Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
Add more filters

Publication year range
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055214

ABSTRACT

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Subject(s)
Calcium-Binding Proteins , Mitochondrial Diseases , Calcium-Binding Proteins/genetics , Homeostasis/genetics , Humans , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Nervous System/metabolism , Saccharomyces cerevisiae/metabolism
2.
Arch Biochem Biophys ; 730: 109419, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36183841

ABSTRACT

Exercise training provides several cardiovascular benefits in both physiological and pathological conditions; however, its use as a therapeutic tool for pulmonary arterial hypertension (PAH) has been poorly explored. This study aimed to extend the comprehension of the cardioprotective effects of exercise training in the set of PAH focusing on the metabolic changes promoted by exercise in the right ventricle (RV). The monocrotaline animal model of PAH was used and male Wistar rats were submitted to two weeks of treadmill exercise training (5 days/week, 60 min/day, 25 m/min) following disease establishment. Trained rats showed an improved diastolic function (lower end-diastolic pressure and tau) despite the presence of cardiac overload (increased peak systolic pressure, end-diastolic pressure and arterial elastance). This enhanced hemodynamic response was paralleled by an increased uptake of glucose to cardiomyocytes through glucose transporter type 4 (GLUT4) followed by increased lactate dehydrogenase (LDH) activity. Exercise did not reverse the decrease of fatty acid oxidation related to PAH but increased the content of the transcription factors peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) and peroxisome proliferator-activated receptor gamma (PPAR-γ). Two weeks of exercise did not modulate the changes in amino acid metabolism secondary to PAH. Our work suggests that continuous aerobic exercise of moderate intensity, despite its short-term duration and application in a late stage of the disease, supports the RV response to PAH by promoting a shift in the cardiac metabolic phenotype.


Subject(s)
Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Male , Rats , Animals , Monocrotaline/adverse effects , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Hypertension, Pulmonary/therapy , Hypertension, Pulmonary/pathology , PPAR gamma/metabolism , Glucose Transporter Type 4 , Rats, Wistar , Disease Models, Animal , Glucose , Lactate Dehydrogenases/metabolism , Amino Acids , Fatty Acids
3.
Metab Brain Dis ; 36(2): 205-212, 2021 02.
Article in English | MEDLINE | ID: mdl-33064266

ABSTRACT

Glutaric aciduria type 1 (GA-1) is a rare but treatable inherited disease caused by deficiency of glutaryl-CoA dehydrogenase activity due to GCDH gene mutations. In this study, we report 24 symptomatic GA-1 Brazilian patients, and present their clinical, biochemical, and molecular findings. Patients were diagnosed by high levels of glutaric and/or 3-hydroxyglutaric and glutarylcarnitine. Diagnosis was confirmed by genetic analysis. Most patients had the early-onset severe form of the disease and the main features were neurological deterioration, seizures and dystonia, usually following an episode of metabolic decompensation. Despite the early symptomatology, diagnosis took a long time for most patients. We identified 13 variants in the GCDH gene, four of them were novel: c.91 + 5G > A, c.167T > G, c.257C > T, and c.10A > T. The most common mutation was c.1204C > T (p.R402W). Surprisingly, the second most frequent mutation was the new mutation c.91 + 5G > A (IVS1 ds G-A + 5). Our results allowed a complete characterization of the GA-1 Brazilian patients. Besides, they expand the mutational spectrum of GA-1, with the description of four new mutations. This work reinforces the importance of awareness of GA-1 among doctors in order to allow early diagnosis and treatment in countries like Brazil where the disease has not been included in newborn screening programs.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Brain Diseases, Metabolic/diagnosis , Glutaryl-CoA Dehydrogenase/deficiency , Glutaryl-CoA Dehydrogenase/genetics , Mutation , Amino Acid Metabolism, Inborn Errors/genetics , Brain Diseases, Metabolic/genetics , Brazil , DNA Mutational Analysis , Female , Humans , Infant , Infant, Newborn , Male
4.
BMC Pregnancy Childbirth ; 20(1): 693, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33187482

ABSTRACT

BACKGROUND: Iodine deficiency is the most common cause of preventable brain harm and cognitive impairment in children. Portuguese women of childbearing age, pregnant women and their progeny were shown to have inadequate iodine intake. Consequently, the Portuguese Health Authorities have recommended a daily supplementation with 150-200 µg iodine in preconception, pregnancy, and lactation. The IodineMinho study intends to evaluate whether (i) this recommendation impacted on the prevalence of iodine deficiency in pregnant women from the Minho region of Portugal, (ii) the time of initiation of iodine supplementation (if any) influences the serum levels of thyroid hormones at several intervals during pregnancy and (iii) there are serum thyroid-hormone parameters in the 1st trimester of pregnancy that predict psychomotor development of the child at 18 months of age. METHODS: Most Portuguese women are followed throughout pregnancy in community Family Health Units, where family physicians may choose to follow the National recommendation or other, concerning iodine sufficiency. This study will recruit women (N = 304) who intend to become pregnant or are already pregnant from 10 representative Units. Physician's approach and prescriptions, sociodemographic, nutrition and clinical information will be obtained at baseline and throughout pregnancy. To evaluate endocrine function, blood and urine samples will be collected at recruitment, once in each trimester of pregnancy, at delivery and 3 months after delivery. Breastmilk samples will be collected for iodine and energy content analysis. Children will be evaluated for psychomotor development at 18 months. Maternal thyroid volume will be evaluated by ultrasound scan at baseline, in the 3rd trimester and at 3 months after delivery. DISCUSSION: Iodine deficiency early during development precludes children from achieving full intellectual capabilities. This protocol describes a study that is innovative and unique in its detailed and comprehensive evaluation of maternal and child endocrine and psychomotor parameters. By evaluating the effectiveness of the iodine supplementation recommendation, it will contribute to the public health systems' efforts to provide excellence in maternal and infant care. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04288531 . Registered 28 February 2020-Retrospectively registered.


Subject(s)
Dietary Supplements , Iodine/deficiency , Pregnancy Complications/urine , Prenatal Exposure Delayed Effects , Female , Goiter/epidemiology , Humans , Infant , Infant, Newborn , Iodine/urine , Male , Maternal Nutritional Physiological Phenomena , Milk, Human/chemistry , Nutritional Status , Observational Studies as Topic , Preconception Care/methods , Pregnancy , Pregnancy Complications/epidemiology , Prospective Studies , Research Design , Thyroid Gland/pathology , Thyrotropin/analysis
5.
Int J Mol Sci ; 21(17)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32883051

ABSTRACT

Lysosomal storage diseases (LSDs) are a heterogeneous group of genetic disorders with variable degrees of severity and a broad phenotypic spectrum, which may overlap with a number of other conditions. While individually rare, as a group LSDs affect a significant number of patients, placing an important burden on affected individuals and their families but also on national health care systems worldwide. Here, we present our results on the use of an in-house customized next-generation sequencing (NGS) panel of genes related to lysosome function as a first-line molecular test for the diagnosis of LSDs. Ultimately, our goal is to provide a fast and effective tool to screen for virtually all LSDs in a single run, thus contributing to decrease the diagnostic odyssey, accelerating the time to diagnosis. Our study enrolled a group of 23 patients with variable degrees of clinical and/or biochemical suspicion of LSD. Briefly, NGS analysis data workflow, followed by segregation analysis allowed the characterization of approximately 41% of the analyzed patients and the identification of 10 different pathogenic variants, underlying nine LSDs. Importantly, four of those variants were novel, and, when applicable, their effect over protein structure was evaluated through in silico analysis. One of the novel pathogenic variants was identified in the GM2A gene, which is associated with an ultra-rare (or misdiagnosed) LSD, the AB variant of GM2 Gangliosidosis. Overall, this case series highlights not only the major advantages of NGS-based diagnostic approaches but also, to some extent, its limitations ultimately promoting a reflection on the role of targeted panels as a primary tool for the prompt characterization of LSD patients.


Subject(s)
Genetic Markers , Genetic Predisposition to Disease , Genetic Testing , Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Lysosomal Storage Diseases/diagnosis , Lysosomes/pathology , Global Health , Humans , Lysosomal Storage Diseases/genetics , Lysosomes/genetics , Sequence Analysis, DNA
6.
Eur J Pediatr ; 178(1): 21-32, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30535772

ABSTRACT

Primary mitochondrial disorders are highly variable in clinical presentation, biochemistry, and molecular etiology. Mitochondrial disorders can be caused by genetic defects in the mitochondrial, in nuclear genome, or in the interplay between the two genomes. Biochemical screening tests may be inconclusive or misleading since patients, with confirmed mitochondrial disorders specially in pediatric age, may exhibit normal routine biochemistry, muscle histology, or enzymatic analysis of the mitochondrial respiratory chain. Diagnosis is often challenging even with combination of multiple criteria (clinical, biochemical, histological, and functional), as innumerous conditions cause secondary mitochondrial dysfunction. Nowadays, a definite diagnosis is only possible by genetic confirmation since no single score system is satisfactorily accurate, being sensitive but not specific.Conclusion: Awareness between physicians is of major importance considering that clinical suspicion may not be obvious regarding the heterogenicity in presentation and biochemical features of mitochondrial disorders. In this review, we provide information on diagnosis approach to patients suspected for mitochondrial disorders as well as management on chronic and acute settings. Follow-up should provide comprehensive information on patient's status, since intervention on these diseases is mostly supportive and prognosis is variable and sometimes unpredictable. What is Known: • Mitochondrial disorders are heterogenous and may present at any age, with any symptoms and any type of inheritance. • Mitochondrial disorders may be due to pathogenic variants in mitochondrial DNA (mtDNA) or nuclear genes (nDNA). What is New: • Since no single score system is satisfactorily accurate, a definite diagnosis is only possible with genetic studies with gene panels proving to be a cost-effective approach. • Clinical and biochemical features of patients without a confirmed diagnosis must be reviewed and other diagnosis must be considered. A wider genetic approach may be applied (WES or WGS).


Subject(s)
Mitochondrial Diseases/diagnosis , Precision Medicine/methods , Sequence Analysis, DNA/methods , Adolescent , Aftercare/methods , Child , Child, Preschool , DNA, Mitochondrial/genetics , Humans , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/therapy
7.
Eur J Pediatr ; 178(3): 387-394, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30617651

ABSTRACT

Fatty acid ß-oxidation (FAO) disorders have a wide variety of symptoms, not usually evident between episodes of acute decompensations. Cardiac involvement is frequent, and severe ventricular arrhythmias are suspected of causing sudden death. Expanded newborn screening (ENS) for these disorders, hopefully, contribute to prevent potentially acute life-threatening events. In order to characterize acute decompensations observed in FAO-deficient cases identified by ENS, a retrospective analysis was performed, covering a period of 9 years. Demographic data, number/type of acute decompensations, treatment, and follow-up were considered. Eighty-three clinical charts, including 66 medium-chain acyl-CoA dehydrogenase deficiency (MCADD), 5 carnitine-uptake deficiency (CUD), 3 carnitine palmitoyltransferase I and II (CPT I/II) deficiency, 5 very long-chain acyl-CoA dehydrogenase deficiency (VLCADD), and 4 multiple acyl-CoA dehydrogenase deficiency (MADD) cases were reviewed. Nineteen patients had acute decompensations (1 CPT I, 1 CPT II, 3 MADD, 14 MCADD). Six patients developed symptoms previously to ENS diagnosis. Severe clinical manifestations included multiple organ failure, liver failure, heart failure, and sudden death. Long-chain FAO disorders had the highest number of decompensations per patient.Conclusion: Despite earlier diagnosis by ENS, sudden deaths were not avoided and acute decompensations with severe clinical manifestations still occur as well. What is Known: • Severe ventricular arrhythmias are suspected to cause unexpected death in FAO disorders. • Neonatal screening intends to reduce the incidence of severe metabolic crisis and death. What is New: • Acute severe decompensations occurred in FAO disorders diagnosed through neonatal screening. • Sudden deaths were not avoided by starting treatment precociously.


Subject(s)
Amino Acid Metabolism, Inborn Errors/diagnosis , Lipid Metabolism, Inborn Errors/diagnosis , Neonatal Screening/methods , Acyl-CoA Dehydrogenase/deficiency , Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Amino Acid Metabolism, Inborn Errors/complications , Amino Acid Metabolism, Inborn Errors/mortality , Cardiomyopathies/complications , Cardiomyopathies/diagnosis , Cardiomyopathies/mortality , Carnitine/deficiency , Carnitine O-Palmitoyltransferase/deficiency , Child , Child, Preschool , Congenital Bone Marrow Failure Syndromes , Early Diagnosis , Female , Follow-Up Studies , Humans , Hyperammonemia/complications , Hyperammonemia/diagnosis , Hyperammonemia/mortality , Hypoglycemia/complications , Hypoglycemia/diagnosis , Hypoglycemia/mortality , Infant , Infant, Newborn , Lipid Metabolism, Inborn Errors/complications , Lipid Metabolism, Inborn Errors/mortality , Male , Metabolism, Inborn Errors/complications , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/mortality , Mitochondrial Diseases/complications , Mitochondrial Diseases/diagnosis , Mitochondrial Diseases/mortality , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/complications , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/diagnosis , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/mortality , Muscular Diseases/complications , Muscular Diseases/diagnosis , Muscular Diseases/mortality , Prognosis , Retrospective Studies , Severity of Illness Index
8.
Br J Haematol ; 183(4): 648-660, 2018 11.
Article in English | MEDLINE | ID: mdl-30334577

ABSTRACT

Sickle Cell Disease (SCD) is an increasing global health problem and presents significant challenges to European health care systems. Newborn screening (NBS) for SCD enables early initiation of preventive measures and has contributed to a reduction in childhood mortality from SCD. Policies and methodologies for NBS vary in different countries, and this might have consequences for the quality of care and clinical outcomes for SCD across Europe. A two-day Pan-European consensus conference was held in Berlin in April 2017 in order to appraise the current status of NBS for SCD and to develop consensus-based statements on indications and methodology for NBS for SCD in Europe. More than 50 SCD experts from 13 European countries participated in the conference. This paper aims to summarise the discussions and present consensus recommendations which can be used to support the development of NBS programmes in European countries where they do not yet exist, and to review existing programmes.


Subject(s)
Anemia, Sickle Cell/diagnostic imaging , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/epidemiology , Consensus Development Conferences as Topic , Europe/epidemiology , Female , Humans , Infant, Newborn , Male , Neonatal Screening , Practice Guidelines as Topic
9.
Muscle Nerve ; 56(5): 868-872, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28128857

ABSTRACT

INTRODUCTION: Mitochondrial disorders display remarkable genetic and phenotypic heterogeneity. METHODS: We performed a retrospective analysis of the clinical, histological, biochemical, and genetic features of 65 patients with molecular diagnoses of mitochondrial disorders. RESULTS: The most common genetic diagnosis was a single large-scale mitochondrial DNA (mtDNA) deletion (41.5%), and the most frequent clinical phenotype was chronic progressive external ophthalmoplegia (CPEO). It occurred in 41.5% of all patients, primarily in those with mtDNA deletions. Histological signs of mitochondrial dysfunction were found in 73.8% of patients, and respiratory chain enzyme assay (RCEA) abnormalities were detected in 51.9%. CONCLUSIONS: This study confirms the high relative frequency of single large-scale deletions among mitochondrial disorders as well as its particular association with CPEO. Muscle histology seems to be particularly useful in older patients and those with mtDNA deletions, whereas RCEA might be more helpful in young children or individuals with mtDNA depletion. Muscle Nerve 56: 868-872, 2017.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondrial Diseases , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Muscle, Skeletal/pathology , Sequence Deletion/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , Humans , Infant , Male , Middle Aged , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Mitochondrial Diseases/pathology , Ophthalmoplegia, Chronic Progressive External/genetics , Portugal , Young Adult
10.
J Inherit Metab Dis ; 40(1): 21-48, 2017 01.
Article in English | MEDLINE | ID: mdl-27905001

ABSTRACT

BACKGROUND: Remethylation defects are rare inherited disorders in which impaired remethylation of homocysteine to methionine leads to accumulation of homocysteine and perturbation of numerous methylation reactions. OBJECTIVE: To summarise clinical and biochemical characteristics of these severe disorders and to provide guidelines on diagnosis and management. DATA SOURCES: Review, evaluation and discussion of the medical literature (Medline, Cochrane databases) by a panel of experts on these rare diseases following the GRADE approach. KEY RECOMMENDATIONS: We strongly recommend measuring plasma total homocysteine in any patient presenting with the combination of neurological and/or visual and/or haematological symptoms, subacute spinal cord degeneration, atypical haemolytic uraemic syndrome or unexplained vascular thrombosis. We strongly recommend to initiate treatment with parenteral hydroxocobalamin without delay in any suspected remethylation disorder; it significantly improves survival and incidence of severe complications. We strongly recommend betaine treatment in individuals with MTHFR deficiency; it improves the outcome and prevents disease when given early.


Subject(s)
Methylation/drug effects , Methylenetetrahydrofolate Reductase (NADPH2)/deficiency , Proto-Oncogene Proteins c-cbl/deficiency , Vitamin B 12/pharmacology , Vitamin B 12/therapeutic use , Animals , Homocysteine/genetics , Humans , Methionine/genetics
12.
Cell Mol Neurobiol ; 35(6): 899-911, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25805165

ABSTRACT

Cystathionine-ß-synthase (CBS) deficiency is the main cause of homocystinuria. Homocysteine (Hcy), methionine, and other metabolites of Hcy accumulate in the body of affected patients. Despite the fact that thromboembolism represents the major cause of morbidity in CBS-deficient patients, the mechanisms of cardiovascular alterations found in homocystinuria remain unclear. In this work, we evaluated the lipid and inflammatory profile, oxidative protein damage, and the activities of the enzymes paraoxonase (PON1) and butyrylcholinesterase (BuChE) in plasma of CBS-deficient patients at diagnosis and during the treatment (protein-restricted diet supplemented with pyridoxine, folic acid, betaine, and vitamin B12). We also investigated the effect of folic acid and vitamin B12 on these parameters. We found a significant decrease in HDL cholesterol and apolipoprotein A1 (ApoA-1) levels, as well as in PON1 activity in both untreated and treated CBS-deficient patients when compared to controls. BuChE activity and IL-6 levels were significantly increased in not treated patients. Furthermore, significant positive correlations between PON1 activity and sulphydryl groups and between IL-6 levels and carbonyl content were verified. Moreover, vitamin B12 was positively correlated with PON1 and ApoA-1 levels, while folic acid was inversely correlated with total Hcy concentration, demonstrating the importance of this treatment. Our results also demonstrated that CBS-deficient patients presented important alterations in biochemical parameters, possibly caused by the metabolites of Hcy, as well as by oxidative stress, and that the adequate adherence to the treatment is essential to revert or prevent these alterations.


Subject(s)
Aryldialkylphosphatase/blood , Butyrylcholinesterase/blood , Homocystinuria/blood , Lipids/blood , Oxidants/blood , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Cystathionine beta-Synthase/deficiency , Cystathionine beta-Synthase/genetics , Female , Folic Acid/blood , Folic Acid/physiology , Homocystinuria/genetics , Humans , Male , Oxidative Stress/physiology , Vitamin B 12/blood , Vitamin B 12/physiology , Young Adult
13.
J Inherit Metab Dis ; 37(5): 831-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24599607

ABSTRACT

UNLABELLED: The cblC defect is the most common inborn error of vitamin B12 metabolism. Despite therapeutic measures, the long-term outcome is often unsatisfactory. This retrospective multicentre study evaluates clinical, biochemical and genetic findings in 88 cblC patients. The questionnaire designed for the study evaluates clinical and biochemical features at both initial presentation and during follow up. Also the development of severity scores allows investigation of individual disease load, statistical evaluation of parameters between the different age of presentation groups, as well as a search for correlations between clinical endpoints and potential modifying factors. RESULTS: No major differences were found between neonatal and early onset patients so that these groups were combined as an infantile-onset group representing 88 % of all cases. Hypotonia, lethargy, feeding problems and developmental delay were predominant in this group, while late-onset patients frequently presented with psychiatric/behaviour problems and myelopathy. Plasma total homocysteine was higher and methionine lower in infantile-onset patients. Plasma methionine levels correlated with "overall impression" as judged by treating physicians. Physician's impression of patient's well-being correlated with assessed disease load. We confirmed the association between homozygosity for the c.271dupA mutation and infantile-onset but not between homozygosity for c.394C>T and late-onset. Patients were treated with parenteral hydroxocobalamin, betaine, folate/folinic acid and carnitine resulting in improvement of biochemical abnormalities, non-neurological signs and mortality. However the long-term neurological and ophthalmological outcome is not significantly influenced. In summary the survey points to the need for prospective studies in a large cohort using agreed treatment modalities and monitoring criteria.


Subject(s)
Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/metabolism , Proto-Oncogene Proteins c-cbl/genetics , Vitamin B 12/metabolism , Age of Onset , Brain/pathology , Carrier Proteins/genetics , Child , Child, Preschool , Disease Progression , Ethnicity , Female , Humans , Infant , Infant, Newborn , Male , Metabolism, Inborn Errors/therapy , Oxidoreductases , Prognosis , Surveys and Questionnaires
14.
Int J Neonatal Screen ; 10(1)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38390980

ABSTRACT

Congenital hypothyroidism (CH) leads to growth and development delays and is preventable with early treatment. Neonatal screening for CH was initiated in Portugal in 1981. This study examines the history of CH screening in the country. Data were obtained from annual reports and from the national database of neonatal screening laboratory. The CH screening strategy primarily relies on the thyroid-stimulating hormone (TSH), followed by total thyroxine measurement as the second tier for confirmation. The TSH cutoff started at 90 mIU/L, decreasing to the actual 10 mIU/L. The coverage of the screening program has increased rapidly; although voluntary, it reached about 90% in 6 years and became universal in 10 years. Guideline and cutoff updates led to the identification of over 200 additional cases, resulting in specific retesting protocols for preterm and very-low-birth-weight babies. The actual decision tree considers CH when TSH levels are above 40 mIU/L. Data from the CH screening also provide an indication of the iodine status of the population, which is presently indicative of iodine insufficiency. The Portuguese neonatal screening for CH is a history of success. It has rapidly and continuously adapted to changes in knowledge and has become a universal voluntary practice within a few years.

15.
Int J Neonatal Screen ; 10(1)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535129

ABSTRACT

The Portuguese Neonatal Screening Program (PNSP) conducts nationwide screening for rare diseases, covering nearly 100% of neonates and screening for 28 disorders, including 24 inborn errors of metabolism (IEMs). The study's purpose is to assess the epidemiology of the screened metabolic diseases and to evaluate the impact of second-tier testing (2TT) within the PNSP. From 2004 to 2022, 1,764,830 neonates underwent screening using tandem mass spectrometry (MS/MS) to analyze amino acids and acylcarnitines in dried blood spot samples. 2TT was applied when necessary. Neonates with profiles indicating an IEM were reported to a reference treatment center, and subsequent biochemical and molecular studies were conducted for diagnostic confirmation. Among the screened neonates, 677 patients of IEM were identified, yielding an estimated birth prevalence of 1:2607 neonates. The introduction of 2TT significantly reduced false positives for various disorders, and 59 maternal cases were also detected. This study underscores the transformative role of MS/MS in neonatal screening, emphasizing the positive impact of 2TT in enhancing sensitivity, specificity, and positive predictive value. Our data highlight the efficiency and robustness of neonatal screening for IEM in Portugal, contributing to early and life-changing diagnoses.

16.
Article in English | MEDLINE | ID: mdl-38266309

ABSTRACT

CONTEXT: Iodine is necessary for the proper brain development. The prevalence of iodine deficiency in Portuguese pregnant women led the health authorities, in 2013, to recommend iodine supplementation for women in preconception, throughout pregnancy and during lactation. OBJECTIVE: To assess the impact of iodine supplementation initiated in the preconception or the first trimester of pregnancy on the prevalence of iodine deficiency and maternal thyroid status. METHODS: An observational prospective cohort study that follows thyroid function and iodine status of women recruited in preconception or in the first trimester of pregnancy. RESULTS: The median urinary iodine concentration (UIC) was significantly higher among women taking iodine supplements (no-supplement group UIC=63µg/L; supplement group UIC =100µg/L, p = 0.002) but still below the levels recommended by the World Health Organization. Only 15% of pregnant women had adequate iodine status and 17% showed UIC < 50 µg/l. There was no influence of whether iodine supplementation started in preconception or in the 1st trimester of gestation (UIC preconception group: 112µg/L vs UIC pregnancy group: 91µg/L, p = 0.569). In the 1st trimester of pregnancy, total thyroxine levels were lower and free triiodothyronine levels were higher in non-supplemented women. Thyroglobulin levels were lower in women who started iodine supplementation in preconception compared to non-supplemented women and women who started iodine supplementation during gestation. CONCLUSION: In the Minho region of Portugal, fertile women have insufficient iodine intake. Additional public health measures are needed since the current recommendations for iodine supplementation for pregnancy are unsatisfactory to achieve an adequate iodine status.

17.
Biochim Biophys Acta ; 1822(8): 1284-92, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22580358

ABSTRACT

Following a screening on EMS-induced Drosophila mutants defective for formation and morphogenesis of epithelial cells, we have identified three lethal mutants defective for the production of embryonic cuticle. The mutants are allelic to the CG12140 gene, the fly homologue of electron transfer flavoprotein:ubiquinone oxidoreductase (ETF:QO). In humans, inherited defects in this inner membrane protein account for multiple acyl-CoA dehydrogenase deficiency (MADD), a metabolic disease of ß-oxidation, with a broad range of clinical phenotypes, varying from embryonic lethal to mild forms. The three mutant alleles carried distinct missense mutations in ETF:QO (G65E, A68V and S104F) and maternal mutant embryos for ETF:QO showed lethal morphogenetic defects and a significant induction of apoptosis following germ-band elongation. This phenotype is accompanied by an embryonic accumulation of short- and medium-chain acylcarnitines (C4, C8 and C12) as well as long-chain acylcarnitines (C14 and C16:1), whose elevation is also found in severe MADD forms in humans under intense metabolic decompensation. In agreement the ETF:QO activity in the mutant embryos is markedly decreased in relation to wild type activity. Amino acid sequence analysis and structural mapping into a molecular model of ETF:QO show that all mutations map at FAD interacting residues, two of which at the nucleotide-binding Rossmann fold. This structural domain is composed by a ß-strand connected by a short loop to an α-helix, and its perturbation results in impaired cofactor association via structural destabilisation and consequently enzymatic inactivation. This work thus pinpoints the molecular origins of a severe MADD-like phenotype in the fruit fly and establishes the proof of concept concerning the suitability of this organism as a potential model organism for MADD.


Subject(s)
Drosophila/genetics , Electron-Transferring Flavoproteins/genetics , Flavins/genetics , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/genetics , Mutation , Alleles , Amino Acid Sequence , Animals , Binding Sites/genetics , Carnitine/analogs & derivatives , Carnitine/metabolism , Drosophila/metabolism , Electron-Transferring Flavoproteins/metabolism , Flavin-Adenine Dinucleotide/genetics , Flavin-Adenine Dinucleotide/metabolism , Flavins/metabolism , Genotype , Models, Molecular , Molecular Sequence Data , Multiple Acyl Coenzyme A Dehydrogenase Deficiency/metabolism , Phenotype
18.
Neurogenetics ; 14(2): 153-60, 2013 May.
Article in English | MEDLINE | ID: mdl-23532514

ABSTRACT

Complex III of the mitochondrial respiratory chain (CIII) catalyzes transfer of electrons from reduced coenzyme Q to cytochrome c. Low biochemical activity of CIII is not a frequent etiology in disorders of oxidative metabolism and is genetically heterogeneous. Recently, mutations in the human tetratricopeptide 19 gene (TTC19) have been involved in the etiology of CIII deficiency through impaired assembly of the holocomplex. We investigated a consanguineous Portuguese family where four siblings had reduced enzymatic activity of CIII in muscle and harbored a novel homozygous mutation in TTC19. The clinical phenotype in the four sibs was consistent with severe olivo-ponto-cerebellar atrophy, although their age at onset differed slightly. Interestingly, three patients also presented progressive psychosis. The mutation resulted in almost complete absence of TTC19 protein, defective assembly of CIII in muscle, and enhanced production of reactive oxygen species in cultured skin fibroblasts. Our findings add to the array of mutations in TTC19, corroborate the notion of genotype/phenotype variability in mitochondrial encephalomyopathies even within a single family, and indicate that psychiatric manifestations are a further presentation of low CIII.


Subject(s)
Genetic Predisposition to Disease/genetics , Membrane Proteins/genetics , Mitochondria/genetics , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Proteins/genetics , Mutation/genetics , Cells, Cultured , Female , Fibroblasts/metabolism , Genetic Heterogeneity , Genetic Testing/methods , Humans , Male , Middle Aged , Mitochondrial Proteins/metabolism , Pedigree , Phenotype
19.
Article in English | MEDLINE | ID: mdl-37711114

ABSTRACT

Introduction - SERAC1 deficiency phenotype range from MEGD(H)EL syndrome, the most severe, to juvenile complicated spastic paraplegia, to adult-onset dystonic features (in only one patient). The MEGD(H)EL syndrome is characterized by (3-methylglutaconic aciduria with deafness-dystonia, [hepatopathy], encephalopathy, and Leigh-like syndrome). Biochemical abnormalities: elevated urinary 3 - metilglutaconic and 3-metilglutaric acids, high lactate and alanine in serum. Diagnosis is confirmed when biallelic pathogenic variants in SERAC1 gene are found. Brain MRI: basal ganglia lesions and generalized atrophy. Results/Case report - A 30-year-old patient with a moderate intellectual disability, developed, since the age of 25, a progressive loss of previous capacities (hand dexterity, oral language), and later subacute generalized dystonic features. Currently he has spastic tetraparesis, dystonia, scoliosis and autistic behavior, with bilateral basal ganglia lesions on brain MRI. Genetic study revealed biallelic pathogenic variants in SERAC1 gene, confirm MEGD(H)EL. A 73 years old patient with cognitive impairment and progressive spastic tetraparesis had multiple periventricular T2 hyperintense lesions. She has a homozygotic SERAC1 variant NM_032861: exon4:c.T139A: p.F471 (rs112780453), considered benign. Biochemical study revealed elevated plasmatic alanine and urinary3-metilglutaconic and 3-metilglutaric acid. This profile is concordant with mitochondrial dysfunction and SERAC1 Deficit. Conclusion - The first patient has the clinical symptoms associated to the MEGD(H)EL syndrome, and the biochemical and genetic confirmation of the diagnosis, without reservations. However, in the second patient, the progressive paraparesis and cognitive impairment did not appear to be caused by multiple sclerosis nor subcortical vascular leukoencephalopathy (without vascular risk factors). The abnormal biochemical profile is suggestive of SERAC1 Deficiency, even without genetic confirmation. In what should we believe?

20.
Article in English | MEDLINE | ID: mdl-38111112

ABSTRACT

INTRODUCTION: Single Nucleotide Polymorphisms (SNPs) are used as drug susceptibility biomarkers in metabolic diseases. Alterations in the gene encoding triggers the enzyme flavin monooxygenase 3 (FMO3), involved in the Sulindac metabolization, which also is responsible for the inherited metabolic disorder. Trimethylaminuria (TMAu, OMIM: 602079). DPYD gene variants are associated with the enzyme dihydropyrimidine dehydrogenase deficiency (DPD; OMIM: 274270). This autosomal recessive metabolic disorder, ultimately leads to the inability to metabolize fluoropyrimidines, which causes severe toxicity in individuals treated with these drugs. METHODS: Variants in genes responsible for the expression of enzymes that encode transporters or receptors involved in the metabolization pathways of certain drugs may condition the individuals response to certain drugs, compromising the therapeutic response and clinical prognosis. Thus the sequencing and identification of variants become relevant, not only gain knowledge on effects of these variants' on disease causality but also in terms of its side effects resulting from the coding enzymes responsible for drug metabolization. RESULTS: It was found that patients with the c.472G>A (p.Glu158Lys) and c.923A>G (p.Glu308Gly) polymorphisms, in homozygosity, in FMO3 gene did not develop polyps, thus have a protective effect in the treatment of Familial Adenomatous Polyposis (PAF). However, in the case of the DPYD gene, c.1905+1G>A (IVS14+1G>A), c.1679T>G (p.Ile560Ser), c.2846A>T (p.Asp949Val) e c.1236G>A/HapB3 variants can be lethal in cancer patients indicated for fluoropyrimidine-based chemotherapy. CONCLUSION: Knowledge on the drug mechanisms will affect the therapeutic response of patients treated with a given drug. Thus, pharmacogenetics is an essential tool in personalized medicine, since molecular studies allows the clinician to predict the probability of efficacy and toxicity of certain drugs, resulting higher efficiency in individualizing treatment and also improving the safety of the patient. From a personalized medicine perspective, the study of the characteristics of the drug and its metabolization site, the genes involved in the encoding of enzymes responsible for its metabolization will be of great interest.

SELECTION OF CITATIONS
SEARCH DETAIL