Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Phys Chem Chem Phys ; 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39027937

ABSTRACT

Direct conversion of syngas into ethanol is an attractive process because of its short route and high-added value, but remains an enormous challenge due to the low selectivity caused by unclear active sites. Here, the Cu(111) supported N-modified graphene fragments C13-mNm/Cu(111) (m = 0-2) are demonstrated to be an efficient catalyst for fabricating ethanol from syngas and methanol. Our results suggest that the Cu-carbon interaction not only facilitates CO activation, but also significantly affects the adsorption stability of C2 intermediates and finally changes the fundamental reaction mechanism. The impeded hydrogenation performance of C13/Cu(111) due to the introduced Cu-carbon interaction is dramatically improved by N-doping. Multiple analyses reveal that the promoted electron transfer and the enhanced electron endowing ability of C13-mNm/Cu(111) (m = 1-2) to the co-adsorbed CH3CHxOH (x = 0-1) and H are deemed to be mainly responsible for the remarkable enhancement in hydrogenation ability. From the standpoint of the frontier molecular orbital, the decreased HOMO-LUMO gap and the increased overlap extent of HOMO and LUMO with the doping of N atoms also further verify the more facile hydrogenation reactions. Clearly, the Cu-carbon interaction through N-modification is of critical importance in ethanol formation. The final hydrogenation reaction during ethanol formation is deemed to be the rate-controlling step. The insights gained here could shed new light on the nature of Cu-carbon interaction in carbon material modified Cu-based catalysts for ethanol synthesis, which could be extended to design and modify other metal-carbon catalysts.

2.
Sci Technol Adv Mater ; 25(1): 2327276, 2024.
Article in English | MEDLINE | ID: mdl-38532983

ABSTRACT

Micropatterning of biological surfaces performed via assembly of nano-blocks is an efficient design method for functional materials with complex organic-inorganic architecture. Halloysite clay nanotubes with high aspect ratios and empty lumens have attracted widespread interest for aligned biocompatible composite production. Here, we give our vision of advances in interfacial self-assembly techniques for these natural nanotubes. Highly ordered micropatterns of halloysite, such as coffee rings, regular strips, and concentric circles, can be obtained through high-temperature evaporation-induced self-assembly in a confined space and shear-force brush-induced orientation. Assembly of these clay nanotubes on biological surfaces, including the coating of human or animal hair, wool, and cotton, was generalized with the indication of common features. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, medical hemostasis, and flame-retardant tissue applications. An interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its core-shell structure (functionalization with quantum dots) was described in comparison with microfiber nanoclay coatings. In addition to being abundantly available in nature, halloysite is also biosafe, which makes its spontaneous surface micropatterning prospective for high-performance materials, and it is a promising technique with potential for an industrial scale-up.


This international group of authors unites researchers who pioneered halloysite clay nanotubes for biomaterials, and discloses a new strategy for this nanoclay composite design through interfacial architecture. These results confirm Dr. K. Ariga concept of nanoarchitectonics, and demonstrate promising applications. Assembly of the clay nanotubes on biosurfaces, including the coating of human or animal hair, wool, and cotton, was generalized for the process optimization. Halloysite-coated microfibers promise new approaches in cotton and hair dyeing, and medical hemostasis and flame-retardant tissue applications. Related techniques of interfacial halloysite assembly on oil microdroplets (Pickering emulsion) and its quantum dots core­shell structure for cell imaging are also described. Contrary to many other synthetic nanomaterials, described natural halloysite nanotubes are environmentally safe and abundantly available, thus allowing for scale up of the suggested functional biocomposites.

3.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298281

ABSTRACT

Precise data on the non-variant equilibrium of the four phases (vapor-aqueous solution-ice-gas hydrate) in P-T coordinates are highly desired for developing accurate thermodynamic models and can be used as reference points (similar to the triple point of water). Using the two-component hydrate-forming system CO2-H2O, we have proposed and validated a new express procedure for determining the temperature and pressure of the lower quadruple point Q1. The essence of the method is the direct measurement of these parameters after the successive formation of the gas hydrate and ice phases in the initial two-phase gas-water solution system under intense agitation of the fluids. After relaxation, the system occurs in the same equilibrium state (T = 271.60 K, P = 1.044 MPa), regardless of the initial parameters and the order of crystallization of the CO2 hydrate and ice phases. Considering the combined standard uncertainties (±0.023 K, ±0.021 MPa), the determined P and T values agree with the results of other authors obtained by a more sophisticated indirect method. Validating the developed approach for systems with other hydrate-forming gases is of great interest.


Subject(s)
Carbon Dioxide , Water , Carbon Dioxide/chemistry , Water/chemistry , Ice , Gases/chemistry , Temperature
4.
Sci Technol Adv Mater ; 23(1): 17-30, 2022.
Article in English | MEDLINE | ID: mdl-35069010

ABSTRACT

Following nanoarchitectural approach, mesoporous halloysite nanotubes with internal surface composed of alumina were loaded with 5-6 nm RuCo nanoparticles by sequential loading/reduction procedure. Ruthenium nanoclusters were loaded inside clay tube by microwave-assisted method followed by cobalt ions electrostatic attraction to ruthenium during wetness impregnation step. Developed nanoreactors with bimetallic RuCo nanoparticles were investigated as catalysts for the Fischer-Tropsch process. The catalyst with 14.3 wt.% of Co and 0.15 wt.% of Ru showed high activity (СO conversion reached 24.6%), low selectivity to methane (11.9%), CO2 (0.3%), selectivity to C5+ hydrocarbons of 79.1% and chain growth index (α) = 0.853. Proposed nanoreactors showed better selectivity to target products combined with high activity in comparison to the similar bimetallic systems supported on synthetic porous materials. It was shown that reducing agent (NaBH4 or H2) used to obtain Ru nanoclusters at first synthesis step played a very important role in the reducibility and selectivity of resulting RuCo catalysts.

5.
Chem Soc Rev ; 50(16): 9240-9277, 2021 Aug 21.
Article in English | MEDLINE | ID: mdl-34241609

ABSTRACT

Catalytic hydroprocesses play a significant role in oil refining and petrochemistry. The tailored design of new metal nanosystems and optimization of their support, composition, and structure is a prospective strategy for enhancing the efficiency of catalysts. Mesoporous support impacts the active component by binding it to the surface, which leads to the formation of tiny highly dispersed catalytic particles stabilized from aggregation and with minimized leaching. The structural and acidic properties of the support are crucial and determine the size and dispersion of the active metal phase. Currently, research efforts are shifted toward the design of nanoscale porous materials, where homogeneous catalysts are displaced by heterogeneous. Ceramic materials, such as 50 nm diameter natural halloysite nanotubes, are of special interest for this. Much attention to halloysite clay is due to its tubular structure with a hollow 10-15 nm diameter internal cavity, textural characteristics, and different chemical compositions of the outer/inner surfaces, allowing selective nanotube modification. Loading halloysite with metal particles or placing them outside the tubes provides stable and efficient mesocatalysts. The low cost of this abundant nanoclay makes it a good choice for the scaled-up architectural design of core-shell catalysts, containing active metal sites (Au, Ag, Pt, Ru, Co, Mo, Fe2O3, CdS, CdZnS, Cu-Ni) located inside or outside the tubular template. These alumosilicate nanotubes are environment-friendly and are available in thousands of tons. Herein, we summarized the advances of halloysite-based composite materials for hydroprocesses, focusing on the selective binding of metal particles. We analyze the tubes' morphology adjustments and size selection, the physicochemical properties of pristine and modified halloysite (e.g., acid-etched or silanized), the methods of metal clusters formation, and their localization. We indicate prospective routes for the architectural design of stable and efficient nanocatalysts based on this safe and natural clay material.

6.
Biochem Biophys Res Commun ; 546: 145-149, 2021 03 26.
Article in English | MEDLINE | ID: mdl-33582557

ABSTRACT

In times of widespread multiple antibiotic resistance, the bacterial colonization of crucial medical surfaces should be detected as fast as possible. In this work, we present the non-destructive SERS method for the detection of bacterial colonization. SERS is an excellent tool for the monitoring of suitable substances in low concentrations. The SERS substrate was prepared by the aggregation of citrate-stabilized gold nanoparticles and the adsorption of the reporters (crystal violet, thiamine, and adenine). We have tested the substrate for the detection of clinically relevant S. aureus and P. aeruginosa bacteria. The SERS spectra before and after the substrate incubation revealed the degradation of the reporter by the growing bacteria. The growth of P. aeruginosa was detected using the substrates with preadsorbed crystal violet or adenine. The suitable reporter for the detection of S. aureus remains to be discovered. The selection of the reporters resistant to exposure but easily degraded by bacteria will open the way for the in situ monitoring of bacterial colonization, thus complementing the arsenal of methods in the battle against hospital infections.


Subject(s)
Adenine/chemistry , Gentian Violet/chemistry , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/isolation & purification , Spectrum Analysis, Raman/methods , Citric Acid/chemistry , Gold/chemistry , Metal Nanoparticles/analysis , Metal Nanoparticles/chemistry , Molecular Probes/analysis , Molecular Probes/chemistry , Staphylococcus aureus , Thiamine/chemistry
7.
Chemistry ; 26(57): 13085-13092, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-32640117

ABSTRACT

A nanoarchitectural approach based on in situ formation of quantum dots (QDs) within/outside clay nanotubes was developed. Efficient and stable photocatalysts active under visible light were achieved with ruthenium-doped cadmium sulfide QDs templated on the surface of azine-modified halloysite nanotubes. The catalytic activity was tested in the hydrogen evolution reaction in aqueous electrolyte solutions under visible light. Ru doping enhanced the photocatalytic activity of CdS QDs thanks to better light absorption and electron-hole pair separation due to formation of a metal/semiconductor heterojunction. The S/Cd ratio was the major factor for the formation of stable nanoparticles on the surface of the azine-modified clay. A quantum yield of 9.3 % was reached by using Ru/CdS/halloysite containing 5.2 wt % of Cd doped with 0.1 wt % of Ru and an S/Cd ratio of unity. In vivo and in vitro studies on the CdS/halloysite hybrid demonstrated the absence of toxic effects in eukaryotic cells and nematodes in short-term tests, and thus they are promising photosensitive materials for multiple applications.

8.
Molecules ; 25(7)2020 Mar 26.
Article in English | MEDLINE | ID: mdl-32225028

ABSTRACT

The development of novel materials and approaches for effective energy consumption and the employment of renewable energy sources is one of the current trends in modern material science. With this respect, the number of researches is focused on the effective harvesting and storage of solar energy for various applications. Phase change materials (PCMs) are known to be able to store thermal energy of the sunlight due to adsorption and release of latent heat through reversible phase transitions. Therefore, PCMs are promising as functional additives to construction materials and paints for advanced thermoregulation in building and industry. However, bare PCMs have limited practical applications. Organic PCMs like paraffins suffer from material leakage when undergoing in a liquid state while inorganic ones like salt hydrates lack long-term stability after multiple phase transitions. To avoid this, the loading of PCMs in porous matrices are intensively studied along with the thermal properties of the resulted composites. The loading of PCMs in microcontainers of natural porous or layered clay materials appears as a simple and cost-effective method of encapsulation significantly improving the shape and cyclic stability of PCMs. Additionally, the inclusion of functional clay containers into construction materials allows for improving their mechanical and flame-retardant properties. This article summarizes the recent progress in the preparation of composites based on PCM-loaded clay microcontainers along with their future perspectives as functional additives in thermo-regulating materials.


Subject(s)
Clay/chemistry , Thermodynamics , Algorithms , Diatomaceous Earth/chemistry , Geothermal Energy , Hot Temperature , Kaolin/chemistry , Magnesium Silicates/chemistry , Models, Molecular , Models, Theoretical , Phase Transition , Porosity , Thermal Conductivity
9.
Molecules ; 25(8)2020 Apr 11.
Article in English | MEDLINE | ID: mdl-32290415

ABSTRACT

Halloysite aluminosilicate nanotubes loaded with ruthenium particles were used as reactors for Fischer-Tropsch synthesis. To load ruthenium inside clay, selective modification of the external surface with ethylenediaminetetraacetic acid, urea, or acetone azine was performed. Reduction of materials in a flow of hydrogen at 400 °C resulted in catalysts loaded with 2 wt.% of 3.5 nm Ru particles, densely packed inside the tubes. Catalysts were characterized by N2-adsorption, temperature-programmed desorption of ammonia, transmission electron microscopy, X-ray fluorescence, and X-ray diffraction analysis. We concluded that the total acidity and specific morphology of reactors were the major factors influencing activity and selectivity toward CH4, C2-4, and C5+ hydrocarbons in the Fischer-Tropsch process. Use of ethylenediaminetetraacetic acid for ruthenium binding gave a methanation catalyst with ca. 50% selectivity to methane and C2-4. Urea-modified halloysite resulted in the Ru-nanoreactors with high selectivity to valuable C5+ hydrocarbons containing few olefins and a high number of heavy fractions (α = 0.87). Modification with acetone azine gave the slightly higher CO conversion rate close to 19% and highest selectivity in C5+ products. Using a halloysite tube with a 10-20-nm lumen decreased the diffusion limitation and helped to produce high-molecular-weight hydrocarbons. The extremely small C2-C4 fraction obtained from the urea- and azine-modified sample was not reachable for non-templated Ru-nanoparticles. Dense packing of Ru nanoparticles increased the contact time of olefins and their reabsorption, producing higher amounts of C5+ hydrocarbons. Loading of Ru inside the nanoclay increased the particle stability and prevented their aggregation under reaction conditions.


Subject(s)
Aluminum Silicates/chemistry , Carbon Monoxide/chemistry , Hydrocarbons/chemical synthesis , Metal Nanoparticles/chemistry , Ruthenium/chemistry , Catalysis , Clay/chemistry , Edetic Acid/chemistry
10.
Langmuir ; 35(41): 13480-13487, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31545051

ABSTRACT

Nonionic hydrotropes (low-molecular-weight amphiphiles) demonstrate striking dual actions in bulk solutions and interfaces, exhibiting both surfactant-like and co-solvent properties. We report on peculiar, strongly affected by this duality, liquid-liquid and air-liquid-liquid interfacial behavior in aqueous ternary systems, containing hydrotropes and hydrocarbons, in a broad range of compositions and at various temperatures. Phase diagrams of the studied systems, containing tertiary butanol (TBA), as a hydrotrope, are of Type 1: the hydrotrope, at the experimental conditions, is completely miscible with water and with all investigated hydrocarbons [cyclohexane (CHX), toluene (TOL), and n-decane (DEC)], whereas the ternary mixtures exhibit liquid-liquid phase separation terminated at corresponding critical points. The shape and location of the phase separation boundary are only weakly dependent on temperature and the hydrocarbon's nature; however, the critical point in the water-TBA-DEC system is significantly shifted toward a higher TBA concentration. For the experimentally studied systems and for available data reported in the literature, we confirmed an apparently generic (for nonionic hydrotropes) phenomenon of a dual action at water-oil interfaces (earlier found in water-TBA-CHX [J. Phys. Chem. C 2017, 121, 16423]): at low concentrations, hydrotropes saturate the water-oil interface like a surfactant, whereas at higher concentrations they act as co-solvents, resulting in vanishing interfacial tension at the liquid-liquid critical point. We suggest a universal crossover function that accurately interpolates the two theoretically based limits of interfacial behavior. This crossover function also accounts for earlier deviations from Langmuir-von Szyszkowski limiting behavior in the water-TBA-DEC system, caused by lower solubility (relative to other studied hydrocarbons) of DEC in water. An intriguing correlation between the dual action of hydrotropes at the water-oil interface and the behavior of the liquid-air interfaces is also discussed.

11.
Langmuir ; 35(26): 8646-8657, 2019 07 02.
Article in English | MEDLINE | ID: mdl-30682887

ABSTRACT

A self-assembly of clay nanotubes in functional arrays for the production of organized organic/inorganic heterostructures is described. These 50-nm-diameter natural alumosilicate nanotubes are biocompatible. Halloysite allows for 10-20 wt % chemical/drug loading into the inner lumen, and it gives an extended release for days and months (anticorrosion, self-healing, flame-retardant, antifouling, and antibacterial composites). The structured surfaces of the oriented nanotube micropatterns enhance interactions with biological cells, improving their capture and inducing differentiation in stem cells. An encapsulation of the cells with halloysite enables control of their growth and proliferation. This approach was also developed for spill petroleum bioremediation as a synergistic process with Pickering oil emulsification. We produced 2-5-nm-diameter particles (Au, Ag, Pt, Co, Ru, Cu-Ni, Fe3O4, ZrO2, and CdS) selectively inside or outside the aluminosilicate clay nanotubes. The catalytic hydrogenation of benzene and phenol, hydrogen production, impacts of the metal core-shell architecture, the metal particle size, and the seeding density were optimized for high-efficiency processes, exceeding the competitive industrial formulations. These core-shell mesocatalysts are based on a safe and cheap natural clay nanomaterial and may be scaled up for industrial applications.

12.
Chemphyschem ; 19(12): 1522-1530, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29544031

ABSTRACT

Thermodynamic calculations of the optimal compositions of oxide catalysts with different natures are performed based on the theory of catalysis by polyhedra. The obtained compositions of the active catalysts agree with experimental data. The electrostatic potential generated by polyhedra of metal-oxide catalysts in a variety of directions is calculated. The dependence of the sign and magnitude of the potential on the distance from the central metal ion towards the vertex of the polyhedron, the middle of its edge or the centre of the face is estimated. It is assumed that the magnitude of the potential can serve as a reference point for determining active centres, which produce adsorption complexes and intermediate compounds.

13.
Chem Rec ; 18(7-8): 858-867, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29314509

ABSTRACT

Nanoparticles, being objects with high surface area are prone to agglomeration. Immobilization onto solid supports is a promising method to increase their stability and it allows for scalable industrial applications, such as metal nanoparticles adsorbed to mesoporous ceramic carriers. Tubular nanoclay - halloysite - can be an efficient solid support, enabling the fast and practical architectural (inside / outside) synthesis of stable metal nanoparticles. The obtained halloysite-nanoparticle composites can be employed as advanced catalysts, ion-conducting membrane modifiers, inorganic pigments, and optical markers for biomedical studies. Here, we discuss the possibilities to synthesize halloysite decorated with metal, metal chalcogenide, and carbon nanoparticles, and to use these materials in various fields, especially in catalysis and petroleum refinery.

14.
Phys Chem Chem Phys ; 21(1): 148-159, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30515495

ABSTRACT

Catalytic conversion of syngas to valuable chemicals and fuels such as ethanol is an extremely desirable process route. In the present study, the elementary steps leading to the formation of ethanol via syngas conversion over the Cu/γ-AlOOH(001) surface have been explored using density functional theory (DFT) calculations. The reaction pathway CO + H → CHO, CHO + CHO → OHCCHO → CHCHO + O, CHCHO + 4H → CH2CHO + 3H → CH3CHO + 2H → CH3CH2O + H → C2H5OH is the most favorable; during the whole process, CH3CHO formation needs to overcome the highest activation barrier. Different from the γ-AlOOH(001) surface, carbon chain growth is realized via the formyl coupling mechanism on the Cu/γ-AlOOH(001) surface; this step needs to overcome a 1.07 eV activation barrier and is exothermic by 0.73 eV. Our Bader charge analyses revealed that the addition of the Cu component enhances the electrostatic interaction between the CHO intermediate and the γ-AlOOH(001) surface with the aid of the formed CuOx species; as a result, the initial C-C chain forms in a different way. Moreover, the rate constant results manifest that the formation of the OHCCHO key intermediate can be facilitated by increasing the reaction temperature. We expect the obtained results will be useful for future experimental studies to improve the selectivity of C2 oxygenates in syngas conversion.

15.
Sci Technol Adv Mater ; 18(1): 147-151, 2017.
Article in English | MEDLINE | ID: mdl-28458738

ABSTRACT

We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 µm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube's central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube's wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.

16.
Data Brief ; 54: 110517, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38847010

ABSTRACT

This work systematically investigates the effect of methanol (MeOH) in a wide range of concentrations (0, 1, 2.5, 5, 10, 20, 30, 40, and 50 mass%) on methane hydrate nucleation and growth kinetics. Multiple measurements of gas hydrate onset temperatures and pressures for CH4-H2O and CH4-MeOH-H2O systems were performed by ramp cooling experiments (1 K/h) using sapphire rocking cell RCS6 apparatus. The dataset comprises 96 ramp experiments conducted under identical initial conditions for each solution (gas pressure of 8.1 MPa at 295 K). The reported hydrate onset temperatures and pressures range within 248-282 K and 6.2-7.5 MPa, respectively. The methane hydrate onset subcooling was calculated using literature data on the three-phase gas-aqueous solution-gas hydrate equilibrium for the studied systems. The study determined the numerical values of the shape and scale parameters of gamma distributions that describe the empirical dependences of methane hydrate nucleation cumulative probability as a function of hydrate onset subcooling in the aqueous methanol solutions. Gas uptake curves were analyzed to characterize the kinetics of methane hydrate growth under polythermal conditions at different methanol concentrations.

17.
Data Brief ; 53: 110138, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38379890

ABSTRACT

In order to systematically study the synergistic effect of gas hydrate inhibition with mixtures of methanol (MeOH) and magnesium chloride (MgCl2), the impact of these compounds on the thermodynamic stability of methane hydrate in the systems of CH4-MeOH-H2O, CH4-MgCl2-H2O, and CH4-MeOH-MgCl2-H2O was experimentally investigated. The pressure and temperature conditions of the three-phase vapor-aqueous solution-gas hydrate equilibrium were determined for these systems. The resulting dataset has 164 equilibrium points within the range of 234-289 K and 3-13 MPa. All equilibrium points were measured as the endpoint of methane hydrate dissociation during the heating stage. The phase boundaries of methane hydrate were identified for 8 systems with MeOH (up to 60 mass%), 5 MgCl2 solutions (up to 26.7 mass%), and 14 mixtures of both inhibitors. Most equilibrium points were measured using a ramp heating technique (0.1 K/h) under isochoric conditions when the fluids were stirred at 600 rpm. It was found that even a 0.5 K/h heating rate for the CH4-MgCl2-H2O system at low salt concentrations, along with all mixed aqueous solutions with methanol, gives results that do not differ from 0.1 K/h, considering the measurement uncertainties. Most measurements for the CH4-MgCl2-H2O system at high salt content were acquired using a step heating technique. The coefficients of the empirical equations approximating the equilibrium points for each inhibitor concentration were defined. The change in the slope parameter of the empirical equation was analyzed as a function of inhibitor content. Correlations that accurately describe the thermodynamic inhibition effect of methane hydrate with methanol and magnesium chloride on a mass% and mol% scale were obtained. The freezing temperatures of single and mixed aqueous solutions of methanol and magnesium chloride were determined experimentally to confirm the thermodynamic consistency of the methane hydrate equilibrium data.

18.
Data Brief ; 49: 109303, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37360673

ABSTRACT

The equilibrium conditions of sII methane/propane hydrates have been experimentally determined for the C3H8/CH4-H2O-urea system. The equilibrium dissociation temperatures and pressures of sII hydrates span a wide P,T-range (266.7-293.9 K; 0.87-9.49 MPa) and were measured by varying the feed mass fraction of urea in solution from 0 to 50 mass%. The experimental points at feed urea concentration ≤ 40 mass% correspond to the V-Lw-H equilibrium (gas-aqueous urea solution-gas hydrate). A four-phase V-Lw-H-Su equilibrium (with an additional phase of solid urea) was observed because the solubility limit of urea in water was reached for all points at a feed mass fraction of 50 mass% and for one point at 40 mass% (266.93 K). Gas hydrate equilibria were measured using a high-pressure rig GHA350 under isochoric conditions with rapid fluid stirring and slow ramp heating of 0.1 K/h. Each measured point represents complete dissociation of the sII hydrate. The phase equilibrium data was compared with the literature reported for the C3H8/CH4-H2O and CH4-H2O-urea systems. A comprehensive analysis of the thermodynamic inhibition effect of urea to sII C3H8/CH4 hydrates on pressure and concentration of the inhibitor was carried out. The phase composition of the samples was analyzed by powder X-ray diffractometry at 173 K.

19.
Data Brief ; 46: 108892, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36710919

ABSTRACT

Three-phase equilibrium conditions of vapor-aqueous solution-gas hydrate coexistence for the systems of CH4-H2O-organic thermodynamic inhibitor (THI) were experimentally determined. Hydrate equilibrium measurements for systems with methanol (MeOH), monoethylene glycol (MEG), and diethylene glycol (DEG) were conducted. Five concentrations of each inhibitor (maximum content 50 mass%) were studied in the pressure range of 4.9-8.4 MPa. The equilibrium temperature and pressure in the point of complete dissociation of methane hydrate during constant-rate heating combined with vigorous mixing of fluids (600 rpm) in a high-pressure vessel were determined. We compared our experimental points with reliable literature data. The coefficients of empirical equations are derived, which accurately describe hydrate equilibrium conditions for the studied systems. The effect of THI concentration and pressure on methane hydrate equilibrium temperature suppression was analyzed. In the second stage, we studied the kinetics of methane hydrate nucleation/growth in systems containing a polymeric KHI (0.5 mass% of N-vinylpyrrolidone and N-vinylcaprolactam copolymer) in water or THI aqueous solution. For this, temperatures, pressures, and subcoolings of methane hydrate onset were measured by rocking cell tests (RCS6 rig, ramp cooling at 1 K/h). Gas uptake curves characterizing the methane hydrate crystallization kinetics in the polythermal regime were obtained.

20.
Polymers (Basel) ; 15(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37960008

ABSTRACT

The elaboration of a low-cost and effective approach to synthesize hybrid composite materials based on the conventional thermoplastics and natural biopolymers is a sustainable alternative to the production of "traditional" plastics. Cellulose is one of the most abundant biopolymers. Its fibrils possess outstanding mechanical characteristics and, hence, attract considerable interest of researchers during recent decades. However, modification of the hydrophobic polymer matrix by cellulose fibrils is significantly complicated by the hydrophilic nature of the latter. In this study, we propose an effective and low-cost approach to the synthesis of polystyrene at the cellulose microfibrils composite material via the emulsion polymerization method. The obtained fibrous composite was comprehensively analyzed with FTIR spectroscopy, SEM, TGA, and DSC, and was further employed to produce sponge hybrid materials. We investigated the influence of the cellulose/polystyrene ratio on the density, porosity, pore volume, and water uptake of the obtained sponge materials. The sample containing 70 wt.% of cellulose demonstrated the best water absorption properties while preserving its shape, even after 24 h of floating on water. The produced sponge materials might be employed as sorption materials for the purification and desalination of waters of various origins, filtration, and collection of undesirable elements under specific industrial or natural conditions.

SELECTION OF CITATIONS
SEARCH DETAIL