Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Biol Evol ; 37(4): 994-1006, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31848607

ABSTRACT

Native American genetic variation remains underrepresented in most catalogs of human genome sequencing data. Previous genotyping efforts have revealed that Mexico's Indigenous population is highly differentiated and substructured, thus potentially harboring higher proportions of private genetic variants of functional and biomedical relevance. Here we have targeted the coding fraction of the genome and characterized its full site frequency spectrum by sequencing 76 exomes from five Indigenous populations across Mexico. Using diffusion approximations, we modeled the demographic history of Indigenous populations from Mexico with northern and southern ethnic groups splitting 7.2 KYA and subsequently diverging locally 6.5 and 5.7 KYA, respectively. Selection scans for positive selection revealed BCL2L13 and KBTBD8 genes as potential candidates for adaptive evolution in Rarámuris and Triquis, respectively. BCL2L13 is highly expressed in skeletal muscle and could be related to physical endurance, a well-known phenotype of the northern Mexico Rarámuri. The KBTBD8 gene has been associated with idiopathic short stature and we found it to be highly differentiated in Triqui, a southern Indigenous group from Oaxaca whose height is extremely low compared to other Native populations.


Subject(s)
Adaptation, Biological/genetics , American Indian or Alaska Native/genetics , Evolution, Molecular , Genetic Variation , Exome , Humans , Mexico , Phylogeography
2.
bioRxiv ; 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37808839

ABSTRACT

All humans carry a small fraction of archaic ancestry across the genome, the legacy of gene flow from Neanderthals, Denisovans, and other hominids into the ancestors of modern humans. While the effects of Neanderthal ancestry on human fitness and health have been explored more thoroughly, there are fewer examples of adaptive introgression of Denisovan variants. Here, we study the gene MUC19, for which some modern humans carry a Denisovan-like haplotype. MUC19 is a mucin, a glycoprotein that forms gels with various biological functions, from lubrication to immunity. We find the diagnostic variants for the Denisovan-like MUC19 haplotype at high frequencies in admixed Latin American individuals among global population, and at highest frequency in 23 ancient Indigenous American individuals, all predating population admixture with Europeans and Africans. We find that some Neanderthals--Vindija and Chagyrskaya--carry the Denisovan-like MUC19 haplotype, and that it was likely introgressed into human populations through Neanderthal introgression rather than Denisovan introgression. Finally, we find that the Denisovan-like MUC19 haplotype carries a higher copy number of a 30 base-pair variable number tandem repeat relative to the Human-like haplotype, and that copy numbers of this repeat are exceedingly high in American populations. Our results suggest that the Denisovan-like MUC19 haplotype served as the raw genetic material for positive selection as American populations adapted to novel environments during their movement from Beringia into North and then South America.

3.
Science ; 380(6645): eadd6142, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37167382

ABSTRACT

Aridoamerica and Mesoamerica are two distinct cultural areas in northern and central Mexico, respectively, that hosted numerous pre-Hispanic civilizations between 2500 BCE and 1521 CE. The division between these regions shifted southward because of severe droughts ~1100 years ago, which allegedly drove a population replacement in central Mexico by Aridoamerican peoples. In this study, we present shotgun genome-wide data from 12 individuals and 27 mitochondrial genomes from eight pre-Hispanic archaeological sites across Mexico, including two at the shifting border of Aridoamerica and Mesoamerica. We find population continuity that spans the climate change episode and a broad preservation of the genetic structure across present-day Mexico for the past 2300 years. Lastly, we identify a contribution to pre-Hispanic populations of northern and central Mexico from two ancient unsampled "ghost" populations.


Subject(s)
Genetic Structures , Hispanic or Latino , Humans , History, Ancient , Mexico , Population Dynamics
4.
Elife ; 102021 08 05.
Article in English | MEDLINE | ID: mdl-34350829

ABSTRACT

After the European colonization of the Americas, there was a dramatic population collapse of the Indigenous inhabitants caused in part by the introduction of new pathogens. Although there is much speculation on the etiology of the Colonial epidemics, direct evidence for the presence of specific viruses during the Colonial era is lacking. To uncover the diversity of viral pathogens during this period, we designed an enrichment assay targeting ancient DNA (aDNA) from viruses of clinical importance and applied it to DNA extracts from individuals found in a Colonial hospital and a Colonial chapel (16th-18th century) where records suggest that victims of epidemics were buried during important outbreaks in Mexico City. This allowed us to reconstruct three ancient human parvovirus B19 genomes and one ancient human hepatitis B virus genome from distinct individuals. The viral genomes are similar to African strains, consistent with the inferred morphological and genetic African ancestry of the hosts as well as with the isotopic analysis of the human remains, suggesting an origin on the African continent. This study provides direct molecular evidence of ancient viruses being transported to the Americas during the transatlantic slave trade and their subsequent introduction to New Spain. Altogether, our observations enrich the discussion about the etiology of infectious diseases during the Colonial period in Mexico.


The arrival of European colonists to the Americas, beginning in the 15th century, contributed to the spread of new viruses amongst Indigenous people. This led to massive outbreaks of disease, and millions of deaths that caused an important Native population to collapse. The exact viruses that caused these outbreaks are unknown, but smallpox, measles, and mumps are all suspected. During these times, traders and colonists forcibly enslaved and displaced millions of people mainly from the West Coast of Africa to the Americas. The cruel, unsanitary, and overcrowded conditions on ships transporting these people across the Atlantic contributed to the spread of infectious diseases onboard. Once on land, infectious diseases spread quickly, partly due to the poor conditions that enslaved and ndigenous people were made to endure. Native people were also immunologically naïve to the newly introduced pathogens, making them susceptible to severe or fatal outcomes. The new field of paleovirology may help scientists identify the viruses that were circulating in the first years of colonization and trace how viruses arrived in the Americas. Using next-generation DNA sequencing and other cutting-edge techniques, Guzmán-Solís et al. extracted and enriched viral DNA from skeletal remains dating back to the 16th century. These remains were found in mass graves that were used to bury epidemic victims at a colonial hospital and chapel in what is now Mexico City. The experiments identified two viruses, human parvovirus B19 and a human hepatitis B virus. These viral genomes were recovered from human remains of first-generation African people in Mexico, as well as an individual who was an Indigenous person. Although the genetic material of these ancient viruses resembled pathogens that originated in Africa, the study did not determine if the victims died from these viruses or another cause. On the other hand, the results indicate that viruses frequently found in modern Africa were circulating in the Americas during the slave trade period of Mexico. Finally, the results provide evidence that colonists who forcibly brought African people to the Americas participated in the introduction of viruses to Mexico. This constant influx of viruses from the old world, led to dramatic declines in the populations of Indigenous people in the Americas.


Subject(s)
DNA, Ancient/analysis , Enslaved Persons/history , Genome, Viral/genetics , Hepatitis B virus/genetics , Parvovirus B19, Human/genetics , Black People/history , Hepatitis B virus/isolation & purification , High-Throughput Nucleotide Sequencing , History, 16th Century , History, 17th Century , History, 18th Century , Humans , Metagenomics , Parvovirus B19, Human/isolation & purification
5.
Philos Trans R Soc Lond B Biol Sci ; 375(1812): 20190580, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33012233

ABSTRACT

The 'red complex' is an aggregate of three oral bacteria (Tannerella forsythia, Porphyromonas gingivalis and Treponema denticola) responsible for severe clinical manifestation of periodontal disease. Here, we report the first direct evidence of ancient T.forsythia DNA in dentin and dental calculus samples from archaeological skeletal remains that span from the Pre-Hispanic to the Colonial period in Mexico. We recovered twelve partial ancient T. forsythia genomes and observed a distinct phylogenetic placement of samples, suggesting that the strains present in Pre-Hispanic individuals likely arrived with the first human migrations to the Americas and that new strains were introduced with the arrival of European and African populations in the sixteenth century. We also identified instances of the differential presence of genes between periods in the T. forsythia ancient genomes, with certain genes present in Pre-Hispanic individuals and absent in Colonial individuals, and vice versa. This study highlights the potential for studying ancient T. forsythia genomes to unveil past social interactions through analysis of disease transmission. Our results illustrate the long-standing relationship between this oral pathogen and its human host, while also unveiling key evidence to understand its evolutionary history in Pre-Hispanic and Colonial Mexico. This article is part of the theme issue 'Insights into health and disease from ancient biomolecules'.


Subject(s)
Genome, Bacterial , Gram-Negative Bacterial Infections/history , Periodontitis/history , Tannerella forsythia/genetics , Archaeology , Genomics , Gram-Negative Bacterial Infections/microbiology , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, Ancient , History, Medieval , Humans , Mexico , Periodontitis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL