Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 213
Filter
Add more filters

Publication year range
1.
Br J Haematol ; 205(3): 1147-1158, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38977270

ABSTRACT

The mechanisms of action of l-glutamine for the treatment of sickle cell disease (SCD) are not well understood and there are no validated clinical biomarkers to assess response. We conducted a three-week, dose-ascending trial of glutamine and measured the pharmacokinetic (PK) exposure parameters, peak concentration (Cmax) and area under the curve (AUC). We used a panel of biomarkers to investigate the pharmacodynamics (PD) of glutamine and studied PK-PD relationships. There was no plasma accumulation of glutamine, glutamate, arginine or other amino acids over time, but modestly improved arginine bioavailability was observed. In standard analysis by dose levels over time, there were no measurable effects on blood counts, viscosity, ektacytometry or reactive oxygen species (ROS). In PK-PD analysis, however, higher glutamine exposure (Cmax or AUC) was associated with increased whole blood viscosity and cellular dehydration, yet also with higher haemoglobin concentration, increased haematocrit-to-viscosity ratio, decreased reticulocyte ROS, improved RBC deformability and decreased point of sickling. This novel PK-PD analysis identified biomarkers reflecting the positive and negative effects of glutamine, helping to elucidate its mechanisms of action in SCD. PK-optimized dosing to achieve glutamine exposure (AUC or Cmax) that is associated with salutary biological effects should be studied to support its therapeutic use.


Subject(s)
Anemia, Sickle Cell , Glutamine , Glutamine/pharmacokinetics , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/blood , Humans , Male , Adult , Female , Reactive Oxygen Species/metabolism , Biomarkers/blood , Young Adult , Blood Viscosity/drug effects
2.
Drug Metab Dispos ; 52(8): 785-796, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38769016

ABSTRACT

Sublingual buprenorphine is used for opioid use disorder and neonatal opioid withdrawal syndrome. The study aimed to develop a full physiologically based pharmacokinetic (PBPK) model that can adequately describe dose- and formulation-dependent bioavailability of buprenorphine. Simcyp (v21.0) was used for model construction. Four linear regression models (i.e., untransformed or log transformed for dose or proportion sublingually absorbed) were explored to describe sublingual absorption of buprenorphine across dose. Published clinical trial data not used in model development were used for verification. The PBPK model's predictive performance was deemed adequate if the geometric means of ratios between predicted and observed (P/O) area under the curve (AUC), peak concentration (Cmax), and time to reach Cmax (Tmax) fell within the 1.25-fold prediction error range. Sublingual buprenorphine absorption was best described by a regression model with logarithmically transformed dose. By integrating this nonlinear absorption profile, the PBPK model adequately predicted buprenorphine pharmacokinetics (PK) following administration of sublingual tablets and solution across a dose range of 2-32 mg, with geometric mean (95% confidence interval) P/O ratios for AUC and Cmax equaling 0.99 (0.86-1.12) and 1.24 (1.09-1.40), respectively, and median (5th to 95th percentile) for Tmax equaling 1.11 (0.69-1.57). A verified PBPK model was developed that adequately predicts dose- and formulation-dependent buprenorphine PK following sublingual administration. SIGNIFICANCE STATEMENT: The physiologically based pharmacokinetic (PBPK) model developed in this study is the first to adequately predict dose- and formulation-dependent sublingual buprenorphine pharmacokinetics. Accurate prediction was facilitated by the incorporation of a novel nonlinear absorption model. The developed model will serve as the foundation for maternal-fetal PBPK modeling to predict maternal and fetal buprenorphine exposures to optimize buprenorphine treatment for neonatal opioid withdrawal syndrome.


Subject(s)
Analgesics, Opioid , Biological Availability , Buprenorphine , Healthy Volunteers , Models, Biological , Humans , Buprenorphine/pharmacokinetics , Buprenorphine/administration & dosage , Administration, Sublingual , Adult , Male , Female , Analgesics, Opioid/pharmacokinetics , Analgesics, Opioid/administration & dosage , Young Adult , Area Under Curve , Middle Aged , Dose-Response Relationship, Drug , Nonlinear Dynamics
3.
Pediatr Nephrol ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150525

ABSTRACT

BACKGROUND: Elevated cefepime blood concentrations can cause neurotoxicity in adults. The consequences of elevated cefepime concentrations among pediatric patients are unknown. Future exploration of such effects requires first identifying patients at risk for elevated cefepime exposure. We investigated the role of acute kidney injury as a risk factor for increased cefepime concentrations in critically ill children. METHODS: This was a retrospective analysis at a single pediatric intensive care unit. Analyzed patients received at least 24 h of cefepime and had at least two opportunistic samples collected for total cefepime concentration measurement. Individual pharmacokinetic (PK) profiles during treatment courses were reconstructed using Bayesian estimation with an established population PK model. Elevated trough concentration (Cmin) was defined as ≥ 30 mg/L based on adult toxicity studies. The effect of kidney dysfunction on cefepime PK profiles was interrogated using a mixed-effect model. RESULTS: Eighty-seven patients were included, of which 13 (14.9%) had at least one estimated Cmin ≥ 30 mg/L. Patients with elevated Cmin were more likely to have acute kidney injury (AKI) during their critical illness (92% vs. 57%, p = 0.015 for any AKI; 62% vs. 26%, p = 0.019 for severe AKI). Patients who had AKI during critical illness had significantly higher cefepime exposure, as quantified by the area under the concentration-time curve over 24 h (AUC24h) and Cmin. CONCLUSIONS: Among critically ill children, AKI is associated with elevated cefepime concentrations. Identifying these high-risk patients is the first step toward evaluating the clinical consequences of such exposures.

4.
Article in English | MEDLINE | ID: mdl-39162600

ABSTRACT

OBJECTIVES: To determine the frequency of early meropenem concentration target attainment (TA) in critically ill children with severe sepsis; to explore clinical, therapeutic, and pharmacokinetic factors associated with TA; and to assess how fluid resuscitation and volume status relate to early TA. DESIGN: Retrospective analysis of prospective observational cohort study. SETTING: PICU in a single academic quaternary care children's hospital. PATIENTS: Twenty-nine patients starting meropenem for severe sepsis (characterized as need for positive pressure ventilation, vasopressors, or ≥ 40 mL/kg bolused fluid), of which 17 were newly escalated to PICU level care. INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Concentration-time profiles were analyzed using modeling software employing opportunistic sampling, Bayesian estimation, and a population pharmacokinetic model. Time above four times minimum inhibitory concentration (T > 4×MIC), using the susceptibility breakpoint of 1 µg/mL, was determined for each patient over the first 24 hours of meropenem therapy, as well as individual clearance and volume of distribution (Vd) estimates. Twenty-one of 29 patients met a target of 40%T > MIC 4 µg/mL. Reaching TA, vs. not, was associated with lower meropenem clearance. We failed to identify a difference in Vd or an association between the TA group and age, weight, creatinine-based estimated glomerular filtration rate (eGFR), or the amount of fluid administered. eGFR was, however, negatively correlated with overall T > MIC. CONCLUSIONS: Eight of 29 pediatric patients with early severe sepsis did not meet the selected TA threshold within the first 24 hours of meropenem therapy. Higher clearance was associated with failure to meet targets. Identifying patients likely to have higher meropenem clearance could help with dosing regimens.

5.
Clin Gastroenterol Hepatol ; 21(5): 1338-1347, 2023 05.
Article in English | MEDLINE | ID: mdl-36031093

ABSTRACT

BACKGROUND & AIMS: We aimed to model infliximab (IFX) pharmacokinetics (PK) in pediatric acute severe ulcerative colitis (ASUC) and assess the association between PK parameters, including drug exposure, and clinical response. METHODS: We studied a multicenter prospective cohort of hospitalized children initiating IFX for ASUC or IBD-unclassified. Serial IFX serum concentrations over 26 weeks were used to develop a PK model. We tested the association of PK parameter estimates with day 7 clinical response, week 8 clinical remission, week 26 corticosteroid-free clinical remission (CSF-CR) (using the Pediatric Ulcerative Colitis Activity Index), and colectomy-free survival. RESULTS: Thirty-eight participants received IFX (median initial dose, 9.9 mg/kg). Day 7 clinical response, week 8 clinical remission, and week 26 CSF-CR occurred in 71%, 55%, and 43%, respectively. Albumin, C-reactive protein, white blood cell count, platelets, weight, and antibodies to IFX were significant covariates incorporated into a PK model. Week 26 non-remitters exhibited faster IFX clearance than remitters (P = .013). However, cumulative IFX exposure did not differ between clinical response groups. One (2.7%) and 4 (10.8%) participants underwent colectomy by week 26 and 2 years, respectively. Day 3 IFX clearance >0.02 L/h was associated with colectomy (hazard ratio, 58.2; 95% confidence interval, 6.0-568.6; P < .001). CONCLUSIONS: At median higher-than-label IFX dosing for pediatric ASUC, baseline faster IFX CL was associated with colectomy and at week 26 with lack of CSF-CR. IFX exposure was not predictive of clinical outcomes. Higher IFX dosing may sufficiently optimize early outcomes in pediatric ASUC. Larger studies are warranted to determine whether sustained intensification can overcome rapid clearance and improve later outcomes. CLINICALTRIALS: gov identifier: NCT02799615.


Subject(s)
Colitis, Ulcerative , Humans , Child , Infliximab , Colitis, Ulcerative/drug therapy , Gastrointestinal Agents/therapeutic use , Prospective Studies , Retrospective Studies , Treatment Outcome
6.
J Antimicrob Chemother ; 78(9): 2140-2147, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37466170

ABSTRACT

OBJECTIVES: Cefepime is an antibiotic commonly used to treat sepsis and is cleared by renal excretion. Cefepime dosing requires adjustment in patients with decreased kidney function and in those receiving continuous kidney replacement therapy (CKRT). We aimed to characterize cefepime PK in a diverse cohort of critically ill paediatric patients on CKRT. METHODS: Patients were identified from an ongoing pharmacokinetic/pharmacodynamic (PK/PD) study of beta-lactam antibiotics, and were included if they had received at least two cefepime doses in the ICU and were on CKRT for at least 24 h. PK parameters were estimated using MwPharm++ with Bayesian estimation and a paediatric population PK model. Target attainment was assessed as time of free cefepime concentrations above minimum inhibitory concentration (fT > 1× or 4 × MIC). RESULTS: Seven patients were included in the study (ages 2 to 20 years). CKRT indications included liver failure (n = 1), renal failure (n = 4) and fluid overload (n = 2). Total effluent flow rates ranged from 1833 to 3115 (mean 2603) mL/1.73 m2/h, while clearance was 2.11-3.70 (mean 3.0) L/h/70 kg. Effluent flows were lower, but clearance and fT > MIC were similar to paediatric data published previously. Using Pseudomonas aeruginosa MIC breakpoints, all patients had 100% of dosing interval above MIC, but only one had 100% of dosing interval above 4× MIC. CONCLUSIONS: Since most patients failed to attain stringent targets of 100% fT > 4×  MIC, model-informed precision dosing may benefit such patients.


Subject(s)
Continuous Renal Replacement Therapy , Critical Illness , Humans , Child , Young Adult , Cefepime/pharmacokinetics , Critical Illness/therapy , Bayes Theorem , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
7.
J Antimicrob Chemother ; 78(2): 478-487, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36545869

ABSTRACT

BACKGROUND: Piperacillin/tazobactam, a commonly used antibiotic, is associated with acute kidney injury (AKI). The relationship between piperacillin concentrations and AKI remains unknown. OBJECTIVE: Estimate piperacillin exposures in critically ill children and young adults administered piperacillin/tazobactam to identify concentrations and clinical factors associated with piperacillin-associated AKI. PATIENTS AND METHODS: We assessed piperacillin pharmacokinetics in 107 patients admitted to the paediatric ICU who received at least one dose of piperacillin/tazobactam. Piperacillin AUC, highest peak (Cmax) and highest trough (Cmin) in the first 24 hours of therapy were estimated. Piperacillin-associated AKI was defined as Kidney Disease: Improving Global Outcomes (KDIGO) Stage 2/3 AKI present >24 hours after initial piperacillin/tazobactam dose. Likelihood of piperacillin-associated AKI was rated using the Naranjo Adverse Drug Reaction Probability Scale. Multivariable logistic regression was performed to identify patient and clinical predictors of piperacillin-associated AKI. RESULTS: Out of 107 patients, 16 (15%) were rated as possibly or probably having piperacillin-associated AKI. Estimated AUC and highest Cmin in the first 24 hours were higher in patients with piperacillin-associated AKI (2042 versus 1445 mg*h/L, P = 0.03; 50.1 versus 10.7 mg/L, P < 0.001). Logistic regression showed predictors of piperacillin-associated AKI included higher Cmin (OR: 5.4, 95% CI: 1.7-23) and age (OR: 1.13, 95% CI: 1.05-1.25). CONCLUSIONS: We show a relationship between estimated piperacillin AUC and highest Cmin in the first 24 hours of piperacillin/tazobactam therapy and piperacillin-associated AKI, suggesting total piperacillin exposure early in the course is associated with AKI development. These data could serve as the foundation for implementation of model-informed precision dosing to reduce AKI incidence in patients given piperacillin/tazobactam.


Subject(s)
Acute Kidney Injury , Piperacillin , Child , Young Adult , Humans , Piperacillin/adverse effects , Vancomycin , Retrospective Studies , Drug Therapy, Combination , Anti-Bacterial Agents/adverse effects , Piperacillin, Tazobactam Drug Combination/adverse effects , Tazobactam/adverse effects , Acute Kidney Injury/chemically induced , Penicillanic Acid/adverse effects
8.
Ther Drug Monit ; 45(2): 143-150, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36750470

ABSTRACT

BACKGROUND: Therapeutic drug monitoring (TDM) and model-informed precision dosing (MIPD) have greatly benefitted from computational and mathematical advances over the past 60 years. Furthermore, the use of artificial intelligence (AI) and machine learning (ML) approaches for supporting clinical research and support is increasing. However, AI and ML applications for precision dosing have been evaluated only recently. Given the capability of ML to handle multidimensional data, such as from electronic health records, opportunities for AI and ML applications to facilitate TDM and MIPD may be advantageous. METHODS: This review summarizes relevant AI and ML approaches to support TDM and MIPD, with a specific focus on recent applications. The opportunities and challenges associated with this integration are also discussed. RESULTS: Various AI and ML applications have been evaluated for precision dosing, including those related to concentration or exposure prediction, dose optimization, population pharmacokinetics and pharmacodynamics, quantitative systems pharmacology, and MIPD system development and support. These applications provide an opportunity for ML and pharmacometrics to operate in an integrated manner to provide clinical decision support for precision dosing. CONCLUSIONS: Although the integration of AI with precision dosing is still in its early stages and is evolving, AI and ML have the potential to work harmoniously and synergistically with pharmacometric approaches to support TDM and MIPD. Because data are increasingly shared between institutions and clinical networks and aggregated into large databases, these applications will continue to grow. The successful implementation of these approaches will depend on cross-field collaborations among clinicians and experts in informatics, ML, pharmacometrics, clinical pharmacology, and TDM.


Subject(s)
Artificial Intelligence , Pharmacology, Clinical , Humans , Machine Learning , Models, Biological , Precision Medicine/methods , Pharmacology, Clinical/methods
9.
Ther Drug Monit ; 45(3): 376-382, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36728342

ABSTRACT

BACKGROUND: Considerable interpatient and interoccasion variability has been reported in tacrolimus pharmacokinetics (PK) in the pediatric renal transplant population. This study investigated tacrolimus PK in a 2-year-old post-renal transplant patient and a known CYP3A5 expresser who developed posterior reversible encephalopathy syndrome (PRES) and had significantly elevated tacrolimus blood concentrations during tacrolimus treatment. A model-informed PK assessment was performed to assist with precision dosing. Tacrolimus clearance was evaluated both before and after the development of PRES on post-transplant day (PTD) 26. METHODS: A retrospective chart review was conducted to gather dosing data and tacrolimus concentrations, as part of a clinical pharmacology consultation service. Individual PK parameters were estimated by Bayesian estimation using a published pediatric PK model. Oral clearance (CL/F) was estimated for 3 distinct periods-before CNS symptoms (PTD 25), during the PRES event (PTD 27-30), and after oral tacrolimus was restarted (PTD 93). RESULTS: Bayesian estimation showed an estimated CL/F of 15.0 L/h in the days preceding the PRES event, compared with a population mean of 16.3 L/h (95% confidence interval 14.9-17.7 L/h) for CYP3A5 expressers of the same age and weight. Samples collected on PTD 27-30 yielded an estimated CL/F of 3.6 L/h, a reduction of 76%, coinciding with clinical confirmation of PRES and therapy discontinuation. On PTD 93, an additional assessment showed a stable CL/F value of 14.5 L/h 1 month after reinitiating tacrolimus and was used to recommend a continued maintenance dose. CONCLUSIONS: This is the first report to demonstrate acutely decreased tacrolimus clearance in PRES, likely caused by the downregulation of metabolizing enzymes in response to inflammatory cytokines. The results suggest the ability of model-informed Bayesian estimation to characterize an acute decline in oral tacrolimus clearance after the development of PRES and the role that PK estimation may play in supporting dose selection and individualization.


Subject(s)
Kidney Transplantation , Posterior Leukoencephalopathy Syndrome , Humans , Child , Child, Preschool , Bayes Theorem , Cytochrome P-450 CYP3A , Retrospective Studies , Tacrolimus/therapeutic use , Immunosuppressive Agents/therapeutic use , Genotype , Models, Biological
10.
Ther Drug Monit ; 45(6): 832-836, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37725684

ABSTRACT

BACKGROUND: Critically ill patients with cardiac or respiratory failure may require extracorporeal membrane oxygenation (ECMO). Antibiotics are frequently administered when the suspected cause of organ failure is an infection. Ceftriaxone, a ß-lactam antibiotic, is commonly used in patients who are critically ill. Although studies in adults on ECMO have suggested minimal impact on ceftriaxone pharmacokinetics, limited research exists on ceftriaxone pharmacokinetics/pharmacodynamics (PK/PD) in pediatric ECMO patients. We report the PK profiles and target attainment of 2 pediatric patients on ECMO who received ceftriaxone. METHODS: Ceftriaxone concentrations were measured in 2 pediatric patients on ECMO using scavenged opportunistic sampling. PK profiles were generated and individual PK parameters were estimated using measured free ceftriaxone concentrations and a published population PK model in children who are critically ill, using Bayesian estimation. RESULTS: Patient 1, an 11-year-old boy on venovenous ECMO for respiratory failure received 2 doses of 52 mg/kg ceftriaxone 12 hours apart while on ECMO and additional doses every 12 hours off ECMO. On ECMO, ceftriaxone clearance was 13.0 L/h/70 kg compared with 7.6 L/h/70 kg off ECMO, whereas the model-predicted mean clearance in children who are critically ill without ECMO support was 6.54 L/h/70 kg. Patient 2, a 2-year-old boy on venoarterial ECMO due to cardiac arrest received 50 mg/kg ceftriaxone every 12 hours while on ECMO for >7 days. Only clearance while on ECMO could be estimated (9.1 L/h/70 kg). Trough concentrations in both patients were >1 mg/L (the breakpoint for Streptococcus pneumoniae ) while on ECMO. CONCLUSIONS: ECMO increased ceftriaxone clearance above the model-predicted clearances in the 2 pediatric patients studied. Twelve-hour dosing allowed concentrations to remain above the breakpoint for commonly targeted bacteria but not 4 times the breakpoint in one patient, suggesting that precision dosing may be beneficial to ensure target attainment in children on ECMO.


Subject(s)
Extracorporeal Membrane Oxygenation , Respiratory Insufficiency , Adult , Male , Humans , Child , Child, Preschool , Ceftriaxone/therapeutic use , Critical Illness/therapy , Bayes Theorem , Anti-Bacterial Agents/pharmacokinetics , Respiratory Insufficiency/drug therapy
11.
Antimicrob Agents Chemother ; 66(1): e0142721, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34633847

ABSTRACT

Critical illness, including sepsis, causes significant pathophysiologic changes that alter the pharmacokinetics (PK) of antibiotics. Ceftriaxone is one of the most prescribed antibiotics in patients admitted to the pediatric intensive care unit (PICU). We sought to develop population PK models of both total ceftriaxone and free ceftriaxone in children admitted to a single-center PICU using a scavenged opportunistic sampling approach. We tested if the presence of sepsis and phase of illness (before or after 48 h of antibiotic treatment) altered ceftriaxone PK parameters. We performed Monte Carlo simulations to evaluate whether dosing regimens commonly used in PICUs in the United States (50 mg/kg of body weight every 12 h versus 24 h) resulted in adequate antimicrobial coverage. We found that a two-compartment model best described both total and free ceftriaxone concentrations. For free concentrations, the population clearance value is 6.54 L/h/70 kg, central volume is 25.4 L/70 kg, and peripheral volume is 19.6 L/70 kg. For both models, we found that allometric weight scaling, postmenstrual age, creatinine clearance, and daily highest temperature had significant effects on clearance. The presence of sepsis or phase of illness did not have a significant effect on clearance or volume of distribution. Monte Carlo simulations demonstrated that to achieve free concentrations above 1 µg/ml for 100% of the dosing intervals, a dosing regimen of 50 mg/kg every 12 h is recommended for most patients. A continuous infusion could be considered if the target is to maintain free concentrations four times above the MICs (4 µg/ml).


Subject(s)
Ceftriaxone , Critical Illness , Anti-Bacterial Agents/therapeutic use , Ceftriaxone/pharmacokinetics , Ceftriaxone/therapeutic use , Child , Critical Illness/therapy , Humans , Microbial Sensitivity Tests , Monte Carlo Method , Young Adult
12.
Ann Neurol ; 89(2): 327-340, 2021 02.
Article in English | MEDLINE | ID: mdl-33201535

ABSTRACT

OBJECTIVE: In the absence of controlled trials, treatment of neonatal seizures has changed minimally despite poor drug efficacy. We tested bumetanide added to phenobarbital to treat neonatal seizures in the first trial to include a standard-therapy control group. METHODS: A randomized, double-blind, dose-escalation design was employed. Neonates with postmenstrual age 33 to 44 weeks at risk of or with seizures were eligible. Subjects with electroencephalography (EEG)-confirmed seizures after ≥20 and <40mg/kg phenobarbital were randomized to receive additional phenobarbital with either placebo (control) or 0.1, 0.2, or 0.3mg/kg bumetanide (treatment). Continuous EEG monitoring data from ≥2 hours before to ≥48 hours after study drug administration (SDA) were analyzed for seizures. RESULTS: Subjects were randomized to treatment (n = 27) and control (n = 16) groups. Pharmacokinetics were highly variable among subjects and altered by hypothermia. The only statistically significant adverse event was diuresis in treated subjects (48% vs 13%, p = 0.02). One treated (4%) and 3 control subjects died (19%, p = 0.14). Among survivors, 2 of 26 treated subjects (8%) and 0 of 13 control subjects had hearing impairment, as did 1 nonrandomized subject. Total seizure burden varied widely, with much higher seizure burden in treatment versus control groups (median = 3.1 vs 1.2 min/h, p = 0.006). There was significantly greater reduction in seizure burden 0 to 4 hours and 2 to 4 hours post-SDA (both p < 0.01) compared with 2-hour baseline in treatment versus control groups with adjustment for seizure burden. INTERPRETATION: Although definitive proof of efficacy awaits an appropriately powered phase 3 trial, this randomized, controlled, multicenter trial demonstrated an additional reduction in seizure burden attributable to bumetanide over phenobarbital without increased serious adverse effects. Future trials of bumetanide and other drugs should include a control group and balance seizure severity. ANN NEUROL 2021;89:327-340.


Subject(s)
Anticonvulsants/therapeutic use , Bumetanide/therapeutic use , Phenobarbital/therapeutic use , Seizures/drug therapy , Sodium Potassium Chloride Symporter Inhibitors/therapeutic use , Double-Blind Method , Drug Therapy, Combination , Electroencephalography , Female , GABA Modulators/therapeutic use , Genetic Diseases, Inborn/complications , Humans , Hypoxia-Ischemia, Brain/complications , Infant, Newborn , Intracranial Hemorrhages/complications , Male , Meningoencephalitis/complications , Nervous System Malformations/complications , Pilot Projects , Seizures/etiology , Stroke/complications
13.
Br J Clin Pharmacol ; 88(4): 1418-1426, 2022 02.
Article in English | MEDLINE | ID: mdl-32529759

ABSTRACT

Providing maximal therapeutic efficacy without toxicity is a universal goal of rational drug therapy. However, substantial between-patient variability in drug response often impedes such successful treatments and brings the necessity of tailoring drug dose to individual needs for more precise therapy. In many cases plenty of patient characteristics, such as body size, genetic makeup and environmental factors, need to be taken into consideration to find the optimal dose in clinical practice. A pharmacokinetics and pharmacodynamics (PK/PD) model-informed approach offers integration of various patient information to provide an expectation of drug response and derive practical dose estimates to support clinicians' dosing decisions. Such an approach was pioneered in the late 1970s, but its broad clinical acceptance and implementation have been hampered by the lack of widespread computer technology, including user-friendly software tools. This has significantly changed in recent years. With the advent of electronic health records (EHRs) and the ubiquity of user-friendly software tools, we now experience a convergence of clinical information, pharmacogenetics, systems pharmacology and pharmacometrics, and technology. Advanced pharmacometrics research is now more appliable and implementable to improve health care. This article presents examples of successful development and implementation of pharmacogenetics-guided and PK/PD model-informed decision support to facilitate precision dosing, including the development of an EHR-embedded decision support tool. Through the integration of clinical decision support tools in EHRs, clinical pharmacometrics support can be brought directly to the clinical team and the bedside.


Subject(s)
Electronic Health Records , Pharmacogenetics , Delivery of Health Care , Humans , Patient Care , Software
14.
Br J Clin Pharmacol ; 88(1): 248-259, 2022 01.
Article in English | MEDLINE | ID: mdl-34182590

ABSTRACT

Alemtuzumab is a lymphodepleting monoclonal antibody utilized in conditioning regimens for allogeneic haematopoietic cell transplantation (HCT). A recently proposed therapeutic range of 0.15-0.6 µg/mL on the day of transplantation is associated with better HCT outcomes. The purpose of this study was to characterize alemtuzumab population pharmacokinetic/pharmacodynamic (PK/PD) and to propose individualized subcutaneous dosing schemes to achieve this optimal level for paediatric patients. METHODS: Alemtuzumab concentration and absolute lymphocyte count (ALC) profiles were obtained from 29 paediatric and young adult patients (median age 6.4 y; range 0.28-21.4 y) with nonmalignant disorders undergoing HCT. PK/PD analyses were performed using nonlinear mixed effects modelling. Monte Carlo simulation was conducted to evaluate different improved dosing approaches. RESULTS: A one-compartment model with sequential zero- and first-order absorption adequately described subcutaneously administered alemtuzumab PK. Model fit was significantly improved by including allometrically scaled body weight on clearance (0.080 L/h/70 kg) and volume of distribution (17.4 L/70 kg). ALC reduction following subcutaneous alemtuzumab was swift. An inhibitory Emax model best characterized the relationship between alemtuzumab concentration and ALC. Emax and EC50 were estimated as 1.18 × 103 /µL and 0.045 µg/mL, respectively. The currently used per kg dosing was found to cause uneven alemtuzumab exposure across different age and weight cohorts. Simulations indicated optimal target achieving dose as allometry-based dose of 18 mg × (weight/70)0.75 or body surface area-based dose of 10 mg/m2 , divided over 3 days, with a potential individualized top-up dose; both of which yielded similar results. CONCLUSION: An allometry- or body surface area-based starting dosing regimen in combination with individualized Bayesian PK estimation using concentration feedback is proposed for alemtuzumab precision dosing in children undergoing allogeneic HCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Alemtuzumab , Bayes Theorem , Child , Computer Simulation , Humans , Transplantation Conditioning , Young Adult
15.
Br J Clin Pharmacol ; 88(1): 115-127, 2022 01.
Article in English | MEDLINE | ID: mdl-34075614

ABSTRACT

AIMS: We studied melphalan pharmacokinetics (PK) and feasibility of melphalan full-dose adjustment based on test-dose PK in children and young adults with non-malignant disorders (NMD) undergoing allogeneic hematopoietic cell transplantation (HCT) using reduced intensity conditioning (RIC) containing alemtuzumab, fludarabine and melphalan. METHODS: Patients received test-dose melphalan (10% of planned full-dose) prior to conditioning. Blood samples for PK were obtained around test and full-dose melphalan (140 mg/m2 or 4.7 mg/kg in patients <10 kg). Melphalan concentration was measured by liquid chromatography electrospray ionization tandem mass-spectrometry assay and data were analysed using a population-PK model and Bayesian estimation. Test and full-dose melphalan clearance estimates were evaluated by pairwise Wilcoxon test and Bland-Altman plot. RESULTS: Twenty-four patients undergoing 25 transplants were included in the final analysis. Patients received standard full-dose melphalan in 17 transplants, with median area under the concentration-time curve (AUC) of 5.5 mg*h/L (range, 3.0-9.5 mg*h/L). Patients received test-dose melphalan in 23 transplants with a test-dose PK predicted full-dose AUC range of 2.9-16.8 mg*h/L. In seven transplants where patients had baseline organ impairment, test-dose PK predicted higher exposure for standard full-dose (median AUC 13.8 mg*h/L). Melphalan full-dose was adjusted in these patients, with achievement of desired target AUC (3.6-5.4 mg*h/L) and no excess toxicity. Mean ratio of test-dose clearance to full-dose clearance was 1.03. Twenty of 22 patients (91%) were within the 95% confidence intervals of the clearance ratio. CONCLUSION: Melphalan test-dose PK reliably predicts full-dose PK and allows for accurate adjustment of full-dose melphalan in RIC-HCT for NMD. This approach can avoid excess toxicity from increased systemic exposure, especially in patients with organ impairment.


Subject(s)
Hematopoietic Stem Cell Transplantation , Melphalan , Bayes Theorem , Child , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Humans , Melphalan/adverse effects , Melphalan/pharmacokinetics , Transplantation Conditioning/adverse effects , Transplantation Conditioning/methods , Transplantation, Homologous , Vidarabine , Young Adult
16.
Cardiovasc Drugs Ther ; 36(4): 589-604, 2022 08.
Article in English | MEDLINE | ID: mdl-33689087

ABSTRACT

PURPOSE: Noonan syndrome with multiple lentigines (NSML) is an autosomal dominant disorder presenting with hypertrophic cardiomyopathy (HCM). Up to 85% of NSML cases are caused by mutations in the PTPN11 gene that encodes for the Src homology 2 (SH2) domain-containing protein tyrosine phosphatase 2 (SHP2). We previously showed that low-dose dasatinib protects from the development of cardiac fibrosis in a mouse model of NSML harboring a Ptpn11Y279C mutation. This study is performed to determine the pharmacokinetic (PK) and pharmacodynamic (PD) properties of a low-dose of dasatinib in NSML mice and to determine its effectiveness in ameliorating the development of HCM. METHODS: Dasatinib was administered intraperitoneally into NSML mice with doses ranging from 0.05 to 0.5 mg/kg. PK parameters of dasatinib in NSML mice were determined. PD parameters were obtained for biochemical analyses from heart tissue. Dasatinib-treated NSML mice (0.1 mg/kg) were subjected to echocardiography and assessment of markers of HCM by qRT-PCR. Transcriptome analysis was performed from the heart tissue of low-dose dasatinib-treated mice. RESULTS: Low-dose dasatinib exhibited PK properties that were linear across doses in NSML mice. Dasatinib treatment of between 0.05 and 0.5 mg/kg in NSML mice yielded an exposure-dependent inhibition of c-Src and PZR tyrosyl phosphorylation and inhibited AKT phosphorylation. We found that doses as low as 0.1 mg/kg of dasatinib prevented HCM in NSML mice. Transcriptome analysis identified differentially expressed HCM-associated genes in the heart of NSML mice that were reverted to wild type levels by low-dose dasatinib administration. CONCLUSION: These data demonstrate that low-dose dasatinib exhibits desirable therapeutic PK properties that is sufficient for effective target engagement to ameliorate HCM progression in NSML mice. These data demonstrate that low-dose dasatinib treatment may be an effective therapy against HCM in NSML patients.


Subject(s)
Cardiomyopathy, Hypertrophic , LEOPARD Syndrome , Animals , Cardiomyopathy, Hypertrophic/drug therapy , Cardiomyopathy, Hypertrophic/genetics , Dasatinib/pharmacology , Dasatinib/therapeutic use , Disease Models, Animal , LEOPARD Syndrome/drug therapy , LEOPARD Syndrome/genetics , LEOPARD Syndrome/metabolism , Mice , Mutation
17.
Br J Haematol ; 194(3): 617-625, 2021 08.
Article in English | MEDLINE | ID: mdl-34227124

ABSTRACT

Hydroxyurea (hydroxycarbamide) is an effective treatment for sickle cell anaemia (SCA), but clinical responses depend primarily upon the degree of fetal haemoglobin (HbF) induction and the heterogeneity of HbF expression across erythrocytes. The number and characteristics of HbF-containing cells (F-cells) are not assessed by traditional HbF measurements. Conventional hydroxyurea dosing (e.g. fixed doses or low starting doses with stepwise escalation) produces a moderate heterocellular HbF induction, but haemolysis and clinical complications continue. Robust, pancellular HbF induction is needed to minimise or fully inhibit polymerisation of sickle haemoglobin. We treated children with hydroxyurea using an individualised, pharmacokinetics-guided regimen starting at predicted maximum tolerated dose (MTD). We observed sustained HbF induction (mean >30%) for up to 6 years, which was not dependent on genetic determinants of HbF expression. Nearly 70% of patients had ≥80% F-cells (near-pancellular), and almost half had ≥90% F-cells (pancellular). The mean HbF/F-cell content was ~12 pg. Earlier age of initiation and better medication adherence were associated with high F-cell responses. In summary, early initiation of hydroxyurea using pharmacokinetics-guided starting doses at predicted MTD can achieve sustained near-pancellular or pancellular HbF expression and should be considered an achievable goal for children with SCA treated with hydroxyurea at optimal doses. Clinical trial registration number: NCT02286154 (clinicaltrials.gov).


Subject(s)
Anemia, Sickle Cell/drug therapy , Antisickling Agents/therapeutic use , Fetal Hemoglobin/analysis , Hydroxyurea/therapeutic use , Adolescent , Antisickling Agents/administration & dosage , Antisickling Agents/pharmacokinetics , Child , Child, Preschool , Dose-Response Relationship, Drug , Drug Monitoring , Female , Humans , Hydroxyurea/administration & dosage , Hydroxyurea/pharmacokinetics , Male , Precision Medicine
18.
J Antimicrob Chemother ; 76(11): 2923-2931, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34379758

ABSTRACT

INTRODUCTION: Further optimization of therapeutic drug monitoring (TDM) for aminoglycosides (AGs) is urgently needed, especially in special populations such as those with cystic fibrosis (CF), >50% of whom develop ototoxicity if treated with multiple courses of IV AGs. This study aimed to empirically test a pharmacokinetic (PK) model using Bayesian estimation of drug exposure in the deeper body tissues to determine feasibility for prediction of ototoxicity. MATERIALS AND METHODS: IV doses (n = 3645) of tobramycin and vancomycin were documented with precise timing from 38 patients with CF (aged 8-21 years), including total doses given and total exposure (cumulative AUC). Concentration results were obtained at 3 and 10 h for the central (C1) compartment. These variables were used in Bayesian estimation to predict trough levels in the secondary tissue compartments (C2 trough) and maximum concentrations (C2max). The C1 and C2 measures were then correlated with hearing levels in the extended high-frequency range. RESULTS: Patients with more severe hearing loss were older and had a higher number of tobramycin C2max concentrations >2 mg/L than patients with normal or lesser degrees of hearing loss. These two factors together significantly predicted average high-frequency hearing level (r = 0.618, P < 0.001). Traditional metrics such as C1 trough concentrations were not predictive. The relative risk for hearing loss was 5.8 times greater with six or more tobramycin courses that exceeded C2max concentrations of 3 mg/L or higher, with sensitivity of 83% and specificity of 86%. CONCLUSIONS: Advanced PK model-informed analysis predicted ototoxicity risk in patients with CF treated with tobramycin and demonstrated high test prediction.


Subject(s)
Cystic Fibrosis , Ototoxicity , Aminoglycosides/adverse effects , Anti-Bacterial Agents/adverse effects , Bayes Theorem , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Humans , Tobramycin/adverse effects
19.
Am J Hematol ; 96(5): 538-544, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33534136

ABSTRACT

Neurologic complications are common in patients with sickle cell anemia (SCA), but conventional tools such as MRI and transcranial Doppler ultrasonography (TCD) do not fully assess cerebrovascular pathology. Cerebral tissue oximetry measures mixed oxygen saturation in the frontal lobes (SCT O2 ) and provides early prognostic information about tissue at risk of ischemic injury. Untreated patients with SCA have significantly lower SCT O2 than healthy controls that declines with age. Hydroxyurea is effective in preventing many SCA-related complications, but the degree to which it preserves normal neurophysiology is unclear. We analyzed participants enrolled in the Therapeutic Response Evaluation and Adherence Trial (TREAT, NCT02286154), which enrolled participants initiating hydroxyurea using individualized dosing (new cohort) and those previously taking hydroxyurea (old cohort) and was designed to monitor the long-term benefits of hydroxyurea. Cerebral oximetry was performed at baseline and annually. For the new cohort (median starting age = 12 months, n = 55), mean baseline SCT O2 was normal before starting hydroxyurea (mean 65%, 95% CI 58-72%) and significantly increased after 2 years (mean 72%, 95% CI 65-79%, p < .001). The SCT O2 for patients receiving long-term hydroxyurea (median age = 9.6 years) was normal at study entry (mean 66%, 95% CI 58-74%) and remained stable across 2 years. Both cohorts had significantly higher SCT O2 than published data from predominantly untreated SCA patients. Cerebral oximetry is a non-invasive method to assess cerebrovascular pathology that complements conventional imaging. Our results indicate that hydroxyurea suggests protection against neurophysiologic changes seen in untreated SCA.


Subject(s)
Anemia, Sickle Cell/drug therapy , Antisickling Agents/therapeutic use , Cerebrovascular Circulation/drug effects , Hydroxyurea/therapeutic use , Oximetry/methods , Adolescent , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/physiopathology , Antisickling Agents/administration & dosage , Antisickling Agents/pharmacokinetics , Antisickling Agents/pharmacology , Child , Child, Preschool , Dose-Response Relationship, Drug , Early Medical Intervention , Female , Humans , Hydroxyurea/administration & dosage , Hydroxyurea/pharmacokinetics , Hydroxyurea/pharmacology , Infant , Male , Oximetry/instrumentation , Oxygen/blood , Oxyhemoglobins/analysis , Precision Medicine , Prospective Studies , Young Adult
20.
Ther Drug Monit ; 43(2): 150-200, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33711005

ABSTRACT

ABSTRACT: When mycophenolic acid (MPA) was originally marketed for immunosuppressive therapy, fixed doses were recommended by the manufacturer. Awareness of the potential for a more personalized dosing has led to development of methods to estimate MPA area under the curve based on the measurement of drug concentrations in only a few samples. This approach is feasible in the clinical routine and has proven successful in terms of correlation with outcome. However, the search for superior correlates has continued, and numerous studies in search of biomarkers that could better predict the perfect dosage for the individual patient have been published. As it was considered timely for an updated and comprehensive presentation of consensus on the status for personalized treatment with MPA, this report was prepared following an initiative from members of the International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT). Topics included are the criteria for analytics, methods to estimate exposure including pharmacometrics, the potential influence of pharmacogenetics, development of biomarkers, and the practical aspects of implementation of target concentration intervention. For selected topics with sufficient evidence, such as the application of limited sampling strategies for MPA area under the curve, graded recommendations on target ranges are presented. To provide a comprehensive review, this report also includes updates on the status of potential biomarkers including those which may be promising but with a low level of evidence. In view of the fact that there are very few new immunosuppressive drugs under development for the transplant field, it is likely that MPA will continue to be prescribed on a large scale in the upcoming years. Discontinuation of therapy due to adverse effects is relatively common, increasing the risk for late rejections, which may contribute to graft loss. Therefore, the continued search for innovative methods to better personalize MPA dosage is warranted.


Subject(s)
Drug Monitoring , Immunosuppressive Agents/administration & dosage , Mycophenolic Acid/administration & dosage , Organ Transplantation , Area Under Curve , Consensus , Graft Rejection/prevention & control , Humans
SELECTION OF CITATIONS
SEARCH DETAIL