Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Plant Biol (Stuttg) ; 22(6): 1041-1051, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32609914

ABSTRACT

Pseudophoenix ekmanii is a critically endangered palm species that can be found in the southeast of the Dominican Republic. The temperatures to which P. ekmanii seeds are exposed upon dispersal range from 32 to 23 °C (max and min) and can reach a low of approximately 20 °C in January. Our aim was to analyse the effect of suboptimal (20 °C) and optimal (30 °C) germination temperature on seed imbibition, moisture content, embryo growth and gene expression patterns in this tropical palm species. Seed imbibition was tracked using whole seeds, while moisture content was assessed for individual seed sections. Embryo and whole seed size were measured before and after full imbibition. For transcriptome sequencing, mRNA was extracted from embryo tissues only and the resulting reads were mapped against the Elaeis guineensis reference genome. Differentially expressed genes were identified after statistical analysis and subsequently probed for enrichment of Gene Ontology categories 'Biological process' and 'Cellular component'. Our results show that prolonged exposure to 20 °C slows whole seed and embryo imbibition and causes germination to be both delayed and inhibited. Embryonic transcriptome patterns associated with the negative regulation of germination by suboptimal temperature include up-regulation of ABA biosynthesis genes, ABA-responsive genes, as well as other genes previously related to physiological dormancy and inhibition of germination. Thus, our manuscript provides the first insights into the gene expression patterns involved in the response to suboptimal temperature during seed imbibition in a tropical palm species.


Subject(s)
Arecaceae , Gene Expression Regulation, Plant , Germination , Seeds , Temperature , Arecaceae/genetics , Genes, Plant/genetics , Germination/genetics , Seeds/genetics
2.
Astrobiology ; 9(4): 359-67, 2009 May.
Article in English | MEDLINE | ID: mdl-19413505

ABSTRACT

Once it was established that the spaceflight environment was not a drastic impediment to plant growth, a remaining space biology question was whether long-term spaceflight exposure could cause changes in subsequent generations, even if they were returned to a normal Earth environment. In this study, we used a genomic approach to address this question. We tested whether changes in gene expression patterns occur in wheat plants that are several generations removed from growth in space, compared to wheat plants with no spaceflight exposure in their lineage. Wheat flown on Mir for 167 days in 1991 formed viable seeds back on Earth. These seeds were grown on the ground for three additional generations. Gene expression of fourth-generation Mir flight leaves was compared to that of the control leaves by using custom-made wheat microarrays. The data were evaluated using analysis of variance, and transcript abundance of each gene was contrasted among samples with t-tests. After corrections were made for multiple tests, none of the wheat genes represented on the microarrays showed a statistically significant difference in expression between wheat that has spaceflight exposure in their lineage and plants with no spaceflight exposure. This suggests that exposure to the spaceflight environment in low Earth orbit space stations does not cause significant, heritable changes in gene expression patterns in plants.


Subject(s)
Extraterrestrial Environment , Gene Expression , Space Flight , Triticum/genetics , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis , Plant Leaves/metabolism , Triticum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL