Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
1.
J Chem Phys ; 150(8): 084901, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30823765

ABSTRACT

An alternative method for determining the orientational distribution function and the order parameter from the electric field-induced birefringence measurements of a chiral liquid crystal compound in its Smectic A* is being introduced. A chiral mesogen based on a 5-phenyl-pyrimidine benzoate core terminated by a trisiloxane group on one side and the chiral alkyloxy chain on its opposite side is designed and synthesized to exhibit the "de Vries" smectic characteristics. The compound exhibits first order Smectic A*-Smectic C* phase transition, evidenced by the results of differential scanning calorimetry. The material is being investigated by electro-optical experiment in its smectic phases. We present a model that incorporates the generalised Langevin-Debye model which includes the Maier-Saupe effective mean-field potential term in order to explain the change in birefringence with the electric field. A good agreement between the experimental results and the predictions from the model leads to the determination of the molecular orientational distribution function in Smectic A phase. Furthermore, the temperature dependency of the Saupe orientational order parameter ⟨P2⟩ is obtained using the parameters of the model. Based on the experimental and theoretical results, we show that de Vries Smectic A* phase exhibits a broad volcano-like tilt angle distribution with the two maxima occurring at finite tilt angles closer to the Smectic A*-Smectic C* transition temperature, and a sugarloaf-like distribution occurs in the tilt for temperatures close to the Isotropic-Smectic A* phase transition.

2.
Phys Chem Chem Phys ; 19(34): 22946-22956, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28813044

ABSTRACT

Bent-core liquid crystals based on 1,2,4-oxadiazole as a central unit have been the first mesogens to exhibit a ferroelectric response in the nematic phase. This behavior has been widely recognized as due to the presence of smectic-like polar cybotactic clusters permeating the nematic phase. Unfortunately, these compounds exhibited rather high melting points, about 120 °C, due to the presence of four benzene rings in the molecules. Here we describe the synthesis and physical characterization of a new series of BC mesogens, featuring the same bent core as the previous compounds but shorter outer substituents. By keeping only two benzene rings, we were able to lower the melting points to about 70 °C. However, while X-ray diffraction and dielectric spectroscopy measurements confirm the cybotactic nature of the nematic phase of these compounds, polarization and electro-optical measurements ascribe their polar response to flexoelectricity rather than to spontaneous polarization. Finally, texture investigation suggests the biaxiality of the nematic phase, which is indicated also by conoscopic measurements. These results are important for recognizing size and rigidity limitations in designing bent-core liquid crystal molecules suitable for applications.

3.
J Chem Phys ; 147(9): 094903, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28886626

ABSTRACT

Two approaches exist in the literature for describing the orientational distribution function (ODF) of the molecular directors in SmA* phase of liquid crystals, though several models are recently proposed in the literature for explaining the de Vries behaviour. These ODFs correspond to either the conventional unimodal arrangements of molecular directors arising from the mean field theory that leads to the broad or sugar-loaf like distribution or to the "diffuse-cone-shaped" type distribution proposed by de Vries. The hypothesis by de Vries provides for a realistic explanation as to how at a molecular level, a first-order SmA* to SmC* transition can occur where the uniform molecular director azimuthal distributions condense to values lying within a narrow range of angles; finally these condense to a single value while at the same time ensuring a little or no concomitant shrinkage in the layer spacing. The azimuthal distribution of the in-layer directors is probed using IR and polarized Raman spectroscopic techniques. The latter allows us to obtain the ODF and the various order parameters for the uniaxial and the biaxial phases. Based on the results of these measurements, we conclude that the "cone-shaped" (or volcano-shaped) de Vries type of distribution can most preferably describe SmA* where "a first-order phase transition from SmA* to SmC*" and a low layer shrinkage can both be easily explained.

4.
J Chem Phys ; 136(9): 094513, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22401458

ABSTRACT

Biaxiality in the nematic phase for a liquid crystalline tetrapode made up of organo-siloxanes mesogens is investigated using polarized infrared spectroscopy. An ordering of the minor director for the homeotropically aligned sample is found to depend on the amplitude of the in-plane electric field. On increasing the in-plane electric field, the minor director, lying initially along the rubbing direction, rotates to the direction of the applied field. The scalar order parameters of the second rank tensor are found to depend significantly on the strength of the electric field. A most significant increase is found in the nematic order parameter and in the parameter that characterizes the phase biaxiality.

5.
Phys Rev E ; 106(6-1): 064612, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36671095

ABSTRACT

The experimental results of the complex dielectric permittivity of aliphatic ketones in dilute solutions of inert solvent cyclohexane in the gigahertz (GHz) and terahertz (THz) frequencies of the electromagnetic spectrum are examined in terms of the theory of inertial anomalous diffusion of polar molecules, considered as an assembly of molecules with interacting dipolar groups, in polar liquids. The theory is based on the generalization of the Debye rotational diffusion model of dielectric relaxation of polar molecules. The model comprises two interacting dipolar groups-one lighter and the other heavier; each has a finite moment of inertia and each experiences a finite friction with an extensive range of damping or drag coefficient and the dipole moment ratio of the two groups. The lighter group refers to the reference molecule, whereas the heavier group simulates the neighboring molecules, and the two groups interact with each other via the dipole-dipole interaction potential. The resulting approximate expression contains terms in both the Rocard form and the Сole-Сole form. The experimental data on aliphatic ketones are shown to fit extremely well with the theory, and parameters of the fit offer physical significance. An agreement of the plot of the experimental data on dielectric loss versus frequency to the formulas derived from the model offers a mathematical basis of the semiempirical equations used in the literature to fit the experimental data. Experimental results of the dielectric loss of neat polar liquid acetone in GHz and THz, as an example, are shown to fit the theory; however, the interaction potential parameter compared to its dilute solution counterpart is significantly increased, reflecting the increase in the dipole-dipole interaction energy.


Subject(s)
Terahertz Spectroscopy , Ketones , Solvents/chemistry
6.
Phys Rev Lett ; 107(24): 247801, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22243025

ABSTRACT

The mesomorphic properties of an achiral bent-core liquid crystal derived from 4-cyanoresorcinol are studied by polarizing optical microscopy, x-ray diffraction, and second harmonic electro-optic response. It shows a novel sequence of four nontilted or orthogonal smectic phases on cooling: SmA-SmAP(R)-SmAP(X)-SmAP(A). Here SmAP(X) is the new orthogonal polar uniaxial smectic phase. The electric-field-induced transformations in the SmAP(X) phase give rise to two biaxial states separated by a uniaxial one. The second harmonic electro-optic response in this phase is interpreted in terms of the polar interaction with the electric field. A comparison of the experimental results with the next-nearest-neighbor model for the structure of the SmAP(X) phase shows it to be an SmAP(α) phase.

7.
J Chem Phys ; 134(4): 044525, 2011 Jan 28.
Article in English | MEDLINE | ID: mdl-21280766

ABSTRACT

To investigate the origin of the first order molecular kinetics of the most prominent, Debye-type polarization, a detailed dielectric relaxation study of 66.5, 40, and 20 mole% solutions of 5-methyl-2-hexanol in 2-methylpentane (2:1, 0.67:1, and 0.25:1 molar ratios) was performed. The Debye-type polarization remains prominent in the solutions, despite the extensive loss of intermolecular hydrogen bonds. At high temperatures, its contribution to permittivity extrapolates close to the statistically scaled values for the 2:1 solution. For others, the measured values of its contribution crossover the scaled values in a temperature plane. The faster relaxation process of about 4% magnitude has an asymmetric distribution of times in the solutions and, relative to those of the pure alcohol, their values decrease on heating more at high temperatures and less at low. This is attributed to an increase in the alcohol cluster size by consumption of monomers as well as the growth of smaller clusters as the solution is cooled. It is argued that structural fluctuation in solutions, as in the pure alcohol, is determined by the rates of both the Debye-type and the faster polarizations in the ultraviscous state.

8.
J Chem Phys ; 135(8): 084507, 2011 Aug 28.
Article in English | MEDLINE | ID: mdl-21895199

ABSTRACT

The complex relative permittivity of a non-crystallizable secondary alcohol, 5-methyl-2-hexanol, is measured over a wide range of temperatures and pressures up to 1750 MPa (17.5 kbar). The data at atmospheric pressure (P = 0.101 MPa) are analyzed in terms of three processes, and the results are in complete agreement with that of O. E. Kalinovskaya and J. K. Vij [J. Chem. Phys. 112, 3262 (2000)]. Process I is of the Debye type and process II is of the Davidson-Cole type, whereas process III is identified as the Johari-Goldstein relaxation process. For pressures of ∼500 MPa and higher, processes I and II are seen to merge into each other to form a single dominant process which unambiguously cannot be resolved into more than one process. The dielectric relaxation strength of process I decreases slightly initially with pressure and when the two processes have merged at elevated pressures, the total relaxation strength increases with increase in pressure. Process III is better resolvable at higher pressures especially above T(g) in the supercooled liquid state for the reason that the separation in the time scales between the dominant and the JG relaxation process increases at elevated pressures. Surprisingly we find a change in the slope in the plot of log τ(JG) vs. 1/T for P = 1750 MPa. The results for the relaxation time of alcohols are compared with the Kirkwood correlation factor, g, and it is found that higher is the g, lower is the relaxation time for process I, and it is more of the Debye type. On a reduction in g brought about by an increase in pressure at lower temperatures, the dominant process becomes non-Debye though extensive hydrogen bonding is still present. The dielectric strength of the merged processes increases with increase in pressure. The values of the steepness index, m = |d log τ/d(T(g)/T)|(T = Tg) for processes I and II are different for P = 0.1 MPa. However the value of m, for the composite process, which is a merger of processes I and II, for P = 1750 MPa is almost the same for process II at P = 0.1 MPa. From the results of the activation volume, activation enthalpy, and a comparison of the relaxation times with the g factor, we conclude that both processes I and II are significantly affected by hydrogen bonding and both contribute to the structural relaxation.

9.
Phys Rev Lett ; 105(16): 167801, 2010 Oct 15.
Article in English | MEDLINE | ID: mdl-21231015

ABSTRACT

Hydrocarbon linked mesogenic dimers are found to exhibit an additional nematic phase below the conventional uniaxial nematic phase as confirmed by x-ray diffraction. The phase produces unusual periodic stripe domains in planar cells. The stripes are found to be parallel to the rubbing direction (in rubbed cells) with a well-defined period equal to double the cell gap. The stripes appear without external electromagnetic field, temperature or thickness gradients, rubbing or hybrid alignment treatments. Simple modeling proposes a negative sign for at least one of the two elastic constants: splay and twist, as a necessary condition for the observed pattern.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 1): 021704, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792143

ABSTRACT

The theory of the absorbance of a semi-infinite medium characterized by a second-rank dielectric tensor for the entire electromagnetic spectrum, as given by Scaife and Vij [J. Chem. Phys. 122, 174901 (2005)], is extended to include molecules of prolate spheriodal shape with longitudinal and transverse polarizabilities and to cover the case of elliptically polarized incident radiation. The theory is applied to the infrared transmission experiments of biaxial liquid crystals. It is found that the formula for the dependence on frequency and on angle of polarization of the absorbance A(omega,theta)= -log(10)[10(A(omega,0)) cos(2) theta + (10(-A(omega,pi/2)) sin(2) theta)] is unaffected by the anisotropy of the molecules and by the elliptical polarization of the incident radiation. A small (+/-5%) discrepancy between theory and experiment has been found for bands with high absorbances. It is found that this discrepancy does not depend on birefringence of the sample but may depend on the precise method of absorbance measurement and on effects at the surface of the cell containing the liquid crystal under test.

11.
Phys Rev E ; 100(5-1): 052704, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31870006

ABSTRACT

We report experimental results of the orientational order parameter, the apparent tilt angle, and the field-induced tilt angle for three chiral smectic liquid crystalline materials investigated using infrared (IR) polarized spectroscopy. The common feature in these materials is use of the core 5-methyl-2- pyrimidine benzoate as the central part of the mesogen. This core is terminated by siloxane or carbosilane chains on one of the ends and by the chiral alkoxy chains on the opposite. These compounds exhibit low concomitant layer shrinkage at the smectic A^{*} (SmA^{*}) to smectic C^{*} (SmC^{*}) transition temperature and within the SmC^{*} phase itself. The maximum layer shrinkage in SmC^{*} is observed as ∼1.5%. We calculate the apparent orientational order parameter, S_{app} in the laboratory reference frame from the observed IR absorbance for homeotropic aligned samples, and the true order parameter, S, is calculated using the measured tilt angle and is also interpolated from Iso-SmA^{*} transition temperature closer to SmC^{*} phase. The apparent tilt angle in the SmA^{*} phase calculated from a comparison of order parameters S and S_{app} is found to be significantly large. A low magnitude of S_{app} found for homeotropic aligned samples in the SmA^{*} phase indicates that the order parameter plays a vital role in determining the de Vries characteristics, especially of exhibiting larger apparent tilt angles. Furthermore there is a significant increase in the true order parameter at temperatures close to SmA^{*} to SmC^{*} transition temperature in all three compounds. The planar-aligned samples are used to study the dependence of induced tilt angle on the applied electric field. The generalized Langevin-Debye model given by Shen et al. reasonably fits the experimental data on the field-induced tilt angle. The results show that the dipole moment of the tilt correlated domain in SmA^{*} diverges as temperature is lowered to the SmA^{*}-SmC^{*} transition temperature. The generalized Langevin-Debye model is also found to be extremely effective in confirming some of the conclusions of the de Vries behavior.

12.
Eur Phys J E Soft Matter ; 27(4): 397-405, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19104855

ABSTRACT

Results of the experimental study on different antiferroelectric liquid crystal (AFLC) materials are presented using a number of techniques such as the optical birefringence, electro-optics and the measurements of optical thickness of free-standing films. Despite differences in the molecular structures of the various AFLC materials studied, these are found to exhibit a de Vries type of smecticA (SmA) properties in a temperature range higher than SmC. This correlation leads to the conclusion that these two classes of liquid crystals are related to each other. Furthermore, we suggest that these arise from the same physical mechanism, namely the existence of the weak synclinic (or reduced anticlinic) correlations between the neighbouring molecular tilt directions.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 041702, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999440

ABSTRACT

We have constructed the phase diagrams for a binary-mixture system of antiferroelectric and ferroelectric liquid-crystalline materials in both thick and thin cells. In the phase diagrams the boundary between the smectic- C and smectic- C{A} phases runs almost parallel to the temperature axis below from ca. 70 degrees C down to at least -25 degrees C . The SmC-SmC_{A} phase transition for a thin cell shows a large supercooling, and a gradual transition occurs near the boundary. Moreover, the thin cell shows a continuous evolution from the antiferroelectric to the ferroelectric state by increasing the electric field applied across the cell. The continuous evolution seemingly reflects the phenomenon of thresholdless antiferroelectricity. In order to explain these phenomena and in clarifying the mechanism of the so-called frustration between ferroelectricity and antiferroelectricity, we have measured the interlayer interaction energy by varying the constituent concentrations in the binary-mixture system. The measured interlayer interaction close to the boundary indicates that the gradual phase transition and continuous evolution result from the suppression of the solitary-wave propagation by the effect of surfaces.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(4 Pt 1): 041707, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18517643

ABSTRACT

Mixtures of different compositions of an antiferroelectric liquid crystal compound that exhibits direct smectic-A*(Sm-A*)-smectic-C*(A) (Sm-C*(A)) transition with a ferroelectric liquid crystal compound that exhibits Sm-A*-smectic-C*(Sm-C*) transition are studied using electro-optics and dielectric spectroscopy. The results of optical texture, birefringence, and the tilt angle suggest that a part of the Sm-A* phase is of de Vries type, since an increase in the tilt angle with decreasing temperature results in a reduction in the value of the birefringence in the Sm-A* phase, whereas the birefringence at Sm-A* to Sm-C* transition goes up by 12.7%. The soft mode relaxation strength, the Landau coefficient of the temperature dependent term, and the other related parameters of the de Vries-type Sm-A-Sm-C*(A) and Sm-A*-Sm-C* transitions are determined using the Landau theory of the second-order phase transition. For the Sm-A*-Sm-C* transition, we find that the soft mode relaxation strength decreases, the Landau coefficient increases, and the Curie-Weiss temperature range decreases with an increased ferroelectric composition in the mixture. These observations can be explained by assuming that with increased ferroelectric composition in the mixture, the layer shrinkage at the de Vries Sm-A*-Sm-C* transition increases. On comparing the results of de Vries-type Sm-A* to Sm-C*(A) and Sm-C* transitions, we find that the soft mode dielectric strength and the other related Landau parameters of the de Vries Sm-A* phase are of the same order of magnitude for transitions from Sm-A* to Sm-C* and to Sm-C*(A) except for the composition of the mixture where both Sm-C* and Sm-C*(A) transitions are stable and the phase diagram shows phase sequence Sm-A* to Sm-C* to Sm-C*(A).

15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(2 Pt 1): 021711, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18850856

ABSTRACT

The effect of surfaces on the stability of smectic-C* (SmC*) variant phases is investigated. The results obtained using dielectric spectroscopy by varying the cell thickness show that the temperature ranges of SmCalpha*, SmCA*(1/2) , and SmCA*(1/3) phases decrease with decreasing cell thickness, and the SmCA*(1/3) phase is more stable than the SmCA*(1/2) phase. The relative stability of any phase is found to be due to its large polar anchoring strength and low free energy compared to other phases in a cell. Experimental results are found to agree with the theory.

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(4 Pt 1): 041705, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18999443

ABSTRACT

The dielectric strength is shown to increase and the relaxation frequency to decrease for a large temperature range up to a certain value of the electric field in the smectic- A phase. This behavior contrasts to that observed in a conventional smectic- A , but can be explained in terms of de Vries scenerio. On assuming the reorientation of the molecular dipoles with electric field to be of the Langevin type in the de Vries smectic- A, we find that around 1,300 molecules , corresponding to a minimum correlation length of xi_{ perpendicular} approximately 45 nm in a single layer cooperatively respond to the applied field.

17.
Phys Rev E Stat Nonlin Soft Matter Phys ; 77(5 Pt 1): 051707, 2008 May.
Article in English | MEDLINE | ID: mdl-18643087

ABSTRACT

We report the results of an experimental study of a recently observed phase sequence reversal of smectic-C_{FI2}{ *} [ SmC;{ *}(q_{T}=1/2); a four layer antiferroelectric] phase appearing in the temperature range above the smectic-C{ *} (SmC;{ *}) phase from the results of optical birefringence, spontaneous polarization, selective reflection, conoscopy, and dielectric spectroscopy. The SmC_{FI2}{ *} phase is observed in an antiferroelectric liquid crystalline compound, 10OHF, in a temperature range above that of SmC{ *} phase and is found to be thermodynamically monotropic, i.e., it appears only upon cooling from SmC_{alpha}{ *} phase. This is also unstable as if it is once transformed to SmC{ *} by the application of the bias, it does not return to its original state unless the sample is heated and cooled again in the absence of the bias. Nevertheless this phase is stabilized by the addition of a chiral smectic compound 9OTBBB1M7 (abbreviated as C9), having a wide temperature range of the SmC_{FI2}{ *} phase. The temperature range of the low temperature SmC{ *} decreases with increase in the concentration of C9 and for a concentration of 55 wt. %, SmC{ *} disappears and the transition takes place directly from SmC_{FI2}{ *} to the crystalline phase on cooling. The existence of such a high-temperature SmC_{FI2}{ *} phase is also supported by a phenomenological model.

18.
Phys Rev E ; 98(2-1): 022704, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30253534

ABSTRACT

The dielectric spectra of the twist bend nematic phase (N_{TB}) of an achiral asymmetric bent-core liquid crystalline compound are studied for determining the various relaxation modes. Dielectric measurements are also carried out under the bias field E up to 8 V/µm. Two molecular and two collective relaxation processes are observed. The orientational order parameters with respect to the local and the main directors determined using molecular modes are used to find the heliconical angle. The results also show that the order parameter with reference to the main director reverses its trend from increasing to decreasing at temperatures of a few degrees above the N_{TB} to N transition. The collective relaxation modes are assigned to (a) distortions of the local director by the electric field at a frequency of ∼100kHz while the periodic helical structure remains unaltered (mode attributed to flexoelectricity); (b) changes in the periodic structure arising from a coupling of the dielectric anisotropy with the electric field at the lowest frequency in the range of 100 Hz-10 kHz. Frequency of the higher frequency collective mode (∼100kHz) depends primarily on the heliconical angle and has anomalous softeninglike behavior at the N-N_{TB} transition. The lowest frequency mode is studied under the bias field E; the modulus of the wave vector gradually vanishes on increasing E (except for an initial behavior, E^{2}<0.1V^{2}/µm^{2}, which is just the opposite). The transition from the twist bend to splay bend structure is observed by a sudden drop in the frequency of this mode, followed by a linear decrease in frequency by increasing E. The results agree with the predictions made from the currently proposed models for a periodically distorted N_{TB} phase.

19.
J Phys Chem B ; 111(38): 11201-8, 2007 Sep 27.
Article in English | MEDLINE | ID: mdl-17764166

ABSTRACT

The basis for a modification of the Debye-Stokes-Einstein (DSE) equation between the dc conductivity, sigma(dc), and dielectric relaxation time, tau, has been examined by using broad-band dielectric spectroscopy of LiClO4 solutions in 5-methyl-2-hexanol and 1-propanol and of pure liquids. According to the DSE equation, the log sigma(dc)-log tau plots should have a slope of -1. We find that sigma(dc) begins to depend upon the structure of an electrolytic solution when a variation of solvent's equilibrium dielectric permittivity, epsilon(s), with temperature causes the ion population to vary. As a consequence of this intrinsic dependence, the log sigma(dc)-log tau plots do not obey the DSE equation. Inclusion of the effect of change in epsilon(s) on the DSE equation may be useful in analyzing the measured quantities in terms of Brownian diffusion of both ions and molecules in ultraviscous liquids. Proton translocation along a hydrogen bond contributes little to sigma(dc), which appears to be predominantly determined by the ion population in the two alcohols and the solutions. The effect is briefly discussed in the potential energy landscape paradigm of structure fluctuations, and it is suggested that the high-frequency shear modulus measurements of ionic solutions would help reveal the temperature-dependent deviation from the DSE equation.

20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(5 Pt 1): 051705, 2007 May.
Article in English | MEDLINE | ID: mdl-17677082

ABSTRACT

We investigate the unwinding process of pure and racemized mixtures of (1-methylheptyloxycarbonyl)phenyl- 4'-carboctyloxy-biphenyl-4-carboxylate (MHPOOCBC) in homeotropic cells by studying (i) the optical texture under crossed polarizers and (ii) the tilted conoscopy as a function of the electric field for different temperatures. The tilted conoscopy yields biaxiality and the tilt angle for values of the latter up to 45 degrees . We find that the unwinding process depends on the optical purity of the sample and the temperature. A cell with pure MHPOOCBC surprisingly exhibits a large positive biaxiality in the initial stages of the unwinding process. The magnitude of the positive biaxiality decreases with a decrease in the enantiomeric excess (EE) of the compound and eventually it becomes negative for a material having a low EE value. The negative biaxiality observed in a mixture with a low EE value is normal and can be explained by a double sine-Gordon equation proposed by Meyer. Microscopic observations show that the special unwinding behavior (positive biaxiality) is related to the helical fractures, that is, to the existence of discretely coiled helical structures. We show that these helical fractures arise from the existence of a narrow energy well in the synclinic position. This implies that the elastic constant near the synclinic position is significantly larger than in other positions. By adopting a semiempirical equation for the interlayer interactions which replaces the conventional equation, we successfully simulate the various unwinding behaviors. We reasonably conclude that the special interlayer interaction is due to the steric interactions between the two adjacent surfaces formed by somewhat tilted terminal parts of the molecules.

SELECTION OF CITATIONS
SEARCH DETAIL