Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Strahlenther Onkol ; 195(3): 226-235, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30353349

ABSTRACT

BACKGROUND: The dosimetric variability in spine stereotactic body radiation therapy (SBRT) planning was investigated in a large number of centres to identify crowd knowledge-based solutions. METHODS: Two spinal cases were planned by 48 planners (38 centres). The required prescription dose (PD) was 3â€¯× 10 Gy and the planning target volume (PTV) coverage request was: VPD > 90% (minimum request: VPD > 80%). The dose constraints were: planning risk volume (PRV) spinal cord: V18Gy < 0.35 cm3, V21.9 Gy < 0.03 cm3; oesophagus: V17.7 Gy < 5 cm3, V25.2 Gy < 0.03 cm3. Planners who did not fulfil the protocol requirements were asked to re-optimize the plans, using the results of planners with the same technology. Statistical analysis was performed to assess correlations between dosimetric results and planning parameters. A quality index (QI) was defined for scoring plans. RESULTS: In all, 12.5% of plans did not meet the protocol requirements. After re-optimization, 98% of plans fulfilled the constraints, showing the positive impact of knowledge sharing. Statistical analysis showed a significant correlation (p < 0.05) between the homogeneity index (HI) and PTV coverage for both cases, while the correlation between HI and spinal cord sparing was significant only for the single dorsal PTV case. Moreover, the multileaf collimator leaf thickness correlated with the spinal cord sparing. Planners using comparable delivery/planning system techniques produced different QI, highlighting the impact of the planner's skills in the optimization process. CONCLUSION: Both the technology and the planner's skills are fundamentally important in spine SBRT planning optimization. Knowledge sharing helped to follow the plan objectives.


Subject(s)
Radiometry , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Clinical Competence , Correlation of Data , Humans , Organs at Risk/radiation effects , Quality Assurance, Health Care/methods , Radiation Injuries/prevention & control , Spinal Cord/radiation effects
2.
Strahlenther Onkol ; 191(7): 573-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25747263

ABSTRACT

PURPOSE: The Italian Association of Medical Physics (AIFM) started a working group dedicated to stereotactic body radiotherapy (SBRT) treatment. In this work, we performed a multicenter planning study on patients who were candidates for SBRT in the treatment of prostate cancer with the aim of evaluating the dosimetric consistency among the different hospitals. METHODS AND MATERIALS: Fourteen centers were provided the contours of 5 patients. Plans were performed following the dose prescription and constraints for organs at risk (OARs) of a reference paper. The dose prescription was 35 Gy in five fractions for the planning target volume (PTV). Different techniques were used (3D-CRT, fixed-Field IMRT, VMAT, CyberKnife). Plans were compared in terms of dose-volume histogram (DVH) parameters. Furthermore, the median DVH was calculated and one patient was re-planned. RESULTS: A total of 70 plans were compared. The maximum dose to the body was 107.9 ± 4.5 % (range 101.5-116.3 %). Dose at 98 % (D98 %) and mean dose to the clinical target volume (CTV) were 102.0 ± 0.9 % (global range 101.1-102.9 %) and 105.1 ± 0.6 % (range 98.6-124.6 %). Similar trends were found for D95 % and mean dose to the PTV. Important differences were found in terms of the homogeneity index. Doses to OARs were heterogeneous. The subgroups with the same treatment planning system showed differences comparable to the differences of the whole group. In the re-optimized plans, DVH differences among institutes were reduced and OAR sparing improved. CONCLUSION: Important dosimetric differences with possible clinical implications, in particular related to OARs, were found. Replanning allowed a reduction in the OAR dose and decreased standard deviations. Multicenter clinical trials on SBRT should require a preplanning study to standardize the optimization procedure.


Subject(s)
Prostatic Neoplasms/surgery , Radiosurgery/methods , Aged , Feasibility Studies , Humans , Italy , Male , Middle Aged , Organs at Risk , Patient Care Planning , Patient Positioning , Preoperative Care , Radiometry/methods
4.
Phys Med Biol ; 67(16)2022 08 08.
Article in English | MEDLINE | ID: mdl-35785778

ABSTRACT

This topical review focuses on the applications of artificial intelligence (AI) tools to stereotactic body radiation therapy (SBRT). The high dose per fraction and the limited number of fractions in SBRT require stricter accuracy than standard radiation therapy. The intent of this review is to describe the development and evaluate the possible benefit of AI tools integration into the radiation oncology workflow for SBRT automation. The selected papers were subdivided into four sections, representative of the whole radiotherapy process: 'AI in SBRT target and organs at risk contouring', 'AI in SBRT planning', 'AI during the SBRT delivery', and 'AI for outcome prediction after SBRT'. Each section summarises the challenges, as well as limits and needs for improvement to achieve better integration of AI tools in the clinical workflow.


Subject(s)
Radiosurgery , Artificial Intelligence , Organs at Risk , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
5.
Radiat Prot Dosimetry ; 189(2): 157-162, 2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32318702

ABSTRACT

Data were collected from 642 orthopaedic interventions during which the images produced by X-rays were recorded. By examining these images, it is possible to determine the time that the orthopaedic surgeons' hands were exposed to the direct radiation beam. The procedures with greater exposure to the direct beam were those involving the hand (median 15 s) and the wrist (median 13 s). Two surgeons wore a ring to measure the absorbed dose at the fingers: one on the dominant hand and the other on the non-dominant hand. The two surgeons performed 34 and 48 operations, respectively, in 14 months. The total doses measured with the rings were 2.30 and 1.04 mSv, respectively. The images of the interventions were examined, determining how much each individual hand was exposed. The interventional reference point (IRPeff (left or right)) was calculated by comparing the doses at the IRP with the exposure times of the right or the left hand. Summing the IRPeff of the two surgeons in 14 months, it is obtained the maximum values of 2.87 mGy for the left hand of one and 6.74 mGy for the right hand of the other, which are of the order of 1/100 of the annual dose limit for the extremities.


Subject(s)
Occupational Exposure , Orthopedic Surgeons , Fluoroscopy , Hand , Humans , Radiation Dosage
6.
Radiother Oncol ; 149: 158-167, 2020 08.
Article in English | MEDLINE | ID: mdl-32416282

ABSTRACT

Stereotactic body radiation therapy (SBRT) has been recognized as a standard treatment option for many anatomical sites. Sophisticated radiation therapy techniques have been developed for carrying out these treatments and new quality assurance (QA) programs are therefore required to guarantee high geometrical and dosimetric accuracy. This paper focuses on recent advances on in-vivo measurements methods (IVM) for SBRT treatment. More specifically, all of the online QA methods for estimating the effective dose delivered to patients were compared. Determining the optimal IVM for performing SBRT treatments would reduce the risk of errors that could jeopardize treatment outcome. A total of 89 papers were included. The papers were subdivided into the following topics: point dosimeters (PD), transmission detectors (TD), log file analysis (LFA), electronic portal imaging device dosimetry (EPID), dose accumulation methods (DAM). The detectability capability of the main IVM detectors/devices were evaluated. All of the systems have some limitations: PD has no spatial data, EPID has limited sensitivity towards set-up errors and intra-fraction motion in some anatomical sites, TD is insensitive towards patient related errors, LFA is not an independent measure, DAMs are not always based on measures. In order to minimize errors in SBRT dose delivery, we recommend using synergic combinations of two or more of the systems described in our review: on-line tumor position and patient information should be combined with MLC position and linac output detection accuracy. In this way the effects of SBRT dose delivery errors will be reduced.


Subject(s)
Radiosurgery , Radiotherapy, Intensity-Modulated , Humans , Particle Accelerators , Radiometry , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
7.
Int J Radiat Oncol Biol Phys ; 106(2): 403-412, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31707124

ABSTRACT

In this review a summary of the published literature pertaining to the stereotactic body radiation therapy multiplanning comparison, data sharing strategies, and implementation of benchmark planning cases to improve the skills and knowledge of the participating centers was investigated. A total of 30 full-text articles were included. The studies were subdivided in 3 categories: multiplanning studies on dosimetric variability, planning harmonization before clinical trials, and technical and methodologic studies. The methodology used in the studies were critically analyzed to find common and original elements with the pros and cons. Multicenter planning studies have played a key role in improving treatment plan harmonization, treatment plan compliance, and even clinical practices. This review has highlighted that some fundamental steps should be taken to transform a simple treatment planning comparison study into a potential credentialing method for stereotactic body radiation therapy accreditation. In particular, prescription and general requirements should always be well defined; data analysis should be performed with independent dose volume histogram or dose calculations; quality score indices should be constructed; feedback and correction strategies should be provided; and a simple web-based collaboration platform should be used. The results reported clearly showed that a crowd-based replanning approach is a viable method for achieving harmonization and standardization of treatment planning among centers using different technologies.


Subject(s)
Benchmarking , Multicenter Studies as Topic , Radiosurgery/methods , Radiotherapy Dosage , Accreditation , Clinical Trials as Topic , Credentialing , Humans , Organs at Risk/radiation effects
8.
Phys Med ; 62: 73-82, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31153401

ABSTRACT

PURPOSE: To evaluate, in a multi-institutional context, the role of Dose Volume Histogram (DVH) sharing in order to achieve higher plan quality, to harmonize prostate Stereotactic Body Radiation Therapy (SBRT) plans and to assess if the planner's experience in SBRT could lead to lower dose at organs at risk (OARs). METHODS: During the first phase five patients enrolled for prostate SBRT were planned by multiple physicists according to common protocol. The prescription dose was 35 Gy in 5 fractions. Dosimetric parameters, modulation index (MIt), plan parameters, and planner experience level (EL) were statistically analyzed. During the second phase median DVHs from all centers were shared and physicists replanned one patient of the five, aiming at inter-planner harmonization and further OARs sparing. Data were summarized by Spearman-correlogram (p < 0.05) and boxplots. The Kruskal-Wallis test was used to compare the re-plans to the original plans. RESULTS: Seventy-eight SBRT plans from 13 centers were evaluated. EL correlated with modulation of plan parameters and reduction of OARs doses, such as volume receiving 28 Gy of rectum (rectum-V28Gy), rectum-V32Gy, and bladder-V30Gy. The re-plans showed significant reduced variability in rectum-V28Gy and increased PTV dose homogeneity. No significant difference in plan complexity metrics and plan parameters between plans and re-plans were obtained. CONCLUSIONS: Planner's experience in prostate SBRT was correlated with dosimetric parameters. Sharing median DVHs reduced variability among centers whilst keeping the same level of plan complexity. SBRT planning skills can benefit from a replanning phase after sharing DVHs from multiple centers, improving plan quality and concordance among centers.


Subject(s)
Prostatic Neoplasms/radiotherapy , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Humans , Male , Organs at Risk/radiation effects , Quality Control , Radiosurgery/adverse effects , Radiotherapy Dosage
9.
Phys Imaging Radiat Oncol ; 5: 93-96, 2018 Jan.
Article in English | MEDLINE | ID: mdl-33458376

ABSTRACT

Large uncertainties in output factor (OF) small fields dosimetry motivated multicentric studies. The focus of the study was the determination of the OFs, for different linacs and radiosurgery units, using new-generation detectors. Intercomparison studies between radiotherapy centers improved quality dosimetry practices. Results confirmed the effectiveness of the studies to uncover large systematic inaccuracies in small field dosimetry.

10.
Phys Med ; 44: 163-170, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28566240

ABSTRACT

Emerging data are showing the safety and the efficacy of Stereotactic Body Radiation therapy (SBRT) in lung cancer management. In this context, the very high doses delivered to the Planning Target Volume, make the planning phase essential for achieving high dose levels conformed to the shape of the target in order to have a good prognosis for tumor control and to avoid an overdose in relevant healthy adjacent tissue. In this non-systematic review we analyzed the technological and the physics aspects of SBRT planning for lung cancer. In particular, the aims of the study were: (i) to evaluate prescription strategies (homogeneous or inhomogeneous), (ii) to outline possible geometrical solutions by comparing the dosimetric results (iii) to describe the technological possibilities for a safe and effective treatment, (iv) to present the issues concerning radiobiological planning and the automation of the planning process.


Subject(s)
Lung Neoplasms/radiotherapy , Radiosurgery , Radiotherapy Planning, Computer-Assisted/methods , Humans , Quality Assurance, Health Care , Radiotherapy Planning, Computer-Assisted/standards
11.
Phys Med ; 32(12): 1644-1650, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27839775

ABSTRACT

PURPOSE: The aim of the study was a multicenter evaluation of MLC&jaws-defined small field output factors (OF) for different linear accelerator manufacturers and for different beam energies using the latest synthetic single crystal diamond detector commercially available. The feasibility of providing an experimental OF data set, useful for on-site measurements validation, was also evaluated. METHODS: This work was performed in the framework of the Italian Association of Medical Physics (AIFM) SBRT working group. The project was subdivided in two phases: in the first phase each center measured OFs using their own routine detector for nominal field sizes ranging from 10×10cm2 to 0.6×0.6cm2. In the second phase, the measurements were repeated in all centers using the PTW 60019 microDiamond detector. RESULTS: The project enrolled 30 Italian centers. Micro-ion chambers and silicon diodes were used for OF measurements in 24 and 6 centers respectively. Gafchromic films and TLDs were used for very small field OFs in 3 and 1 centers. Regarding the measurements performed with the user's detectors, OF standard deviations (SD) for field sizes down to 2×2cm2 were in all cases <2.7%. In the second phase, a reduction of around 50% of the SD was obtained using the microDiamond detector. CONCLUSIONS: The measured values presented in this multicenter study provide a consistent dataset for OFs that could be a useful tool for improving dosimetric procedures in centers. The microDiamond data present a small variation among the centers confirming that this detector can contribute to improve overall accuracy in radiotherapy.


Subject(s)
Diamond , Particle Accelerators , Radiometry/instrumentation , Feasibility Studies , Monte Carlo Method , Silicon
12.
Phys Med ; 32(1): 277-83, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26498378

ABSTRACT

PURPOSE: To compare five liver metastasis stereotactic ablative radiotherapy (SABR) plans optimised in fourteen centres with 3D-Conformal-RT, IMRT, VMAT, CyberKnife and Tomotherapy and identify possible dosimetric differences. METHODS: Dose prescription was 75 Gy in 3 fractions, normalised at 67%-95% isodose. RESULTS: Excluding few cases, all institutions achieved the planning objectives. Differences up to 40% and 25% in mean dose to liver and PTV were found. No significant correlations between technological factors and DVH for target and OARs were observed; the optimisation strategies selected by the planners played a key role in the planning procedure. CONCLUSIONS: The human factor and the constraints imposed to the target volume have a greater dosimetric impact than treatment planning and radiation delivery technology in stereotactic treatment of liver metastases. Significant differences found both in terms of dosimetric target coverage and OAR sparing should be taken into consideration before starting a multi-institutional SARB clinical trial.


Subject(s)
Liver Neoplasms/radiotherapy , Liver Neoplasms/surgery , Radiosurgery/methods , Radiotherapy, Conformal/methods , Radiotherapy, Intensity-Modulated/methods , Computer Simulation , Databases, Factual , Four-Dimensional Computed Tomography/methods , Humans , Italy , Neoplasm Metastasis , Organs at Risk , Radiometry/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Reproducibility of Results , Treatment Outcome
13.
Phys Med ; 32(4): 600-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27061871

ABSTRACT

PURPOSE: A large-scale multi-institutional planning comparison on lung cancer SABR is presented with the aim of investigating possible criticism in carrying out retrospective multicentre data analysis from a dosimetric perspective. METHODS: Five CT series were sent to the participants. The dose prescription to PTV was 54Gy in 3 fractions of 18Gy. The plans were compared in terms of PTV-gEUD2 (generalized Equivalent Uniform Dose equivalent to 2Gy), mean dose to PTV, Homogeneity Index (PTV-HI), Conformity Index (PTV-CI) and Gradient Index (PTV-GI). We calculated the maximum dose for each OAR (organ at risk) considered as well as the MLD2 (mean lung dose equivalent to 2Gy). The data were stratified according to expertise and technology. RESULTS: Twenty-six centers equipped with Linacs, 3DCRT (4% - 1 center), static IMRT (8% - 2 centers), VMAT (76% - 20 centers), CyberKnife (4% - 1 center), and Tomotherapy (8% - 2 centers) collaborated. Significant PTV-gEUD2 differences were observed (range: 105-161Gy); mean-PTV dose, PTV-HI, PTV-CI, and PTV-GI were, respectively, 56.8±3.4Gy, 14.2±10.1%, 0.70±0.15, and 4.9±1.9. Significant correlations for PTV-gEUD2 versus PTV-HI, and MLD2 versus PTV-GI, were observed. CONCLUSIONS: The differences in terms of PTV-gEUD2 may suggest the inclusion of PTV-gEUD2 calculation for retrospective data inter-comparison.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Lung Neoplasms/radiotherapy , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Humans , Lung Neoplasms/diagnostic imaging , Radiosurgery/instrumentation , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL