiology , Repressor Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/physiology , Sequence Homology , Substrate Specificity/genetics
SELECTION OF CITATIONS
SEARCH DETAIL