ABSTRACT
22q11.2 deletion syndrome (22q11DS) is the most frequently occurring microdeletion in humans. It is associated with a significant impact on brain structure, including prominent reductions in gray matter volume (GMV), and neuropsychiatric manifestations, including cognitive impairment and psychosis. It is unclear whether GMV alterations in 22q11DS occur according to distinct structural patterns. Then, 783 participants (470 with 22q11DS: 51% females, mean age [SD] 18.2 [9.2]; and 313 typically developing [TD] controls: 46% females, mean age 18.0 [8.6]) from 13 datasets were included in the present study. We segmented structural T1-weighted brain MRI scans and extracted GMV images, which were then utilized in a novel source-based morphometry (SBM) pipeline (SS-Detect) to generate structural brain patterns (SBPs) that capture co-varying GMV. We investigated the impact of the 22q11.2 deletion, deletion size, intelligence quotient, and psychosis on the SBPs. Seventeen GMV-SBPs were derived, which provided spatial patterns of GMV covariance associated with a quantitative metric (i.e., loading score) for analysis. Patterns of topographically widespread differences in GMV covariance, including the cerebellum, discriminated individuals with 22q11DS from healthy controls. The spatial extents of the SBPs that revealed disparities between individuals with 22q11DS and controls were consistent with the findings of the univariate voxel-based morphometry analysis. Larger deletion size was associated with significantly lower GMV in frontal and occipital SBPs; however, history of psychosis did not show a strong relationship with these covariance patterns. 22q11DS is associated with distinct structural abnormalities captured by topographical GMV covariance patterns that include the cerebellum. Findings indicate that structural anomalies in 22q11DS manifest in a nonrandom manner and in distinct covarying anatomical patterns, rather than a diffuse global process. These SBP abnormalities converge with previously reported cortical surface area abnormalities, suggesting disturbances of early neurodevelopment as the most likely underlying mechanism.
Subject(s)
DiGeorge Syndrome , Psychotic Disorders , Female , Humans , Adolescent , Male , DiGeorge Syndrome/diagnostic imaging , Magnetic Resonance Imaging , Brain/diagnostic imaging , Psychotic Disorders/complications , Gray Matter/diagnostic imagingABSTRACT
Diffusion MRI (dMRI) can be used to probe microstructural properties of brain tissue and holds great promise as a means to non-invasively map Alzheimer's disease (AD) pathology. Few studies have evaluated multi-shell dMRI models such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator (MAP)-MRI in cortical gray matter where many of the earliest histopathological changes occur in AD. Here, we investigated the relationship between CSF pTau181 and Aß1-42 burden and regional cortical NODDI and MAP-MRI indices in 46 cognitively unimpaired individuals, 18 with mild cognitive impairment, and two with dementia (mean age: 71.8 ± 6.2 years) from the Alzheimer's Disease Neuroimaging Initiative. We compared findings to more conventional cortical thickness measures. Lower CSF Aß1-42 and higher pTau181 were associated with cortical dMRI measures reflecting less hindered or restricted diffusion and greater diffusivity. Cortical dMRI measures, but not cortical thickness measures, were more widely associated with Aß1-42 than pTau181 and better distinguished Aß+ from Aß- participants than pTau+ from pTau- participants. dMRI associations mediated the relationship between CSF markers and delayed logical memory performance, commonly impaired in early AD. dMRI metrics sensitive to early AD pathogenesis and microstructural damage may be better measures of subtle neurodegeneration in comparison to standard cortical thickness and help to elucidate mechanisms underlying cognitive decline.
ABSTRACT
The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.
Subject(s)
Diffusion Tensor Imaging , Mental Disorders , White Matter , Biomedical Research/methods , Biomedical Research/standards , Diffusion Tensor Imaging/methods , Diffusion Tensor Imaging/standards , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/pathology , Multicenter Studies as Topic , Psychiatry/methods , Psychiatry/standards , White Matter/diagnostic imaging , White Matter/pathologyABSTRACT
The Enhancing NeuroImaging Genetics through Meta-Analysis copy number variant (ENIGMA-CNV) and 22q11.2 Deletion Syndrome Working Groups (22q-ENIGMA WGs) were created to gain insight into the involvement of genetic factors in human brain development and related cognitive, psychiatric and behavioral manifestations. To that end, the ENIGMA-CNV WG has collated CNV and magnetic resonance imaging (MRI) data from ~49,000 individuals across 38 global research sites, yielding one of the largest studies to date on the effects of CNVs on brain structures in the general population. The 22q-ENIGMA WG includes 12 international research centers that assessed over 533 individuals with a confirmed 22q11.2 deletion syndrome, 40 with 22q11.2 duplications, and 333 typically developing controls, creating the largest-ever 22q11.2 CNV neuroimaging data set. In this review, we outline the ENIGMA infrastructure and procedures for multi-site analysis of CNVs and MRI data. So far, ENIGMA has identified effects of the 22q11.2, 16p11.2 distal, 15q11.2, and 1q21.1 distal CNVs on subcortical and cortical brain structures. Each CNV is associated with differences in cognitive, neurodevelopmental and neuropsychiatric traits, with characteristic patterns of brain structural abnormalities. Evidence of gene-dosage effects on distinct brain regions also emerged, providing further insight into genotype-phenotype relationships. Taken together, these results offer a more comprehensive picture of molecular mechanisms involved in typical and atypical brain development. This "genotype-first" approach also contributes to our understanding of the etiopathogenesis of brain disorders. Finally, we outline future directions to better understand effects of CNVs on brain structure and behavior.
Subject(s)
Brain , DNA Copy Number Variations , Magnetic Resonance Imaging , Mental Disorders , Neurodevelopmental Disorders , Neuroimaging , Brain/diagnostic imaging , Brain/growth & development , Brain/pathology , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/genetics , Mental Disorders/pathology , Multicenter Studies as Topic , Neurodevelopmental Disorders/diagnostic imaging , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathologyABSTRACT
22q11.2 deletion syndrome (22q11DS) results from a hemizygous deletion that typically spans 46 protein-coding genes and is associated with widespread alterations in brain morphology. The specific genetic mechanisms underlying these alterations remain unclear. In the 22q11.2 ENIGMA Working Group, we characterized cortical alterations in individuals with 22q11DS (n = 232) versus healthy individuals (n = 290) and conducted spatial convergence analyses using gene expression data from the Allen Human Brain Atlas to prioritize individual genes that may contribute to altered surface area (SA) and cortical thickness (CT) in 22q11DS. Total SA was reduced in 22q11DS (Z-score deviance = -1.04), with prominent reductions in midline posterior and lateral association regions. Mean CT was thicker in 22q11DS (Z-score deviance = +0.64), with focal thinning in a subset of regions. Regional expression of DGCR8 was robustly associated with regional severity of SA deviance in 22q11DS; AIFM3 was also associated with SA deviance. Conversely, P2RX6 was associated with CT deviance. Exploratory analysis of gene targets of microRNAs previously identified as down-regulated due to DGCR8 deficiency suggested that DGCR8 haploinsufficiency may contribute to altered corticogenesis in 22q11DS by disrupting cell cycle modulation. These findings demonstrate the utility of combining neuroanatomic and transcriptomic datasets to derive molecular insights into complex, multigene copy number variants.
Subject(s)
22q11 Deletion Syndrome/diagnostic imaging , 22q11 Deletion Syndrome/genetics , Brain Cortical Thickness , Cerebral Cortex/diagnostic imaging , 22q11 Deletion Syndrome/pathology , Case-Control Studies , Cerebral Cortex/embryology , Cerebral Cortex/pathology , DNA Copy Number Variations , Gene Expression Profiling , Gene Expression Regulation, Developmental/genetics , Haploinsufficiency , Humans , Magnetic Resonance Imaging , MicroRNAs/genetics , Mitochondrial Proteins/genetics , RNA-Binding Proteins/genetics , Receptors, Purinergic P2/geneticsABSTRACT
22q11.2 deletion syndrome (22q11DS)-a neurodevelopmental condition caused by a hemizygous deletion on chromosome 22-is associated with an elevated risk of psychosis and other developmental brain disorders. Prior single-site diffusion magnetic resonance imaging (dMRI) studies have reported altered white matter (WM) microstructure in 22q11DS, but small samples and variable methods have led to contradictory results. Here we present the largest study ever conducted of dMRI-derived measures of WM microstructure in 22q11DS (334 22q11.2 deletion carriers and 260 healthy age- and sex-matched controls; age range 6-52 years). Using harmonization protocols developed by the ENIGMA-DTI working group, we identified widespread reductions in mean, axial and radial diffusivities in 22q11DS, most pronounced in regions with major cortico-cortical and cortico-thalamic fibers: the corona radiata, corpus callosum, superior longitudinal fasciculus, posterior thalamic radiations, and sagittal stratum (Cohen's d's ranging from -0.9 to -1.3). Only the posterior limb of the internal capsule (IC), comprised primarily of corticofugal fibers, showed higher axial diffusivity in 22q11DS. 22q11DS patients showed higher mean fractional anisotropy (FA) in callosal and projection fibers (IC and corona radiata) relative to controls, but lower FA than controls in regions with predominantly association fibers. Psychotic illness in 22q11DS was associated with more substantial diffusivity reductions in multiple regions. Overall, these findings indicate large effects of the 22q11.2 deletion on WM microstructure, especially in major cortico-cortical connections. Taken together with findings from animal models, this pattern of abnormalities may reflect disrupted neurogenesis of projection neurons in outer cortical layers.
Subject(s)
DiGeorge Syndrome/diagnostic imaging , DiGeorge Syndrome/pathology , Diffusion Magnetic Resonance Imaging , White Matter/diagnostic imaging , White Matter/pathology , Adolescent , Adult , Anisotropy , Child , DiGeorge Syndrome/genetics , Female , Humans , Male , Middle Aged , Young AdultABSTRACT
The 22q11.2 deletion (22q11DS) is a common chromosomal microdeletion and a potent risk factor for psychotic illness. Prior studies reported widespread cortical changes in 22q11DS, but were generally underpowered to characterize neuroanatomic abnormalities associated with psychosis in 22q11DS, and/or neuroanatomic effects of variability in deletion size. To address these issues, we developed the ENIGMA (Enhancing Neuro Imaging Genetics Through Meta-Analysis) 22q11.2 Working Group, representing the largest analysis of brain structural alterations in 22q11DS to date. The imaging data were collected from 10 centers worldwide, including 474 subjects with 22q11DS (age = 18.2 ± 8.6; 46.9% female) and 315 typically developing, matched controls (age = 18.0 ± 9.2; 45.9% female). Compared to controls, 22q11DS individuals showed thicker cortical gray matter overall (left/right hemispheres: Cohen's d = 0.61/0.65), but focal thickness reduction in temporal and cingulate cortex. Cortical surface area (SA), however, showed pervasive reductions in 22q11DS (left/right hemispheres: d = -1.01/-1.02). 22q11DS cases vs. controls were classified with 93.8% accuracy based on these neuroanatomic patterns. Comparison of 22q11DS-psychosis to idiopathic schizophrenia (ENIGMA-Schizophrenia Working Group) revealed significant convergence of affected brain regions, particularly in fronto-temporal cortex. Finally, cortical SA was significantly greater in 22q11DS cases with smaller 1.5 Mb deletions, relative to those with typical 3 Mb deletions. We found a robust neuroanatomic signature of 22q11DS, and the first evidence that deletion size impacts brain structure. Psychotic illness in this highly penetrant deletion was associated with similar neuroanatomic abnormalities to idiopathic schizophrenia. These consistent cross-site findings highlight the homogeneity of this single genetic etiology, and support the suitability of 22q11DS as a biological model of schizophrenia.
Subject(s)
Cerebral Cortex/pathology , Chromosome Deletion , DiGeorge Syndrome/genetics , DiGeorge Syndrome/pathology , Adolescent , Adult , Female , Gray Matter/pathology , Humans , Magnetic Resonance Imaging , Male , Psychotic Disorders/genetics , Young AdultABSTRACT
Traumatic brain injury can cause extensive damage to the white matter (WM) of the brain. These disruptions can be especially damaging in children, whose brains are still maturing. Diffusion magnetic resonance imaging (dMRI) is the most commonly used method to assess WM organization, but it has limited resolution to differentiate causes of WM disruption. Magnetic resonance spectroscopy (MRS) yields spectra showing the levels of neurometabolites that can indicate neuronal/axonal health, inflammation, membrane proliferation/turnover, and other cellular processes that are on-going post-injury. Previous analyses on this dataset revealed a significant division within the msTBI patient group, based on interhemispheric transfer time (IHTT); one subgroup of patients (TBI-normal) showed evidence of recovery over time, while the other showed continuing degeneration (TBI-slow). We combined dMRI with MRS to better understand WM disruptions in children with moderate-severe traumatic brain injury (msTBI). Tracts with poorer WM organization, as shown by lower FA and higher MD and RD, also showed lower N-acetylaspartate (NAA), a marker of neuronal and axonal health and myelination. We did not find lower NAA in tracts with normal WM organization. Choline, a marker of inflammation, membrane turnover, or gliosis, did not show such associations. We further show that multi-modal imaging can improve outcome prediction over a single modality, as well as over earlier cognitive function measures. Our results suggest that demyelination plays an important role in WM disruption post-injury in a subgroup of msTBI children and indicate the utility of multi-modal imaging.
Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Multimodal Imaging , Neuroimaging , Adolescent , Anisotropy , Aspartic Acid/analogs & derivatives , Aspartic Acid/analysis , Brain Damage, Chronic/diagnostic imaging , Brain Damage, Chronic/etiology , Brain Damage, Chronic/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Child , Choline/analysis , Cognition Disorders/diagnostic imaging , Cognition Disorders/etiology , Cognition Disorders/pathology , Demyelinating Diseases/diagnostic imaging , Demyelinating Diseases/etiology , Demyelinating Diseases/pathology , Female , Humans , Male , Neuroimaging/methods , White Matter/diagnostic imaging , White Matter/pathologyABSTRACT
PURPOSE: In diffusion MRI (dMRI), fractional anisotropy derived from the single-tensor model (FADTI ) is the most widely used metric to characterize white matter (WM) microarchitecture, despite known limitations in regions with crossing fibers. Due to time constraints when scanning patients in clinical settings, high angular resolution diffusion imaging acquisition protocols, often used to overcome these limitations, are still rare in clinical population studies. However, the tensor distribution function (TDF) may be used to model multiple underlying fibers by representing the diffusion profile as a probabilistic mixture of tensors. METHODS: We compared the ability of standard FADTI and TDF-derived FA (FATDF ), calculated from a range of dMRI angular resolutions (41, 30, 15, and 7 gradient directions), to profile WM deficits in 251 individuals from the Alzheimer's Disease Neuroimaging Initiative and to detect associations with 1) Alzheimer's disease diagnosis, 2) Clinical Dementia Rating scores, and 3) average hippocampal volume. RESULTS: Across angular resolutions and statistical tests, FATDF showed larger effect sizes than FADTI , particularly in regions preferentially affected by Alzheimer's disease, and was less susceptible to crossing fiber anomalies. CONCLUSION: The TDF "corrected" form of FA may be a more sensitive and accurate alternative to the commonly used FADTI , even in clinical quality dMRI data. Magn Reson Med 78:2322-2333, 2017. © 2017 International Society for Magnetic Resonance in Medicine.
Subject(s)
Alzheimer Disease/diagnostic imaging , Anisotropy , Diffusion Magnetic Resonance Imaging , Aged , Brain/diagnostic imaging , Brain Mapping , Cognition Disorders/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Humans , Image Processing, Computer-Assisted , Longitudinal Studies , Male , Memory , Memory Disorders/diagnostic imaging , Middle Aged , Reproducibility of Results , White Matter/diagnostic imagingABSTRACT
Brain Age Gap Estimation (BrainAGE) is an estimate of the gap between a person's chronological age (CA) and a measure of their brain's 'biological age' (BA). This metric is often used as a marker of accelerated aging, albeit with some caveats. Age prediction models trained on brain structural and functional MRI have been employed to derive BrainAGE biomarkers, for predicting the risk of neurodegeneration. While voxel-based and along-tract microstructural maps from diffusion MRI have been used to study brain aging, no studies have evaluated along-tract microstructure for computing BrainAGE. In this study, we train machine learning models to predict a person's age using along-tract microstructural profiles from diffusion tensor imaging. We were able to demonstrate differential aging patterns across different white matter bundles and microstructural measures. The novel Bundle Age Gap Estimation (BundleAGE) biomarker shows potential in quantifying risk factors for neurodegenerative diseases and aging, while incorporating finer scale information throughout white matter bundles.
ABSTRACT
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from 3D T1-weighted brain MRI scans. Here, we examine the value of adding occlusion sensitivity analysis (OSA) and gradient-weighted class activation mapping (Grad-CAM) to these models to make the results more interpretable. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI) or National Alzheimer's Coordinating Center (NACC), which assess people of North American, predominantly European ancestry, so we examine how well models trained on these data generalize to a new population dataset from India (NIMHANS cohort). We also evaluate the benefit of using a combined dataset to train the CNN models. Our experiments show feature localization consistent with knowledge of AD from other methods. OSA and Grad-CAM resolve features at different scales to help interpret diagnostic inferences made by CNNs.
ABSTRACT
Alzheimer's disease (AD) is characterized by cognitive decline and memory loss due to the abnormal accumulation of amyloid-beta (Aß) plaques and tau tangles in the brain; its onset and progression also depend on genetic factors such as the apolipoprotein E (APOE) genotype. Understanding how these factors affect the brain's neural pathways is important for early diagnostics and interventions. Tractometry is an advanced technique for 3D quantitative assessment of white matter tracts, localizing microstructural abnormalities in diseased populations in vivo. In this work, we applied BUAN (Bundle Analytics) tractometry to 3D diffusion MRI data from 730 participants in ADNI3 (phase 3 of the Alzheimer's Disease Neuroimaging Initiative; age range: 55-95 years, 349M/381F, 214 with mild cognitive impairment, 69 with AD, and 447 cognitively healthy controls). Using along-tract statistical analysis, we assessed the localized impact of amyloid, tau, and APOE genetic variants on the brain's neural pathways. BUAN quantifies microstructural properties of white matter tracts, supporting along-tract statistical analyses that identify factors associated with brain microstructure. We visualize the 3D profile of white matter tract associations with tau and amyloid burden in Alzheimer's disease; strong associations near the cortex may support models of disease propagation along neural pathways. Relative to the neutral genotype, APOE ϵ3/ϵ3, carriers of the AD-risk conferring APOE ϵ4 genotype show microstructural abnormalities, while carriers of the protective ϵ2 genotype also show subtle differences. Of all the microstructural metrics, mean diffusivity (MD) generally shows the strongest associations with AD pathology, followed by axial diffusivity (AxD) and radial diffusivity (RD), while fractional anisotropy (FA) is typically the least sensitive metric. Along-tract microstructural metrics are sensitive to tau and amyloid accumulation, showing the potential of diffusion MRI to track AD pathology and map its impact on neural pathways.
ABSTRACT
Reciprocal Copy Number Variants (CNVs) at the 16p11.2 locus confer high risk for autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDDs). Morphometric MRI studies have revealed large and pervasive volumetric alterations in carriers of a 16p11.2 deletion. However, the specific neuroanatomical mechanisms underlying such alterations, as well as their developmental trajectory, are still poorly understood. Here we explored differences in microstructural brain connectivity between 24 children carrying a 16p11.2 deletion and 66 typically developing (TD) children between 2 and 8 years of age. We found a large pervasive increase of intra-axonal volume widespread over a high number of white matter tracts. Such microstructural alterations in 16p11.2 deletion children were already present at an early age, and led to significant changes in the global efficiency and integration of brain networks mainly associated to language, motricity and socio-emotional behavior, although the widespread pattern made it unlikely to represent direct functional correlates. Our results shed light on the neuroanatomical basis of the previously reported increase of white matter volume, and align well with analogous evidence of altered axonal diameter and synaptic function in 16p11.2 mice models. We provide evidence of a prevalent mechanistic deviation from typical maturation of brain structural connectivity associated with a specific biological risk to develop ASD. Future work is warranted to determine how this deviation contributes to the emergence of symptoms observed in young children diagnosed with ASD and other NDDs.
Subject(s)
Autism Spectrum Disorder , White Matter , Child , Humans , Animals , Mice , Child, Preschool , Chromosome Deletion , Autism Spectrum Disorder/diagnostic imaging , Autism Spectrum Disorder/genetics , Brain/diagnostic imaging , White Matter/diagnostic imaging , Magnetic Resonance Imaging , Chromosomes, Human, Pair 16/genetics , DNA Copy Number VariationsABSTRACT
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer's disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer's Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort). We first benchmark our models by predicting 'brain age' - the task of predicting a person's chronological age from their MRI scan and proceed to AD classification. We also evaluate the benefit of using a 3D CycleGAN approach to harmonize the imaging datasets before training the CNN models. Our experiments show that classification performance improves after harmonization in most cases, as well as better performance for dMRI as input.
ABSTRACT
This study introduces the Deep Normative Tractometry (DNT) framework, that encodes the joint distribution of both macrostructural and microstructural profiles of the brain white matter tracts through a variational autoencoder (VAE). By training on data from healthy controls, DNT learns the normative distribution of tract data, and can delineate along-tract micro-and macro-structural abnormalities. Leveraging a large sample size via generative pre-training, we assess DNT's generalizability using transfer learning on data from an independent cohort acquired in India. Our findings demonstrate DNT's capacity to detect widespread diffusivity abnormalities along tracts in mild cognitive impairment and Alzheimer's disease, aligning closely with results from the Bundle Analytics (BUAN) tractometry pipeline. By incorporating tract geometry information, DNT may be able to distinguish disease-related abnormalities in anisotropy from tract macrostructure, and shows promise in enhancing fine-scale mapping and detection of white matter alterations in neurodegenerative conditions.
ABSTRACT
Introduction: Diffusion MRI is sensitive to the microstructural properties of brain tissues, and shows great promise in detecting the effects of degenerative diseases. However, many approaches analyze single measures averaged over regions of interest, without considering the underlying fiber geometry. Methods: Here, we propose a novel Macrostructure-Informed Normative Tractometry (MINT) framework, to investigate how white matter microstructure and macrostructure are jointly altered in mild cognitive impairment (MCI) and dementia. We compare MINT-derived metrics with univariate metrics from diffusion tensor imaging (DTI), to examine how fiber geometry may impact interpretation of microstructure. Results: In two multi-site cohorts from North America and India, we find consistent patterns of microstructural and macrostructural anomalies implicated in MCI and dementia; we also rank diffusion metrics' sensitivity to dementia. Discussion: We show that MINT, by jointly modeling tract shape and microstructure, has potential to disentangle and better interpret the effects of degenerative disease on the brain's neural pathways.
ABSTRACT
Age-related white matter (WM) microstructure maturation and decline occur throughout the human lifespan, complementing the process of gray matter development and degeneration. Here, we create normative lifespan reference curves for global and regional WM microstructure by harmonizing diffusion MRI (dMRI)-derived data from ten public datasets (N = 40,898 subjects; age: 3-95 years; 47.6% male). We tested three harmonization methods on regional diffusion tensor imaging (DTI) based fractional anisotropy (FA), a metric of WM microstructure, extracted using the ENIGMA-DTI pipeline. ComBat-GAM harmonization provided multi-study trajectories most consistent with known WM maturation peaks. Lifespan FA reference curves were validated with test-retest data and used to assess the effect of the ApoE4 risk factor for dementia in WM across the lifespan. We found significant associations between ApoE4 and FA in WM regions associated with neurodegenerative disease even in healthy individuals across the lifespan, with regional age-by-genotype interactions. Our lifespan reference curves and tools to harmonize new dMRI data to the curves are publicly available as eHarmonize (https://github.com/ahzhu/eharmonize).
ABSTRACT
Fiber orientation dispersion is one of the fundamental features that can be estimated from diffusion magnetic resonance imaging (dMRI) of the brain. Several approaches have been proposed to estimate dispersion from single- and multi-shell dMRI acquisitions. Here, we derive solutions to bring these proposed methods to a standard orientation dispersion index (ODI) with the goal of making them comparable across different dMRI acquisitions. To illustrate the utility of the measures in studying brain aging, we further examined the age-dependent trajectory of the different single- and multi-shell ODI estimates in the white matter across the lifespan.Clinical Relevance- This work computes metrics of brain microstructure that can be adapted for large neuroimaging initiatives that aim to study the brain's development and aging, and to identify deviations that may serve as biomarkers of brain disease.
Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/pathology , White Matter/diagnostic imaging , Neuroimaging/methodsABSTRACT
We present BundleCleaner, an unsupervised multi-step framework that can filter, denoise and subsample bundles derived from diffusion MRI-based whole-brain tractography. Our approach considers both the global bundle structure and local streamline-wise features. We apply BundleCleaner to bundles generated from single-shell diffusion MRI data in an independent clinical sample of older adults from India using probabilistic tractography and the resulting 'cleaned' bundles can better align with the atlas bundles with reduced overreach. In a downstream tractometry analysis, we show that the cleaned bundles, represented with less than 20% of the original set of points, can robustly localize along-tract microstructural differences between 32 healthy controls and 34 participants with Alzheimer's disease ranging in age from 55 to 84 years old. Our approach can help reduce memory burden and improving computational efficiency when working with tractography data, and shows promise for large-scale multi-site tractometry.
ABSTRACT
Diffusion MRI (dMRI) can be used to probe microstructural properties of brain tissue and holds great promise as a means to non-invasively map Alzheimer's disease (AD) pathology. Few studies have evaluated multi-shell dMRI models, such as neurite orientation dispersion and density imaging (NODDI) and mean apparent propagator (MAP)-MRI, in cortical gray matter where many of the earliest histopathological changes occur in AD. Here, we investigated the relationship between CSF pTau181 and Aß1-42 burden and regional cortical NODDI and MAP-MRI indices in 46 cognitively unimpaired individuals, 18 with mild cognitive impairment, and two with dementia (mean age: 71.8±6.2 years) from the Alzheimer's Disease Neuroimaging Initiative. We compared findings to more conventional cortical thickness measures. Lower CSF Aß1-42 and higher pTau181 were associated with cortical dMRI measures reflecting less hindered or restricted diffusion and greater diffusivity. Cortical dMRI measures were more widely associated with Aß1-42 than pTau181 and better distinguished Aß+ from Aß- participants than pTau+/- participants. Conversely, cortical thickness was more tightly linked with pTau181. dMRI associations mediated the relationship between CSF markers and delayed logical memory performance, commonly impaired in early AD. dMRI measures sensitive to early AD pathogenesis and microstructural damage may elucidate mechanisms underlying cognitive decline.