Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Langmuir ; 40(23): 12159-12166, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38815139

ABSTRACT

Microbial biological control agents are believed to be a potential alternative to classical fertilizers to increase the sustainability of agriculture. In this work, the formulation of Trichoderma afroharzianum T22 (T22) spores with carboxymethyl cellulose (CMC) and Pluronic F-127 (PF-127) solutions was investigated. Rheological and microscopical analysis were performed on T22-based systems at three different CMC/PF-127 concentrations, showing that polymer aggregates tend to surround T22 spores, without viscosity, and the viscoelastic properties of the formulations were affected. Contact angle measurements showed the ability of PF-127 to increase the wettability of the systems, and the effect of the formulations on the viability of the spores was evaluated. The viability of the spores was higher over 21 days in all the formulations, compared to the control in water, at 4 and 25 °C. Finally, the effectiveness of the formulations on sweet basil was estimated by greenhouse tests. The results revealed a beneficial effect of the CMC/PF-127 mixture, but none on the formulation with T22. The data show the potential of CMC/PF-127 mixtures for the future design of microorganism-based formulations.


Subject(s)
Carboxymethylcellulose Sodium , Poloxamer , Trichoderma , Poloxamer/chemistry , Trichoderma/chemistry , Carboxymethylcellulose Sodium/chemistry , Agriculture , Spores, Fungal/chemistry
2.
Heliyon ; 10(6): e28351, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545179

ABSTRACT

Canine coronavirus (CCoV) can produce a self-limited enteric disease in dogs but, because of notable biological plasticity of coronaviruses (CoVs), numerous mutations as well as recombination events happen leading to the emergence of variants often more dangerous for both animals and humans. Indeed, the emergence of new canine-feline recombinant alphacoronaviruses, recently isolated from humans, highlight the cross-species transmission potential of CoVs. Consequently, new effective antiviral agents are required to treat CoV infections. Among the candidates for the development of drugs against CoVs infection, fungal secondary metabolites (SMs) represent an important source to investigate. Herein, antiviral ability of 6-pentyl-α-pyrone (6 PP), a SM obtained by Trichoderma atroviride, was assessed against CCoV. During in vitro infection, nontoxic concentration of 6 PP significantly increased cell viability, reduced morphological signs of cell death, and inhibited viral replication of CCoV. In addition, we found a noticeable lessening in the expression of aryl hydrocarbon receptor (AhR), a strategic modulator of CoVs infection. Overall, due to the variety of their chemical and biological properties, fungal SMs can decrease the replication of CoVs, thus identifying a suitable in vitro model to screen for potential drugs against CoVs, using a reference strain of CCoV (S/378), non-pathogenic for humans.

3.
J Fungi (Basel) ; 10(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38392769

ABSTRACT

The use of biostimulants and biofilms in agriculture is constantly increasing, as they may support plant growth and productivity by improving nutrient absorption, increasing stress resilience and providing sustainable alternatives to chemical management practices. In this work, two commercial products based on Trichoderma afroharzianum strain T22 (Trianum P®) and a seaweed extract from Ascophyllum nodosum (Phylgreen®) were tested on industrial tomato plants (Solanum lycopersicum var. Heinz 5108F1) in a field experiment. The effects of single and combined applications of microbial and plant biostimulants on plants grown on two different biodegradable mulch films were evaluated in terms of changes in the metabolic profiles of leaves and berries. Untargeted metabolomics analysis by LC-MS Q-TOF revealed the presence of several significantly accumulated compounds, depending on the biostimulant treatment, the mulch biofilm and the tissue examined. Among the differential compounds identified, some metabolites, belonging to alkaloids, flavonoids and their derivatives, were more abundant in tomato berries and leaves upon application of Trichoderma-based product. Interestingly, the biostimulants, when applied alone, similarly affected the plant metabolome compared to control or combined treatments, while significant differences were observed according to the mulch biofilm applied.

SELECTION OF CITATIONS
SEARCH DETAIL