Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Nat Immunol ; 23(2): 159-164, 2022 02.
Article in English | MEDLINE | ID: mdl-34667308

ABSTRACT

SARS-CoV-2 infections display tremendous interindividual variability, ranging from asymptomatic infections to life-threatening disease. Inborn errors of, and autoantibodies directed against, type I interferons (IFNs) account for about 20% of critical COVID-19 cases among SARS-CoV-2-infected individuals. By contrast, the genetic and immunological determinants of resistance to infection per se remain unknown. Following the discovery that autosomal recessive deficiency in the DARC chemokine receptor confers resistance to Plasmodium vivax, autosomal recessive deficiencies of chemokine receptor 5 (CCR5) and the enzyme FUT2 were shown to underlie resistance to HIV-1 and noroviruses, respectively. Along the same lines, we propose a strategy for identifying, recruiting, and genetically analyzing individuals who are naturally resistant to SARS-CoV-2 infection.


Subject(s)
COVID-19/genetics , Disease Resistance/genetics , Genetic Predisposition to Disease , SARS-CoV-2/pathogenicity , Animals , COVID-19/immunology , COVID-19/virology , Genetic Heterogeneity , Host-Pathogen Interactions , Humans , Phenotype , Protective Factors , Risk Assessment , Risk Factors , SARS-CoV-2/immunology
4.
Immunol Rev ; 322(1): 28-52, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38069482

ABSTRACT

Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.


Subject(s)
Immunologic Deficiency Syndromes , Mycoses , Humans , Genomics , Fungi , Autoantibodies
5.
J Proteome Res ; 23(1): 52-70, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38048423

ABSTRACT

Many COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437).


Subject(s)
COVID-19 , Proteomics , Male , Female , Humans , Lung , Vital Capacity , Chronic Disease , Lipids
6.
Crit Care ; 28(1): 63, 2024 02 27.
Article in English | MEDLINE | ID: mdl-38414082

ABSTRACT

RATIONALE: Acute respiratory distress syndrome (ARDS) is a life-threatening critical care syndrome commonly associated with infections such as COVID-19, influenza, and bacterial pneumonia. Ongoing research aims to improve our understanding of ARDS, including its molecular mechanisms, individualized treatment options, and potential interventions to reduce inflammation and promote lung repair. OBJECTIVE: To map and compare metabolic phenotypes of different infectious causes of ARDS to better understand the metabolic pathways involved in the underlying pathogenesis. METHODS: We analyzed metabolic phenotypes of 3 ARDS cohorts caused by COVID-19, H1N1 influenza, and bacterial pneumonia compared to non-ARDS COVID-19-infected patients and ICU-ventilated controls. Targeted metabolomics was performed on plasma samples from a total of 150 patients using quantitative LC-MS/MS and DI-MS/MS analytical platforms. RESULTS: Distinct metabolic phenotypes were detected between different infectious causes of ARDS. There were metabolomics differences between ARDSs associated with COVID-19 and H1N1, which include metabolic pathways involving taurine and hypotaurine, pyruvate, TCA cycle metabolites, lysine, and glycerophospholipids. ARDSs associated with bacterial pneumonia and COVID-19 differed in the metabolism of D-glutamine and D-glutamate, arginine, proline, histidine, and pyruvate. The metabolic profile of COVID-19 ARDS (C19/A) patients admitted to the ICU differed from COVID-19 pneumonia (C19/P) patients who were not admitted to the ICU in metabolisms of phenylalanine, tryptophan, lysine, and tyrosine. Metabolomics analysis revealed significant differences between C19/A, H1N1/A, and PNA/A vs ICU-ventilated controls, reflecting potentially different disease mechanisms. CONCLUSION: Different metabolic phenotypes characterize ARDS associated with different viral and bacterial infections.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Bacterial , Respiratory Distress Syndrome , Humans , COVID-19/complications , Influenza, Human/complications , Influenza, Human/therapy , Tandem Mass Spectrometry , Chromatography, Liquid , Lysine , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/therapy , Pyruvates
7.
Ann Intern Med ; 176(1): 67-76, 2023 01.
Article in English | MEDLINE | ID: mdl-36508736

ABSTRACT

BACKGROUND: Monkeypox, a viral zoonotic disease, is causing a global outbreak outside of endemic areas. OBJECTIVE: To characterize the outbreak of monkeypox in Montréal, the first large outbreak in North America. DESIGN: Epidemiologic and laboratory surveillance data and a phylogenomic analysis were used to describe and place the outbreak in a global context. SETTING: Montréal, Canada. PATIENTS: Probable or confirmed cases of monkeypox. MEASUREMENTS: Epidemiologic, clinical, and demographic data were aggregated. Whole-genome sequencing and phylogenetic analysis were performed for a set of outbreak sequences. The public health response and its evolution are described. RESULTS: Up to 18 October 2022, a total of 402 cases of monkeypox were reported mostly among men who have sex with men (MSM), most of which were suspected to be acquired through sexual contact. All monkeypox genomes nested within the B.1 lineage. Montréal Public Health worked closely with the affected communities to control the outbreak, becoming the first jurisdiction to offer 1 dose of the Modified Vaccinia Ankara-Bavarian Nordic vaccine as preexposure prophylaxis (PrEP) to those at risk in early June 2022. Two peaks of cases were seen in early June and July (43 and 44 cases per week, respectively) followed by a decline toward near resolution of the outbreak in October. Reasons for the biphasic peak are not fully elucidated but may represent the tempo of vaccination and/or several factors related to transmission dynamics and case ascertainment. LIMITATIONS: Clinical data are self-reported. Limited divergence among sequences limited genomic epidemiologic conclusions. CONCLUSION: A large outbreak of monkeypox occurred in Montréal, primarily among MSM. Successful control of the outbreak rested on early and sustained engagement with the affected communities and rapid offer of PrEP vaccination to at-risk persons. PRIMARY FUNDING SOURCE: None.


Subject(s)
Mpox (monkeypox) , Sexual and Gender Minorities , Male , Humans , Phylogeny , Homosexuality, Male , Mpox (monkeypox)/epidemiology , Disease Outbreaks , North America/epidemiology , Self Report
8.
J Clin Immunol ; 43(6): 1272-1277, 2023 08.
Article in English | MEDLINE | ID: mdl-37052865

ABSTRACT

Wiskott-Aldrich syndrome is an X-linked recessive primary immune-deficiency disorder very rarely reported from black African children. A 12-year old boy with recurrent sinopulmonary and diarrheal infections, eczema, thrombocytopenia, and low platelet volume was found by whole genome sequencing to harbor a predicted pathogenic c.1205dupC (p.Pro403Alafs*92) variant of a mutation in the WAS gene - confirming the diagnosis. This case report summarizes his presentation and management and provides a useful summary of the diagnosis and the responsible novel genetic mutation.


Subject(s)
Eczema , Thrombocytopenia , Wiskott-Aldrich Syndrome , Male , Child , Humans , Wiskott-Aldrich Syndrome/diagnosis , Wiskott-Aldrich Syndrome/genetics , Wiskott-Aldrich Syndrome Protein/genetics , Mutation/genetics
9.
J Clin Immunol ; 43(8): 2011-2021, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37695435

ABSTRACT

Autosomal recessive tyrosine kinase 2 (TYK2) deficiency is characterized by susceptibility to mycobacterial and viral infections. Here, we report a 4-year-old female with severe respiratory viral infections, EBV-driven Burkitt-like lymphoma, and infection with the neurotropic Jamestown Canyon virus. A novel, homozygous c.745C > T (p.R249*) variant was found in TYK2. The deleterious effects of the TYK2 lesion were confirmed by immunoblotting; by evaluating functional responses to IFN-α/ß, IL-10, and IL-23; and by assessing its scaffolding effect on the cell surface expression of cytokine receptor subunits. The effects of the mutation could not be pharmacologically circumvented in vitro, suggesting that alternative modalities, such as hematopoietic stem cell transplantation or gene therapy, may be needed. We characterize the first patient from Canada with a novel homozygous mutation in TYK2.


Subject(s)
Encephalitis, Viral , Lymphoma , Virus Diseases , Female , Humans , Child, Preschool , Herpesvirus 4, Human , TYK2 Kinase/genetics , Mutation/genetics
10.
Nature ; 544(7651): 493-497, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28424516

ABSTRACT

Cancer cells elude anti-tumour immunity through multiple mechanisms, including upregulated expression of ligands for inhibitory immune checkpoint receptors. Phagocytosis by macrophages plays a critical role in cancer control. Therapeutic blockade of signal regulatory protein (SIRP)-α, an inhibitory receptor on macrophages, or of its ligand CD47 expressed on tumour cells, improves tumour cell elimination in vitro and in vivo, suggesting that blockade of the SIRPα-CD47 checkpoint could be useful in treating human cancer. However, the pro-phagocytic receptor(s) responsible for tumour cell phagocytosis is(are) largely unknown. Here we find that macrophages are much more efficient at phagocytosis of haematopoietic tumour cells, compared with non-haematopoietic tumour cells, in response to SIRPα-CD47 blockade. Using a mouse lacking the signalling lymphocytic activation molecule (SLAM) family of homotypic haematopoietic cell-specific receptors, we determined that phagocytosis of haematopoietic tumour cells during SIRPα-CD47 blockade was strictly dependent on SLAM family receptors in vitro and in vivo. In both mouse and human cells, this function required a single SLAM family member, SLAMF7 (also known as CRACC, CS1, CD319), expressed on macrophages and tumour cell targets. In contrast to most SLAM receptor functions, SLAMF7-mediated phagocytosis was independent of signalling lymphocyte activation molecule-associated protein (SAP) adaptors. Instead, it depended on the ability of SLAMF7 to interact with integrin Mac-1 (refs 18, 19, 20) and utilize signals involving immunoreceptor tyrosine-based activation motifs. These findings elucidate the mechanism by which macrophages engulf and destroy haematopoietic tumour cells. They also reveal a novel SAP adaptor-independent function for a SLAM receptor. Lastly, they suggest that patients with tumours expressing SLAMF7 are more likely to respond to SIRPα-CD47 blockade therapy.


Subject(s)
Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Macrophage-1 Antigen/metabolism , Macrophages/immunology , Phagocytosis/immunology , Signaling Lymphocytic Activation Molecule Family/metabolism , Actins/metabolism , Animals , Antigens, Differentiation/immunology , Antigens, Differentiation/metabolism , CD47 Antigen/immunology , CD47 Antigen/metabolism , Female , Hematologic Neoplasms/drug therapy , Humans , Macrophages/cytology , Macrophages/metabolism , Male , Mice , Mice, Knockout , Receptors, Immunologic/antagonists & inhibitors , Receptors, Immunologic/immunology , Receptors, Immunologic/metabolism , Signaling Lymphocytic Activation Molecule Family/deficiency
11.
J Proteome Res ; 21(4): 975-992, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35143212

ABSTRACT

The host response to COVID-19 pathophysiology over the first few days of infection remains largely unclear, especially the mechanisms in the blood compartment. We report on a longitudinal proteomic analysis of acute-phase COVID-19 patients, for which we used blood plasma, multiple reaction monitoring with internal standards, and data-independent acquisition. We measured samples on admission for 49 patients, of which 21 had additional samples on days 2, 4, 7, and 14 after admission. We also measured 30 externally obtained samples from healthy individuals for comparison at baseline. The 31 proteins differentiated in abundance between acute COVID-19 patients and healthy controls belonged to acute inflammatory response, complement activation, regulation of inflammatory response, and regulation of protein activation cascade. The longitudinal analysis showed distinct profiles revealing increased levels of multiple lipid-associated functions, a rapid decrease followed by recovery for complement activation, humoral immune response, and acute inflammatory response-related proteins, and level fluctuation in the regulation of smooth muscle cell proliferation, secretory mechanisms, and platelet degranulation. Three proteins were differentiated between survivors and nonsurvivors. Finally, increased levels of fructose-bisphosphate aldolase B were determined in patients with exposure to angiotensin receptor blockers versus decreased levels in those exposed to angiotensin-converting enzyme inhibitors. Data are available via ProteomeXchange PXD029437.


Subject(s)
COVID-19 , Biomarkers , Humans , Plasma , Proteomics , Retrospective Studies
12.
Crit Care Med ; 50(9): 1306-1317, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35607951

ABSTRACT

OBJECTIVES: To determine whether angiotensin receptor blockers (ARBs) or angiotensin-converting enzyme (ACE) inhibitors are associated with improved outcomes in hospitalized patients with COVID-19 according to sex and to report sex-related differences in renin-angiotensin system (RAS) components. DESIGN: Prospective observational cohort study comparing the effects of ARB or ACE inhibitors versus no ARBs or ACE inhibitors in males versus females. Severe acute respiratory syndrome coronavirus 2 downregulates ACE-2, potentially increasing angiotensin II (a pro-inflammatory vasoconstrictor). Sex-based differences in RAS dysregulation may explain sex-based differences in responses to ARBs because the ACE2 gene is on the X chromosome. We recorded baseline characteristics, comorbidities, prehospital ARBs or ACE inhibitor treatment, use of organ support and mortality, and measured RAS components at admission and days 2, 4, 7, and 14 in a subgroup ( n = 46), recorded d -dimer ( n = 967), comparing males with females. SETTING: ARBs CORONA I is a multicenter Canadian observational cohort of patients hospitalized with acute COVID-19. This analysis includes patients admitted to 10 large urban hospitals across the four most populated provinces. PATIENTS: One-thousand six-hundred eighty-six patients with polymerase chain reaction-confirmed COVID-19 (February 2020 to March 2021) for acute COVID-19 illness were included. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Males on ARBs before admission had decreased use of ventilation (adjusted odds ratio [aOR] = 0.52; p = 0.007) and vasopressors (aOR = 0.55; p = 0.011) compared with males not on ARBs or ACE inhibitors. No significant effects were observed in females for these outcomes. The test for interaction was significant for use of ventilation ( p = 0.006) and vasopressors ( p = 0.044) indicating significantly different responses to ARBs according to sex. Males had significantly higher plasma ACE-1 at baseline and angiotensin II at day 7 and 14 than females. CONCLUSIONS: ARBs use was associated with less ventilation and vasopressors in males but not females. Sex-based differences in RAS dysregulation may contribute to sex-based differences in outcomes and responses to ARBs in COVID-19.


Subject(s)
COVID-19 Drug Treatment , Hypertension , Angiotensin II/pharmacology , Angiotensin Receptor Antagonists/pharmacology , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Canada , Female , Humans , Male , Prospective Studies , Renin-Angiotensin System/drug effects , Renin-Angiotensin System/physiology , Sex Characteristics
13.
Curr Opin Pediatr ; 34(6): 616-624, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36081357

ABSTRACT

PURPOSE OF REVIEW: This review provides readers with examples of refractory infections due to inborn errors of immunity, highlighting how they may be successfully treated by deducing and targeting the underlying immunodeficiency. RECENT FINDINGS: The use of host-directed immunotherapy to treat infectious disease in inborn errors of immunity is currently limited but growing. Different strategies include depleting the cellular reservoir for pathogens with restricted cell-tropism; augmenting the diminished effector response; and restoring molecular equipoise. The immunotherapies illustrated are existing drugs that have been re-purposed and rationally used, depending on the molecular or cellular impact of the mutation. As more biologic response modifiers and molecular targeted therapies are developed for other indications, they open the avenues for their use in inborn errors of immunity. Conversely, as more molecular pathways underlying defective immune responses and refractory infections are elucidated, they lend themselves to tractability with these emerging therapies. SUMMARY: Infections that fail appropriate antimicrobial therapy are a harbinger of underlying inborn errors of immunity. Dissecting the mechanism by which the immune system fails provides opportunities to target the host response and make it succeed.


Subject(s)
Anti-Infective Agents , Communicable Diseases , Immunologic Deficiency Syndromes , Humans , Communicable Diseases/therapy , Immunotherapy , Immunologic Factors
14.
Skin Therapy Lett ; 27(2): 1-5, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35385630

ABSTRACT

Warts, Hypogammaglobulinemia, Infections and Myelokathexis (WHIM) is a primary immunodeficiency syndrome. Patients with WHIM syndrome are more susceptible to human papillomavirus (HPV) infections and commonly present to a dermatologist with recalcitrant to treatment warts. Other cardinal features of WHIM syndrome include recurrent sinopulmonary bacterial infections, neutropenia/lymphopenia, low levels of immunoglobulins (IgG, IgA, IgM) and myelokathexis. Research demonstrated that truncating gain-of-function mutations of the C-X-C chemokine receptor type 4 gene (CXCR4) are responsible for this disease. Plerixafor, a specific small molecule antagonist of CXCR4, is currently used for peripheral blood hematopoietic stem cell (HSC) mobilization in stem cell transplant recipients. It has recently shown promise for the treatment of WHIM syndrome in phase I/II clinical trials. In this paper we review the emerging patient clinical data for this medication and highlight the role of CXCR4 in other important skin diseases including keratinocyte carcinomas, psoriasis and cutaneous T-cell lymphoma.


Subject(s)
Agammaglobulinemia , Heterocyclic Compounds , Neutropenia , Papillomavirus Infections , Warts , Agammaglobulinemia/drug therapy , Benzylamines , Cyclams , Fantasy , Hematopoietic Stem Cell Mobilization , Heterocyclic Compounds/pharmacology , Heterocyclic Compounds/therapeutic use , Humans , Neutropenia/drug therapy , Primary Immunodeficiency Diseases , Receptors, CXCR4/therapeutic use , Syndrome , Warts/drug therapy , Warts/pathology
15.
J Clin Immunol ; 41(2): 458-469, 2021 02.
Article in English | MEDLINE | ID: mdl-33409867

ABSTRACT

PURPOSE: To evaluate the safety and tolerability of subcutaneous IgPro20 (Hizentra®, CSL Behring, King of Prussia, PA, USA) administered at high infusion parameters (> 25 mL and > 25 mL/h per injection site) in patients with primary immunodeficiency. METHODS: The Hizentra® Label Optimization (HILO) study was an open-label, parallel-arm, non-randomized study (NCT03033745) of IgPro20 using a forced upward titration design for infusion parameters. Patients experienced with pump-assisted IgPro20 infusions received weekly IgPro20 infusions at a stable dose in the Pump-Assisted Volume Cohort (N = 15; 25-50 mL per injection site) and in the Pump-Assisted Flow Rate Cohort (N = 18; 25-100 mL/h per injection site). Responder rates (percentage of patients who successfully completed ≥ 75% of planned infusions), safety outcomes, and serum immunoglobulin G (IgG) trough levels were evaluated. RESULTS: Responder rates were 86.7% (13/15, 25 mL) and 73.3% (11/15, 40 and 50 mL) in the Volume Cohort, and 77.8% (14/18, 25 and 50 mL/h), 66.7% (12/18, 75 mL/h), and 61.1% (11/18, 100 mL/h) in the Flow Rate Cohort. Infusion compliance was ≥ 90% in all patients in the Volume Cohort and in 83.3% of patients in the Flow Rate Cohort. The number of injection sites (Volume Cohort) and the infusion duration (Flow Rate Cohort) decreased with increasing infusion parameters. The rate of treatment-emergent adverse events per infusion was low (0.138 [Volume Cohort] and 0.216 [Flow Rate Cohort]). Serum IgG levels remained stable during the study. CONCLUSION: Pump-assisted IgPro20 infusions are feasible at 50 mL and 100 mL/h per injection site in treatment-experienced patients, which may result in fewer injection sites and shorter infusion times. TRIAL REGISTRATION: NCT03033745 ; registered January 27, 2017.


Subject(s)
Immunoglobulin G/administration & dosage , Immunoglobulin G/adverse effects , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/therapy , Primary Immunodeficiency Diseases/immunology , Primary Immunodeficiency Diseases/therapy , Adult , Aged , Cohort Studies , Female , Humans , Immunoglobulin G/immunology , Immunoglobulins, Intravenous/adverse effects , Infusion Pumps/adverse effects , Infusions, Subcutaneous/adverse effects , Male , Middle Aged , Young Adult
16.
J Clin Immunol ; 41(1): 66-75, 2021 01.
Article in English | MEDLINE | ID: mdl-33025378

ABSTRACT

PURPOSE: To evaluate the safety and tolerability of IgPro20 manual push (also known as rapid push) infusions at flow rates of 0.5-2.0 mL/min. METHODS: Patients with primary immunodeficiency (PID) with previous experience administering IgPro20 (Hizentra®, CSL Behring, King of Prussia, PA, USA) were enrolled in the Hizentra® Label Optimization (HILO) study (NCT03033745) and assigned to Pump-assisted Volume Cohort, Pump-assisted Flow Rate Cohort, or Manual Push Flow Rate Cohort; this report describes the latter. Patients administered IgPro20 via manual push at 0.5, 1.0, and 2.0 mL/min/site for 4 weeks each. Responder rates (percentage of patients who completed a predefined minimum number of infusions), safety outcomes, and serum immunoglobulin G (IgG) trough levels were evaluated. RESULTS: Sixteen patients were treated; 2 patients (12.5%) discontinued at the 1.0-mL/min level (unrelated to treatment). Responder rates were 100%, 100%, and 87.5% at 0.5-, 1.0-, and 2.0-mL/min flow rates, respectively. Mean weekly infusion duration decreased from 103-108 to 23-28 min at the 0.5- and 2.0-mL/min flow rates, respectively. Rates of treatment-related treatment-emergent adverse events (TEAEs) per infusion were 0.023, 0.082, and 0.025 for the 0.5-, 1.0-, and 2.0-mL/min flow rates, respectively. Most TEAEs were mild local reactions and tolerability (infusions without severe local reactions/total infusions) was 100% across flow rate levels. Serum IgG levels (mean [SD]) were similar at study start (9.36 [2.53] g/L) and end (9.58 [2.12] g/L). CONCLUSIONS: Subcutaneous IgPro20 manual push infusions at flow rates up to 2.0 mL/min were well tolerated and reduced infusion time in treatment-experienced patients with PID. TRIAL REGISTRATION: NCT03033745.


Subject(s)
Immunoglobulin G/administration & dosage , Primary Immunodeficiency Diseases/drug therapy , Adolescent , Adult , Aged , Disease Management , Drug Monitoring , Female , Humans , Immunoglobulin G/adverse effects , Infusion Pumps , Infusions, Subcutaneous , Injections, Subcutaneous , Male , Middle Aged , Patient Compliance , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/etiology , Treatment Outcome , Young Adult
17.
J Allergy Clin Immunol ; 146(3): 479-491.e5, 2020 09.
Article in English | MEDLINE | ID: mdl-32896308

ABSTRACT

The neonatal fragment crystallizable (Fc) receptor (FcRn) functions as a recycling mechanism to prevent degradation and extend the half-life of IgG and albumin in the circulation. Several FcRn inhibitors selectively targeting IgG recycling are now moving rapidly toward clinical practice in neurology and hematology. These molecules accelerate the destruction of IgG, reducing pathogenic IgG and IgG immune complexes, with no anticipated effects on IgA, IgM, IgE, complement, plasma cells, B cells, or other cells of the innate or adaptive immune systems. FcRn inhibitors have potential for future use in a much wider variety of antibody-mediated autoimmune diseases. Given the imminent clinical use, potential for broader utility, and novel mechanism of action of FcRn inhibitors, here we review data from 4 main sources: (a) currently available activity, safety, and mechanism-of-action data from clinical trials of FcRn inhibitors; (b) other procedures and treatments that also remove IgG (plasma donation, plasma exchange, immunoadsorption); (c) diseases resulting in loss of IgG; and (d) primary immunodeficiencies with potential mechanistic similarities to those induced by FcRn inhibitors. These data have been evaluated to provide practical considerations for the assessment, monitoring, and reduction of any potential infection risk associated with FcRn inhibition, in addition to highlighting areas for future research.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases/therapy , Histocompatibility Antigens Class I/metabolism , Receptors, Fc/metabolism , Antibodies, Blocking , Autoantibodies/metabolism , Drug-Related Side Effects and Adverse Reactions , Histocompatibility Antigens Class I/immunology , Humans , Immunomodulation , Molecular Targeted Therapy , Practice Guidelines as Topic , Receptors, Fc/immunology , Risk , Risk Assessment
18.
J Cutan Pathol ; 47(2): 166-170, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31469433

ABSTRACT

Caspase Recruitment Domain Family Member 9 (CARD9) is an adaptor molecule that drives antifungal activity of macrophages and neutrophils in the skin. Autosomal recessive loss-of-function mutations in CARD9 confer increased susceptibility to invasive disease with select fungi in non-immunosuppressed patients. We report on a patient with X-linked ichthyosis complicated by chronic cutaneous invasive dermatophyte infection. We identified a previously reported c.271T>C (p.Y91H) mutation and a novel intronic c.1269+18G>A mutation in CARD9 underlying recurrent deep dermatophytosis in this patient despite various antifungals for over three decades. Our case highlights susceptibility to invasive dermatophytosis related to autosomal recessive CARD9 deficiency and illustrates the range of CARD9 mutations to be pursued in immunocompetent patients with unexplained deep dermatophyte infections. Further studies are needed to define the best therapeutic regimen.


Subject(s)
CARD Signaling Adaptor Proteins/genetics , Candidiasis, Chronic Mucocutaneous , Genetic Diseases, X-Linked , Loss of Function Mutation , Tinea Capitis , Adult , Candidiasis, Chronic Mucocutaneous/genetics , Candidiasis, Chronic Mucocutaneous/pathology , Chronic Disease , Genetic Diseases, X-Linked/genetics , Genetic Diseases, X-Linked/pathology , Humans , Ichthyosis/genetics , Ichthyosis/pathology , Male , Tinea Capitis/genetics , Tinea Capitis/pathology
19.
Emerg Infect Dis ; 25(4): 838-840, 2019 04.
Article in English | MEDLINE | ID: mdl-30882323

ABSTRACT

We identified an influenza B isolate harboring a Gly407Ser neuraminidase substitution in an immunocompromised patient in Canada before antiviral therapy. This mutation mediated reduced susceptibility to oseltamivir, zanamivir, and peramivir, most likely by preventing interaction with the catalytic Arg374 residue. The potential emergence of such variants emphasizes the need for new antivirals.


Subject(s)
Antiviral Agents/pharmacology , Drug Resistance, Viral , Influenza B virus/drug effects , Influenza B virus/enzymology , Influenza, Human/epidemiology , Neuraminidase/antagonists & inhibitors , Viral Proteins/antagonists & inhibitors , Antiviral Agents/therapeutic use , Canada/epidemiology , Dose-Response Relationship, Drug , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Female , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Humans , Influenza B virus/classification , Influenza B virus/genetics , Influenza, Human/drug therapy , Influenza, Human/virology , Microbial Sensitivity Tests , Middle Aged , Mutation , Neuraminidase/genetics , Sequence Analysis, DNA , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL