Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Horm Behav ; 63(4): 646-58, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23380162

ABSTRACT

Amygdala dysfunction and abnormal fear and stress reactivity are common features of several developmental neuropsychiatric disorders. Yet, little is known about the exact role the amygdala plays in the development of threat detection and emotional modulation. The current study examined the effects of neonatal amygdala lesions on defensive, emotional, and neuroendocrine reactivity of infant rhesus monkeys reared with their mothers in large species-typical social groups. Monkeys received either bilateral MRI-guided ibotenic acid amygdala (Neo-A; n = 16) or sham (Neo-C; n = 12) lesions at 24.8 ± 1.2 days of age, or served as behavioral control (Neo-BC; n = 3). Defensive and emotional responses were assessed using the Human Intruder paradigm as infants and as juveniles (2.5 and 12 months of age, respectively), whereas neuroendocrine reactivity was only examined during the juvenile period. As infants, Neo-A animals expressed similar levels of freezing and hostile behaviors as compared to controls, whereas during the juvenile period Neo-A animals expressed significantly less freezing compared to controls. Interestingly, the sex of the infant modulated the behavioral effects of neonatal amygdalectomy, leading to different patterns of behavior depending on the sex and lesion status of the infant. Unlike controls, Neo-A infants did not modulate their behavioral responses based on the salience of the threat. The impact of neonatal amygdalectomy increased with age, such that Neo-A juveniles exhibited fewer emotional behaviors and increased cortisol response to the stressor as compared to controls. These data indicate that the amygdala plays a critical role in the development of both emotional and neuroendocrine reactivity as well as the expression of sexually dimorphic emotional expression.


Subject(s)
Agonistic Behavior/physiology , Amygdala/physiology , Emotions/physiology , Neurosecretory Systems/physiology , Adrenocorticotropic Hormone/blood , Aging/psychology , Animals , Exploratory Behavior/physiology , Fear/psychology , Female , Humans , Hypothalamo-Hypophyseal System/physiology , Image Processing, Computer-Assisted , Linear Models , Macaca mulatta , Magnetic Resonance Imaging , Male , Sex Characteristics , Social Isolation , Vocalization, Animal/physiology , Yawning/physiology
SELECTION OF CITATIONS
SEARCH DETAIL