Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters

Publication year range
1.
Metabolomics ; 19(6): 54, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37278866

ABSTRACT

BACKGROUND: Gut bacteria play a crucial role in the metabolism of bile acids (BA). Whether an association exists between the fecal microbiota composition and circulating BA levels in humans is poorly understood. Here, we investigated the relationship between fecal microbiota diversity and composition with plasma levels of BA in young adults. METHODS: Fecal microbiota diversity/composition was analyzed with 16S rRNA sequencing in 80 young adults (74% women; 21.9 ± 2.2 years old). Plasma levels of BA were measured using liquid chromatography-tandem mass spectrometry. PERMANOVA and Spearman correlation analyses were used to investigate the association between fecal microbiota parameters and plasma levels of BA. RESULTS: Fecal microbiota beta (P = 0.025) and alpha diversity indexes of evenness (rho = 0.237, P = 0.033), Shannon (rho = 0.313, P = 0.004), and inverse Simpson (rho = 0.283, P = 0.010) were positively associated with plasma levels of the secondary BA glycolithocholic acid (GLCA). The relative abundance of genera belonging to the Firmicutes and Bacteroidetes phyla was positively correlated with plasma levels of GLCA (all rho ≥ 0.225, P ≤ 0.049). However, the relative abundance of species from Firmicutes and Bacteroidetes phyla were negatively correlated with plasma levels of primary and secondary BA (all rho ≤ - 0.220, P ≤ 0.045), except for the relative abundance of Bacteroides vulgatus, Alistipes onderdonkii, and Bacteroides xylanisolvens species (Bacteroidetes phylum) that were positively correlated with the plasma levels of GLCA. CONCLUSIONS: The relative abundance of specific fecal bacteria species is associated with plasma levels of BA in young adults. However, further investigations are required to validate whether the composition of the gut microbiota can regulate the plasma concentrations of BA in humans.


Subject(s)
Bile Acids and Salts , Firmicutes , Humans , Female , Young Adult , Adult , Male , Firmicutes/genetics , RNA, Ribosomal, 16S/genetics , Metabolomics , Bacteria/genetics , Bacteroidetes/genetics
2.
Int J Mol Sci ; 23(3)2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35163705

ABSTRACT

Here, the spatial distribution of the bacterial flora along the murine alimentary tract was evaluated using high throughput sequencing in wild-type and Tff3-deficient (Tff3KO) animals. Loss of Tff3 was linked to increased dextran sodium sulfate-induced colitis. This systematic study shows the results of 13 different regions from the esophagus to the rectum. The number of bacterial species (richness) increased from the esophagus to the rectum, from 50 to 200, respectively. Additionally, the bacterial community structure changed continuously; the highest changes were between the upper/middle and lower gastrointestinal compartments when comparing adjacent regions. Lactobacillus was the major colonizer in the upper/middle gastrointestinal tract, especially in the esophagus and stomach. From the caecum, a drastic diminution of Lactobacillus occurred, while members of Lachnospiraceae significantly increased. A significant change occurred in the bacterial community between the ascending and the transverse colon with Bacteroidetes being the major colonizers with relative constant abundance until the rectum. Interestingly, wild-type and Tff3KO animals did not show significant differences in their bacterial communities, suggesting that Tff3 is not involved in alterations of intraluminal or adhesive microbiota but is obviously important for mucosal protection, e.g., of the sensitive stem cells in the colonic crypts probably by a mucus plume.


Subject(s)
Bacteria/isolation & purification , Gastrointestinal Tract/microbiology , Microbiota , Animals , DNA Barcoding, Taxonomic , High-Throughput Nucleotide Sequencing , Male , Mice
3.
Reprod Biomed Online ; 43(3): 523-531, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34344601

ABSTRACT

RESEARCH QUESTION: The semen harbours a diverse range of microorganisms. The origin of the seminal microbes, however, has not yet been established. Do testicular spermatozoa harbour microbes and could they potentially contribute to the seminal microbiome composition? DESIGN: The study included 24 samples, comprising a total of 307 testicular maturing spermatozoa. A high-throughput sequencing method targeting V3 and V4 regions of 16S rRNA gene was applied. A series of negative controls together with stringent in-silico decontamination methods were analysed. RESULTS: Between 50 and 70% of all the detected bacterial reads accounted for contamination in the testicular sperm samples. After stringent decontamination, Blautia (P = 0.04), Cellulosibacter (P = 0.02), Clostridium XIVa (P = 0.01), Clostridium XIVb (P = 0.04), Clostridium XVIII (P = 0.02), Collinsella (P = 0.005), Prevotella (P = 0.04), Prolixibacter (P = 0.02), Robinsoniella (P = 0.04), and Wandonia (P = 0.04) genera demonstrated statistically significant abundance among immature spermatozoa. CONCLUSIONS: Our results indicate that the human testicle harbours potential bacterial signature, though in a low-biomass, and could contribute to the seminal microbiome composition. Further, applying stringent decontamination methods is crucial for analysing microbiome in low-biomass site.


Subject(s)
Microbiota/genetics , Spermatozoa/microbiology , Adult , Aged , Case-Control Studies , DNA Fragmentation , High-Throughput Nucleotide Sequencing , Humans , Infertility, Male/microbiology , Infertility, Male/pathology , Male , Middle Aged , RNA, Ribosomal, 16S/analysis , RNA, Ribosomal, 16S/genetics , Semen Analysis/methods , Sequence Analysis, DNA/methods , Spermatozoa/chemistry , Spermatozoa/pathology , Testis/chemistry , Testis/microbiology , Testis/pathology
4.
Liver Int ; 41(11): 2646-2658, 2021 11.
Article in English | MEDLINE | ID: mdl-34219348

ABSTRACT

BACKGROUND AND AIMS: An association between Crohn's disease (CD) and hepatic steatosis has been reported. However, the underlying mechanisms of steatosis progression in CD are not clear. Among the most effective CD treatments are agents that inhibit Tumor-Necrosis-Factor (TNF) activity, yet it is unclear why anti-TNFα agents would affect steatosis in CD. Recent studies suggest that microbiome can affect both, CD and steatosis pathogenesis. Therefore, we here analysed a potential relationship between anti-TNF treatment and hepatic steatosis in CD, focusing on the gut-liver axis. METHODS: This cross-sectional study evaluated patients with established CD, with and without anti-TNFα treatment, analysing serum markers of liver injury, measurement of transient elastography, controlled attenuation parameter (CAP) and MRI for fat detection. Changes in lipid and metabolic profiles were assessed by serum and stool lipidomics and metabolimics. Additionally, we analysed gut microbiota composition and mediators of bile acid (BA) signalling via stool and serum analysis. RESULTS: Patients on anti-TNFα treatment had less hepatic steatosis as assessed by CAP and MRI. Serum FGF19 levels were significantly higher in patients on anti-TNFα therapy and associate with reduced steatosis and increased bowel motility. Neutral lipids including triglycerides were reduced in the serum of patients on anti-TNF treatment. Bacteria involved in BA metabolism and FGF19 regulation, including Firmicutes, showed group-specific alterations with low levels in patients without anti-TNFα treatment. Low abundance of Firmicutes was associated with higher triglyceride levels. CONCLUSIONS: Anti-TNFα treatment is associated with reduced steatosis, lower triglyceride levels, alterations in FXR-signalling (eg FGF19) and microbiota composition in CD.


Subject(s)
Crohn Disease , Fatty Liver , Crohn Disease/drug therapy , Cross-Sectional Studies , Hormones , Humans , Tumor Necrosis Factor Inhibitors
5.
J Environ Manage ; 279: 111558, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33221046

ABSTRACT

In recent years, overexploited industrialization and urbanization activities have led to significant amounts of heavy metals released into the environment. Metal ion contamination of water, especially with toxic metals such as nickel(II) [Ni(II)], which is extensively applied in the electroplating industry, has been a serious problem. The aim of the present study was to evaluate the Ni(II) removal from real industrial wastewater using a 2 L, lab-scale, up-flow, anaerobic, zeolite-packed bioreactor inoculated with a heterotrophic consortium as the bioadsorbent. High-throughput sequencing of 16S rRNA genes revealed significant shifts in their bacterial diversity and structural composition along the bioreactor treatment location, where the bacterial genus was dominated by Kosmotogae followed by Firmicutes as Ruminococcus and Clostridium. However, Fervidobacterium and the Geobacter genus were absent at the end of the bioreactor treatment, suggesting that they play a key role in the beginning of Ni(II) removal anaerobic treatment. The physico-chemical results revealed that the Ni(II) removal rate was 99% for 250-500 ppm metal tested, with an efficient alkalinity rate and high production of biogas, which confirmed that anaerobic digestion of microorganisms was successfully performed through the process. Finally, this anaerobic bioreactor configuration offers an accessible and ecofriendly high-rate metal removal strategy from mining and electroplating effluents.


Subject(s)
Wastewater , Zeolites , Anaerobiosis , Bioreactors , Nickel , RNA, Ribosomal, 16S/genetics
6.
Gastroenterology ; 157(4): 1081-1092.e3, 2019 10.
Article in English | MEDLINE | ID: mdl-31175864

ABSTRACT

BACKGROUND & AIMS: The microbiome varies along the human gastrointestinal (GI) tract with exposure to luminal and mucosal factors. We analyzed active bacterial communities at 8 locations along the GI tract using high-throughput sequencing techniques. METHODS: We collected saliva, mucosal, and fecal samples from healthy adults (10 men and 11 women; mean age, 59 ± 12.3 years) who underwent upper and lower GI tract endoscopy in Germany from December 2015 through September 2016. Biopsies were taken from stomach, antrum, corpus, duodenum, terminal ileum, ascending colon, and descending colon. RNA was extracted from all samples and reverse transcribed into complementary DNA; V1-V2 regions of 16S ribosomal RNA genes were amplified and sequenced on an Illumina MiSeq platform. Abundances of the taxa in all taxonomic ranks in each sample type were used to construct sample-similarity matrices with the Bray-Curtis algorithm. Significant differences between a priori-defined groups were evaluated using analysis of similarity. RESULTS: After taxonomic annotation, 4045 phylotypes, belonging to 169 genera and 14 different phyla, were identified. Each subject had a different bacterial community. We identified distinct microbial consortia in saliva, upper GI tract, lower GI tract, and fecal samples. The predominant genera in the upper GI tract (Gemella, Veillonella, Neisseria, Fusobacterium, Streptococcus, Prevotella, Pseudomonas, and Actinomyces) were almost absent from the lower GI tract, where the microbial communities mainly comprised Faecalibacterium, Ruminococcus, and Bacteroides. The bacterial communities in the upper GI tract were characterized by greater richness and heterogeneity (measured by the Shannon index) than those in the lower GI tract. We detected Helicobacter pylori in only the upper GI tract. CONCLUSIONS: In an analysis of saliva, mucosal, and fecal samples from 21 healthy adults, we found each individual, and each GI region, to have a different bacterial community. The fecal microbiome is not representative of the mucosal microbiome. We propose a systematic method to analyze the bacterial communities of the GI tract.


Subject(s)
Bacteria/genetics , DNA, Bacterial/genetics , Gastrointestinal Microbiome , Gastrointestinal Tract/microbiology , Gene Expression Regulation, Bacterial , RNA, Ribosomal, 16S/genetics , Transcriptional Activation , Aged , Bacteria/classification , Feces/microbiology , Female , Gastric Mucosa/microbiology , Germany , Healthy Volunteers , High-Throughput Nucleotide Sequencing , Humans , Intestinal Mucosa/microbiology , Male , Middle Aged , Phylogeny , Ribotyping , Saliva/microbiology
7.
Dig Dis ; 37(2): 161-169, 2019.
Article in English | MEDLINE | ID: mdl-30428474

ABSTRACT

BACKGROUND: Gut microbiota play an essential role in the pathogenesis of hepatic encephalopathy (HE). Treatment strategies are directed to modulate intestinal microbiota profiles and their function by the administration of the non-absorbable disaccharide lactulose and the non-absorbable antibiotic rifaximin, which are required for long terms, but little is known on their long-term effect on gut microbiota composition and function. AIM: To characterize the active bacterial assemblages in duodenum and faeces in patients with minimal HE (MHE) before, during and after long-term therapy with rifaximin. METHODS: We analysed the microbiota composition in 5 patients with liver cirrhosis and MHE treated either with rifaximin 550 mg bid alone continuously for a period of 3 months or combined with lactulose 30-60 mL daily for 3 months. In addition to clinical assessments of HE, biopsies from duodenum and stool samples were analysed for their specific bacterial community applying NGS after RNA isolation before treatment, after 3 months of treatment and 3 months after the end of treatment. RESULTS: All 5 patients had a significant improvement of their MHE. Bacterial communities were different and distinct in duodenal samples and faeces. No statistically significant changes were found in the bacterial community profile at the different time points. CONCLUSION: Rifaximin therapy with and without lactulose over a period of 3 months does not affect the bacterial community composition. The improvement of HE with rifaximin is lasting also after the end of treatment and therefore a prolonged effect on microbiota metabolic function is suggested.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome/drug effects , Hepatic Encephalopathy/drug therapy , Hepatic Encephalopathy/microbiology , Intestine, Small/drug effects , Intestine, Small/pathology , Lactulose/therapeutic use , Rifaximin/therapeutic use , Adult , Aged , Anti-Bacterial Agents/therapeutic use , Cohort Studies , Female , Humans , Lactulose/pharmacology , Male , Middle Aged , Phylogeny , Principal Component Analysis , Rifamycins/therapeutic use , Rifaximin/pharmacology , Time Factors
8.
Gut ; 67(2): 216-225, 2018 02.
Article in English | MEDLINE | ID: mdl-27920199

ABSTRACT

OBJECTIVE: Patients infected with Helicobacter pylori develop chronic gastritis with a subgroup progressing to further complications. The role of microbiota from the oral cavity swallowed with saliva and either transiting the stomach or persisting in the gastric mucosa is uncertain. It is also not known whether the bacterial community differs in luminal and mucosal niches. A key question is whether H. pylori influences the bacterial communities of gastroduodenal niches. DESIGN: Saliva, gastric and duodenal aspirates as well as gastric and duodenal biopsies were collected during oesophagogastroduodenoscopy from 24 patients (m:9, f:15, mean age 52.2±SD 14.5 years). RNA was extracted and the V1-V2 region of the retrotranscribed bacterial 16S rRNA amplified and sequenced on the Illumina MiSeq platform. RESULTS: Overall, 687 bacterial phylotypes that belonged to 95 genera and 11 phyla were observed. Each individual comprised a unique microbiota composition that was consistent across the different niches. However, the stomach fluid enriched for specific microbiota components. Helicobacter spp were shown to dominate the mucosa-associated community in the stomach, and to significantly influence duodenal and oral communities. CONCLUSIONS: The detailed analysis of the active global bacterial communities from the five distinct sites of the upper GI tract allowed for the first time the differentiation between host effects and the influence of sampling region on the bacterial community. The influence of Helicobacter spp on the global community structures is striking.


Subject(s)
Duodenum/microbiology , Gastric Mucosa/microbiology , Helicobacter Infections/microbiology , Helicobacter pylori , Intestinal Mucosa/microbiology , Saliva/microbiology , Adult , Aged , Biopsy , Chronic Disease , Duodenum/pathology , Endoscopy, Gastrointestinal , Female , Gastric Juice/microbiology , Gastric Mucosa/pathology , Gastritis/microbiology , Gastritis/pathology , Gastrointestinal Microbiome , Helicobacter Infections/pathology , Humans , Intestinal Mucosa/pathology , Male , Middle Aged , Mouth/microbiology , RNA, Ribosomal, 16S/analysis
9.
Environ Microbiol ; 19(8): 2992-3011, 2017 08.
Article in English | MEDLINE | ID: mdl-28401633

ABSTRACT

A culture-independent function-based screening approach was used to assess the microbial aerobic catabolome for polycyclic aromatic hydrocarbons degradation of a soil subjected to 12 years of in situ bioremediation. A total of 422 750 fosmid clones were screened for key aromatic ring-cleavage activities using 2,3-dihydroxybiphenyl as substrate. Most of the genes encoding ring-cleavage enzymes on the 768 retrieved positive fosmids could not be identified using primer-based approaches and, thus, 205 fosmid inserts were sequenced. Nearly two hundred extradiol dioxygenase encoding genes of three different superfamilies could be identified. Additional key genes of aromatic metabolic pathways were identified, including a high abundance of Rieske non-heme iron oxygenases that provided detailed information on enzymes activating aromatic compounds and enzymes involved in activation of the side chain of methylsubstituted aromatics. The gained insights indicated a complex microbial network acting at the site under study, which comprises organisms similar to recently identified Immundisolibacter cernigliae TR3.2 and Rugosibacter aromaticivorans Ca6 and underlined the great potential of an approach that combines an activity-screening, a cost-effective high-throughput sequencing of fosmid clones and a phylogenomic-routed and manually curated database to carefully identify key proteins dedicated to aerobic degradation of aromatic compounds.


Subject(s)
Biodegradation, Environmental , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Rhodocyclaceae/isolation & purification , Rhodocyclaceae/metabolism , Base Sequence , Biphenyl Compounds/chemistry , Catechols/chemistry , DNA, Bacterial/genetics , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , High-Throughput Nucleotide Sequencing , Metagenomics/methods , Oxygenases/genetics , Phylogeny , Rhodocyclaceae/classification , Rhodocyclaceae/genetics , Soil , Soil Microbiology
10.
Environ Microbiol ; 19(2): 722-739, 2017 02.
Article in English | MEDLINE | ID: mdl-27883264

ABSTRACT

Polyunsaturated fatty acids (PUFAs) may affect colon microbiome homeostasis by exerting (specific) antimicrobial effects and/or interfering with mucosal biofilm formation at the gut mucosal interface. We used standardized batch incubations and the Mucosal-Simulator of the Human Microbial Intestinal Ecosystem (M-SHIME) to show the in vitro luminal and mucosal effects of the main PUFA in the Western diet, linoleic acid (LA). High concentrations of LA were found to decrease butyrate production and Faecalibacterium prausnitzii numbers dependent on LA biohydrogenation to vaccenic acid (VA) and stearic acid (SA). In faecal batch incubations, LA biohydrogenation and butyrate production were positively correlated and SA did not inhibit butyrate production. In the M-SHIME, addition of a mucosal environment stimulated biohydrogenation to SA and protected F. prausnitzii from inhibition by LA. This was probably due to the preference of two biohydrogenating genera Roseburia and Pseudobutyrivibrio for the mucosal niche. Co-culture batch incubations using Roseburia hominis and F. prausnitzii validated these observations. Correlations networks further uncovered the central role of Roseburia and Pseudobutyrivibrio in protecting luminal and mucosal SHIME microbiota from LA-induced stress. Our results confirm how cross-shielding interactions provide resilience to the microbiome and demonstrate the importance of biohydrogenating, mucosal bacteria for recovery from LA stress.


Subject(s)
Bacteria/isolation & purification , Colon/microbiology , Fatty Acids, Unsaturated/metabolism , Gastrointestinal Microbiome , Intestinal Mucosa/microbiology , Adult , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Butyrates/metabolism , Colon/physiology , Feces/microbiology , Female , Humans , Linoleic Acid/metabolism , Microbiota/drug effects , Stearic Acids/metabolism , Young Adult
11.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28115375

ABSTRACT

The promising results seen in studies of secondary bile acids in experimental colitis suggest that they may represent an attractive and safe class of drugs for the treatment of inflammatory bowel diseases (IBD). However, the exact mechanism by which bile acid therapy confers protection from colitogenesis is currently unknown. Since the gut microbiota plays a crucial role in the pathogenesis of IBD, and exogenous bile acid administration may affect the community structure of the microbiota, we examined the impact of the secondary bile acid ursodeoxycholic acid (UDCA) and its taurine or glycine conjugates on the fecal microbial community structure during experimental colitis. Daily oral administration of UDCA, tauroursodeoxycholic acid (TUDCA), or glycoursodeoxycholic acid (GUDCA) equally lowered the severity of dextran sodium sulfate-induced colitis in mice, as evidenced by reduced body weight loss, colonic shortening, and expression of inflammatory cytokines. Illumina sequencing demonstrated that bile acid therapy during colitis did not restore fecal bacterial richness and diversity. However, bile acid therapy normalized the colitis-associated increased ratio of Firmicutes to Bacteroidetes Interestingly, administration of bile acids prevented the loss of Clostridium cluster XIVa and increased the abundance of Akkermansia muciniphila, bacterial species known to be particularly decreased in IBD patients. We conclude that UDCA, which is an FDA-approved drug for cholestatic liver disorders, could be an attractive treatment option to reduce dysbiosis and ameliorate inflammation in human IBD.IMPORTANCE Secondary bile acids are emerging as attractive candidates for the treatment of inflammatory bowel disease. Although bile acids may affect the intestinal microbial community structure, which significantly contributes to the course of these inflammatory disorders, the impact of bile acid therapy on the fecal microbiota during colitis has not yet been considered. Here, we studied the alterations in the fecal microbial abundance in colitic mice following the administration of secondary bile acids. Our results show that secondary bile acids reduce the severity of colitis and ameliorate colitis-associated fecal dysbiosis at the phylum level. This study indicates that secondary bile acids might act as a safe and effective drug for inflammatory bowel disease.


Subject(s)
Dysbiosis/drug therapy , Gastrointestinal Microbiome/drug effects , Inflammatory Bowel Diseases/drug therapy , Taurochenodeoxycholic Acid/therapeutic use , Ursodeoxycholic Acid/analogs & derivatives , Ursodeoxycholic Acid/therapeutic use , Animals , Bacteroides/drug effects , Colon/microbiology , Dextran Sulfate/administration & dosage , Disease Models, Animal , Feces/microbiology , Firmicutes/drug effects , Humans , Mice , Taurine/chemistry , Taurochenodeoxycholic Acid/administration & dosage , Ursodeoxycholic Acid/administration & dosage , Ursodeoxycholic Acid/chemistry
12.
Appl Environ Microbiol ; 82(1): 167-73, 2016 01 01.
Article in English | MEDLINE | ID: mdl-26475106

ABSTRACT

Pseudomonas veronii 1YdBTEX2, a benzene and toluene degrader, and Pseudomonas veronii 1YB2, a benzene degrader, have previously been shown to be key players in a benzene-contaminated site. These strains harbor unique catabolic pathways for the degradation of benzene comprising a gene cluster encoding an isopropylbenzene dioxygenase where genes encoding downstream enzymes were interrupted by stop codons. Extradiol dioxygenases were recruited from gene clusters comprising genes encoding a 2-hydroxymuconic semialdehyde dehydrogenase necessary for benzene degradation but typically absent from isopropylbenzene dioxygenase-encoding gene clusters. The benzene dihydrodiol dehydrogenase-encoding gene was not clustered with any other aromatic degradation genes, and the encoded protein was only distantly related to dehydrogenases of aromatic degradation pathways. The involvement of the different gene clusters in the degradation pathways was suggested by real-time quantitative reverse transcription PCR.


Subject(s)
Bacterial Proteins/metabolism , Benzene/metabolism , Multigene Family , Pseudomonas/enzymology , Pseudomonas/genetics , Bacterial Proteins/genetics , Biocatalysis , Biodegradation, Environmental , Dioxygenases/genetics , Dioxygenases/metabolism , Molecular Sequence Data , Oxygenases/genetics , Oxygenases/metabolism , Phylogeny , Pseudomonas/metabolism
13.
Appl Environ Microbiol ; 82(7): 2227-2237, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26850298

ABSTRACT

Three types of contaminated soil from three geographically different areas were subjected to a constant supply of benzene or benzene/toluene/ethylbenzene/xylenes (BTEX) for a period of 3 months. Different from the soil from Brazil (BRA) and Switzerland (SUI), the Czech Republic (CZE) soil which was previously subjected to intensive in situ bioremediation displayed only negligible changes in community structure. BRA and SUI soil samples showed a clear succession of phylotypes. A rapid response to benzene stress was observed, whereas the response to BTEX pollution was significantly slower. After extended incubation, actinobacterial phylotypes increased in relative abundance, indicating their superior fitness to pollution stress. Commonalities but also differences in the phylotypes were observed. Catabolic gene surveys confirmed the enrichment of actinobacteria by identifying the increase of actinobacterial genes involved in the degradation of pollutants. Proteobacterial phylotypes increased in relative abundance in SUI microcosms after short-term stress with benzene, and catabolic gene surveys indicated enriched metabolic routes. Interestingly, CZE soil, despite staying constant in community structure, showed a change in the catabolic gene structure. This indicates that a highly adapted community, which had to adjust its gene pool to meet novel challenges, has been enriched.


Subject(s)
Bacteria/genetics , Bacteria/isolation & purification , Bacterial Proteins/genetics , Soil Microbiology , Soil Pollutants/metabolism , Bacteria/classification , Bacteria/metabolism , Bacterial Proteins/metabolism , Benzene/metabolism , Benzene Derivatives/metabolism , Biodegradation, Environmental , Biodiversity , Brazil , Czech Republic , Soil/chemistry , Switzerland , Toluene/metabolism , Xylenes/metabolism
14.
Environ Sci Technol ; 50(12): 6467-76, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27162101

ABSTRACT

Acetate and ethanol can be converted to caproic acid by microorganisms through reverse ß-oxidation. There is limited insight into the versatility of chain elongation in view of different starting substrates, including even- and odd-carbon carboxylates and alcohols other than ethanol. Thermodynamic analyses show that most elongation pathways are energetically feasible. Through incubations of microbial communities with different substrate-pair combinations, we established that ethanol and propanol were both highly suitable for chain elongation. As an electron acceptor, acetate, propionate, and butyrate readily elongated with ethanol, whereas an adaptation period was necessary for formate. Isobutyrate and longer-chained fatty acids above butyrate were not elongated. The microbial communities converged, and consistent enrichment of Clostridium spp. was observed, independent of the supplied alcohol or carboxylate, with a strain related to Clostridium kluyveri dominating the enrichments. Community analysis also showed phylotypes related to Bacteroidaceae and Microbacteriaceae families in all tests that are capable of converting the base substrates to useful intermediates. These organisms were mainly enriched with methanol or formate. Our overall conclusion is thus that multiple substrates can be used for chain elongation and that this process is carried out by highly similar organisms for direct chain elongation irrespective of the substrate.


Subject(s)
Ethanol/chemistry , Fermentation , Acetates/metabolism , Butyrates/metabolism , Clostridium/metabolism
15.
Environ Sci Technol ; 50(5): 2619-26, 2016 Mar 01.
Article in English | MEDLINE | ID: mdl-26854514

ABSTRACT

Metal recycling based on urban mining needs to be established to tackle the increasing supply risk of critical metals such as platinum. Presently, efficient strategies are missing for the recovery of platinum from diluted industrial process streams, often characterized by extremely low pHs and high salt concentrations. In this research, halophilic mixed cultures were employed for the biological recovery of platinum (Pt). Halophilic bacteria were enriched from Artemia cysts, living in salt lakes, in different salt matrices (sea salt mixture and NH4Cl; 20-210 g L(-1) salts) and at low to neutral pH (pH 3-7). The main taxonomic families present in the halophilic cultures were Halomonadaceae, Bacillaceae, and Idiomarinaceae. The halophilic cultures were able to recover >98% Pt(II) and >97% Pt(IV) at pH 2 within 3-21 h (4-453 mg Ptrecovered h(-1) g(-1) biomass). X-ray absorption spectroscopy confirmed the reduction to Pt(0) and transmission electron microscopy revealed both intra- and extracellular Pt precipitates, with median diameters of 9-30 nm and 11-13 nm, for Pt(II) and Pt(IV), respectively. Flow cytometric membrane integrity staining demonstrated the preservation of cell viability during platinum recovery. This study demonstrates the Pt recovery potential of halophilic mixed cultures in acidic saline conditions.


Subject(s)
Bacteria/metabolism , Environment , Platinum/isolation & purification , Sodium Chloride/pharmacology , Animals , Artemia , Bacteria/drug effects , Bacteria/ultrastructure , Biomass , Cell Membrane/drug effects , Cell Membrane/metabolism , Chemical Precipitation , X-Ray Absorption Spectroscopy
16.
Appl Environ Microbiol ; 81(3): 1047-58, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25452281

ABSTRACT

The oral microbiome plays a key role for caries, periodontitis, and systemic diseases. A method for rapid, high-resolution, robust taxonomic profiling of subgingival bacterial communities for early detection of periodontitis biomarkers would therefore be a useful tool for individualized medicine. Here, we used Illumina sequencing of the V1-V2 and V5-V6 hypervariable regions of the 16S rRNA gene. A sample stratification pipeline was developed in a pilot study of 19 individuals, 9 of whom had been diagnosed with chronic periodontitis. Five hundred twenty-three operational taxonomic units (OTUs) were obtained from the V1-V2 region and 432 from the V5-V6 region. Key periodontal pathogens like Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia could be identified at the species level with both primer sets. Principal coordinate analysis identified two outliers that were consistently independent of the hypervariable region and method of DNA extraction used. The linear discriminant analysis (LDA) effect size algorithm (LEfSe) identified 80 OTU-level biomarkers of periodontitis and 17 of health. Health- and periodontitis-related clusters of OTUs were identified using a connectivity analysis, and the results confirmed previous studies with several thousands of samples. A machine learning algorithm was developed which was trained on all but one sample and then predicted the diagnosis of the left-out sample (jackknife method). Using a combination of the 10 best biomarkers, 15 of 17 samples were correctly diagnosed. Training the algorithm on time-resolved community profiles might provide a highly sensitive tool to detect the onset of periodontitis.


Subject(s)
Bacteria/classification , Bacteria/genetics , Biomarkers , Biota , Gingiva/microbiology , Periodontitis/diagnosis , Periodontitis/microbiology , Chronic Disease , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
Microb Ecol ; 70(4): 922-35, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26024740

ABSTRACT

The long-term disposal of radioactive wastes in a deep geological repository is the accepted international solution for the treatment and management of these special residues. The microbial community of the selected host rocks and engineered barriers for the deep geological repository may affect the performance and the safety of the radioactive waste disposal. In this work, the bacterial population of bentonite formations of Almeria (Spain), selected as a reference material for bentonite-engineered barriers in the disposal of radioactive wastes, was studied. 16S ribosomal RNA (rRNA) gene-based approaches were used to study the bacterial community of the bentonite samples by traditional clone libraries and Illumina sequencing. Using both techniques, the bacterial diversity analysis revealed similar results, with phylotypes belonging to 14 different bacterial phyla: Acidobacteria, Actinobacteria, Armatimonadetes, Bacteroidetes, Chloroflexi, Cyanobacteria, Deinococcus-Thermus, Firmicutes, Gemmatimonadetes, Planctomycetes, Proteobacteria, Nitrospirae, Verrucomicrobia and an unknown phylum. The dominant groups of the community were represented by Proteobacteria and Bacteroidetes. A high diversity was found in three of the studied samples. However, two samples were less diverse and dominated by Betaproteobacteria.


Subject(s)
Bacteria/classification , Bentonite/analysis , Radioactive Waste , Architectural Accessibility , Bacteria/genetics , Bacteria/growth & development , Bacteria/isolation & purification , Biodiversity , DNA, Bacterial/genetics , DNA, Ribosomal/genetics , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Soil Pollutants, Radioactive/analysis , Spain
18.
Appl Microbiol Biotechnol ; 99(1): 189-99, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25261127

ABSTRACT

Anaerobic digestion is considered a key technology for the future bio-based economy. The microbial consortium carrying out the anaerobic digestion process is quite complex, and its exact role in terms of "elasticity", i.e., the ability to rapidly adapt to changing conditions, is still unknown. In this study, the role of the initial microbial community in terms of operational stability and stress tolerance was evaluated during a 175-day experiment. Five different inocula from stable industrial anaerobic digesters were fed a mixture of waste activated sludge and glycerol. Increasing ammonium pulses were applied to evaluate stability and stress tolerance. A different response in terms of start-up and ammonium tolerance was observed among the different inocula. Methanosaetaceae were the dominant acetoclastic methanogens, yet, Methanosarcinaceae increased in abundance at elevated ammonium concentrations. A shift from a Firmicutes to a Proteobacteria dominated bacterial community was observed in failing digesters. Methane production was strongly positively correlated with Methanosaetaceae, but also with Bacteria related to Anaerolinaceae, Clostridiales, and Alphaproteobacteria. Volatile fatty acids were strongly positively correlated with Betaproteobacteria and Bacteroidetes, yet ammonium concentration only with Bacteroidetes. Overall, these results indicate the importance of inoculum selection to ensure stable operation and stress tolerance in anaerobic digestion.


Subject(s)
Archaea/metabolism , Bacteria, Anaerobic/metabolism , Biota , Methane/metabolism , Microbial Consortia , Sewage/microbiology , Ammonium Compounds/toxicity , Anaerobiosis , Archaea/drug effects , Archaea/growth & development , Bacteria, Anaerobic/drug effects , Bacteria, Anaerobic/growth & development , DNA, Archaeal/chemistry , DNA, Archaeal/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids, Volatile/metabolism , Molecular Sequence Data , Sequence Analysis, DNA
19.
Environ Pollut ; : 124491, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964646

ABSTRACT

Deep Geological Repository (DGR) concept consist of storing radioactive waste in metal canisters, surrounded by compacted bentonite, and placed into a geological formation. Here, bentonite slurry microcosms with copper canister, inoculated with bacterial consortium and amended with acetate, lactate and sulfate were set up to investigate their geochemical evolution over a year under anoxic conditions. The impact of microbial communities on the corrosion of copper canister in an early-stage (45 days) was also assessed. The amended bacterial consortium and electron donors/acceptor accelerated the microbial activity, while bentonite heat-shocked process had a retarding effect. The microbial communities partially oxidize lactate to acetate which is subsequently consumed when the lactate is depleted. Early-stage microbial communities showed that the bacterial consortium reduced microbial diversity with Pseudomonas and Stenotrophomonas dominating the community. However, sulfate-reducing bacteria such as Desulfocurvibacter, Anaerosolibacter, and Desulfosporosinus were enriched coupling oxidation of lactate/acetate with reduction of sulfates. The generated biogenic sulfides could mediate the conversion of copper oxides (possibly formed by trapped oxygen molecules on the bentonite or driven by the reduction of H2O) to copper sulfide (Cu2S) identified by X-ray photoelectron spectroscopy (XPS). Overall, these findings shed light on the ideal geochemical conditions that would affect the stability of DGR barriers, emphasizing the impact of the SRB on the corrosion of the metal canisters, the gas generation, and the interaction with components of the bentonite.

20.
Sci Rep ; 14(1): 15335, 2024 07 03.
Article in English | MEDLINE | ID: mdl-38961176

ABSTRACT

Anastomotic leakage (AL) is a potentially life-threatening complication following colorectal cancer (CRC) resection. In this study, we aimed to unravel longitudinal changes in microbial structure before, during, and after surgery and to determine if microbial alterations may be predictive for risk assessment between sufficient anastomotic healing (AS) and AL prior surgery. We analysed the microbiota of 134 colon mucosal biopsies with 16S rRNA V1-V2 gene sequencing. Samples were collected from three location sites before, during, and after surgery, and patients received antibiotics after the initial collection and during surgery. The microbial structure showed dynamic surgery-related changes at different time points. Overall bacterial diversity and the abundance of some genera such as Faecalibacterium or Alistipes decreased over time, while the genera Enterococcus and Escherichia_Shigella increased. The distribution of taxa between AS and AL revealed significant differences in the abundance of genera such as Prevotella, Faecalibacterium and Phocaeicola. In addition to Phocaeicola, Ruminococcus2 and Blautia showed significant differences in abundance between preoperative sample types. ROC analysis of the predictive value of these genera for AL revealed an AUC of 0.802 (p = 0.0013). In summary, microbial composition was associated with postoperative outcomes, and the abundance of certain genera may be predictive of postoperative complications.


Subject(s)
Anastomotic Leak , Gastrointestinal Microbiome , Humans , Male , Female , Aged , Anastomotic Leak/etiology , Anastomotic Leak/microbiology , Middle Aged , Gastrointestinal Microbiome/genetics , Colorectal Neoplasms/surgery , Colorectal Neoplasms/microbiology , RNA, Ribosomal, 16S/genetics , Colorectal Surgery/adverse effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Colon/microbiology , Colon/surgery , Colon/pathology , Proof of Concept Study
SELECTION OF CITATIONS
SEARCH DETAIL