Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
Add more filters

Publication year range
1.
Bioinformatics ; 39(1)2023 01 01.
Article in English | MEDLINE | ID: mdl-36477500

ABSTRACT

SUMMARY: Recently, an increasing number of methodological approaches have been proposed to tackle the complexity of metagenomics and microbiome data. In this scenario, reproducibility and replicability have become two critical issues, and the development of computational frameworks for the comparative evaluations of such methods is of utmost importance. Here, we present benchdamic, a Bioconductor package to benchmark methods for the identification of differentially abundant taxa. AVAILABILITY AND IMPLEMENTATION: benchdamic is available as an open-source R package through the Bioconductor project at https://bioconductor.org/packages/benchdamic/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Benchmarking , Software , Reproducibility of Results , Metagenomics
2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256164

ABSTRACT

Lignocellulose biomasses (LCB), including spent mushroom substrate (SMS), pose environmental challenges if not properly managed. At the same time, these renewable resources hold immense potential for biofuel and chemicals production. With the mushroom market growth expected to amplify SMS quantities, repurposing or disposal strategies are critical. This study explores the use of SMS for cultivating microbial communities to produce carbohydrate-active enzymes (CAZymes). Addressing a research gap in using anaerobic digesters for enriching microbiomes feeding on SMS, this study investigates microbial diversity and secreted CAZymes under varied temperatures (37 °C, 50 °C, and 70 °C) and substrates (SMS as well as pure carboxymethylcellulose, and xylan). Enriched microbiomes demonstrated temperature-dependent preferences for cellulose, hemicellulose, and lignin degradation, supported by thermal and elemental analyses. Enzyme assays confirmed lignocellulolytic enzyme secretion correlating with substrate degradation trends. Notably, thermogravimetric analysis (TGA), coupled with differential scanning calorimetry (TGA-DSC), emerged as a rapid approach for saccharification potential determination of LCB. Microbiomes isolated at mesophilic temperature secreted thermophilic hemicellulases exhibiting robust stability and superior enzymatic activity compared to commercial enzymes, aligning with biorefinery conditions. PCR-DGGE and metagenomic analyses showcased dynamic shifts in microbiome composition and functional potential based on environmental conditions, impacting CAZyme abundance and diversity. The meta-functional analysis emphasised the role of CAZymes in biomass transformation, indicating microbial strategies for lignocellulose degradation. Temperature and substrate specificity influenced the degradative potential, highlighting the complexity of environmental-microbial interactions. This study demonstrates a temperature-driven microbial selection for lignocellulose degradation, unveiling thermophilic xylanases with industrial promise. Insights gained contribute to optimizing enzyme production and formulating efficient biomass conversion strategies. Understanding microbial consortia responses to temperature and substrate variations elucidates bioconversion dynamics, emphasizing tailored strategies for harnessing their biotechnological potential.


Subject(s)
Agaricales , Microbiota , Microbial Consortia , Biofuels , Substrate Specificity , Bacteria/genetics
3.
J Proteome Res ; 22(12): 3866-3878, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37970754

ABSTRACT

Probiotics are live microorganisms that confer health benefits when administered in adequate amounts. They are used to promote gut health and alleviate various disorders. Recently, there has been an increasing interest in the potential effects of probiotics on human physiology. In the presented study, the effects of probiotic treatment on the metabolic profiles of human urine and serum using a nuclear magnetic resonance (NMR)-based metabonomic approach were investigated. Twenty-one healthy volunteers were enrolled in the study, and they received two different dosages of probiotics for 8 weeks. During the study, urine and serum samples were collected from volunteers before and during probiotic supplementation. The results showed that probiotics had a significant impact on the urinary and serum metabolic profiles without altering their phenotypes. This study demonstrated the effects of probiotics in terms of variations of metabolite levels resulting also from the different probiotic posology. Overall, the results suggest that probiotic administration may affect both urine and serum metabolomes, although more research is needed to understand the mechanisms and clinical implications of these effects. NMR-based metabonomic analysis of biofluids is a powerful tool for monitoring host-gut microflora dynamic interaction as well as for assessing the individual response to probiotic treatment.


Subject(s)
Body Fluids , Gastrointestinal Microbiome , Probiotics , Humans , Metabolome , Metabolomics
4.
Genomics ; 113(4): 1659-1670, 2021 07.
Article in English | MEDLINE | ID: mdl-33839269

ABSTRACT

Lactobacillaceae presents potential for interspecific Quorum Sensing (QS) in spontaneous cocoa fermentation, correlated with high abundance of luxS. Three Brazilian isolates from cocoa fermentation were characterized by Whole Genome Sequencing and luxS gene was surveyed in their genomes, in comparison with public databases. They were classified as Lactiplantibacillus plantarum, Limosilactobacillus fermentum and Pediococcus acidilactici. LuxS genes were conserved in core genomes of the novel isolates, but in some non-cocoa related Lactic Acid Bacteria (LAB) it was accessory and plasmid-borne. The conservation and horizontal acquisition of luxS reinforces that QS is determinant for bacterial adaptation in several environments, especially taking into account the luxS has been correlated with modulation of bacteriocin production, stress tolerance and biofilm formation. Therefore, in this paper, new clade and species-specific primers were designed for future application for screening of luxS gene in LAB to evaluate the adaptive potential to diverse food fermentations.


Subject(s)
Cacao , Lactobacillales , Limosilactobacillus fermentum , Bacteria/genetics , Cacao/genetics , Cacao/microbiology , Fermentation , Lactobacillales/genetics
5.
Plant J ; 103(4): 1420-1432, 2020 08.
Article in English | MEDLINE | ID: mdl-32391598

ABSTRACT

Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety "Big Star*" and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome-wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.


Subject(s)
Domestication , Genome, Plant/genetics , Prunus avium/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , DNA, Satellite/genetics , Genes, Plant/genetics , Genetic Variation/genetics , Genetics, Population
6.
New Phytol ; 231(2): 726-746, 2021 07.
Article in English | MEDLINE | ID: mdl-33567124

ABSTRACT

Plants undergo several developmental transitions during their life cycle. In grapevine, a perennial woody fruit crop, the transition from vegetative/green-to-mature/woody growth involves transcriptomic reprogramming orchestrated by a small group of genes encoding regulators, but the underlying molecular mechanisms are not fully understood. We investigated the function of the transcriptional regulator VviNAC33 by generating and characterizing transgenic overexpressing grapevine lines and a chimeric repressor, and by exploring its putative targets through a DNA affinity purification sequencing (DAP-seq) approach combined with transcriptomic data. We demonstrated that VviNAC33 induces leaf de-greening, inhibits organ growth and directly activates the expression of STAY-GREEN PROTEIN 1 (SGR1), which is involved in Chl and photosystem degradation, and AUTOPHAGY 8f (ATG8f), which is involved in the maturation of autophagosomes. Furthermore, we show that VviNAC33 directly inhibits AUXIN EFFLUX FACILITATOR PIN1, RopGEF1 and ATP SYNTHASE GAMMA CHAIN 1T (ATPC1), which are involved in photosystem II integrity and activity. Our results show that VviNAC33 plays a major role in terminating photosynthetic activity and organ growth as part of a regulatory network governing the vegetative-to-mature phase transition.


Subject(s)
Gene Expression Regulation, Plant , Plant Leaves , Fruit/genetics , Transcriptome/genetics
7.
Physiol Plant ; 173(3): 920-934, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34171137

ABSTRACT

miRNAs have been found to be key players in mineral homeostasis, both in the control of nutrient balance and in the response to toxic trace elements. However, the effect of Zn excess on miRNAs has not been elucidated; moreover, no data are present regarding miRNAs in hyperaccumulator species, where metal homeostasis is tightly regulated. Therefore, expression levels of mature miRNAs were measured by RNA-Seq in Zn-sensitive Arabidopsis thaliana grown in control conditions and upon high Zn, in soil and in Zn-hyperaccumulator Arabidopsis halleri grown in control conditions. Differential expression of notable miRNAs and their targets was confirmed by real-time RT-PCR. The comparison in A. thaliana revealed a small subset modulated upon Zn treatment that is associated with stress response and nutrient homeostasis. On the other hand, a more consistent group of miRNAs was differentially expressed in A. halleri compared with A. thaliana, reflecting inherent differences in nutritional requirements and response to stresses and plant growth and development. Overall, these results confirm the involvement of miRNAs in Zn homeostasis and support the hypothesis of distinct regulatory pathways in hyperaccumulator species.


Subject(s)
Arabidopsis Proteins , Arabidopsis , MicroRNAs , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Homeostasis , MicroRNAs/genetics , Nutrients , Zinc/metabolism
8.
Int J Mol Sci ; 22(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477914

ABSTRACT

Downy mildew, caused by Plasmopara viticola, is one of the most severe diseases of grapevine (Vitis vinifera L.). Genetic resistance is an effective and sustainable control strategy, but major resistance genes (encoding receptors for specific pathogen effectors) introgressed from wild Vitis species, although effective, may be non-durable because the pathogen can evolve to avoid specific recognition. Previous transcriptomic studies in the resistant species Vitis riparia highlighted the activation of signal transduction components during infection. The transfer of such components to V. vinifera might confer less specific and therefore more durable resistance. Here, we describe the generation of transgenic V. vinifera lines constitutively expressing the V. riparia E3 ubiquitin ligase gene VriATL156. Phenotypic and molecular analysis revealed that the transgenic plants were less susceptible to P. viticola than vector-only controls, confirming the role of this E3 ubiquitin ligase in the innate immune response. Two independent transgenic lines were selected for detailed analysis of the resistance phenotype by RNA-Seq and microscopy, revealing the profound reprogramming of transcription to achieve resistance that operates from the earliest stages of pathogen infection. The introduction of VriATL156 into elite grapevine cultivars could therefore provide an effective and sustainable control measure against downy mildew.


Subject(s)
Disease Resistance/genetics , Plant Diseases/genetics , Ubiquitin-Protein Ligases/genetics , Vitis/genetics , Gene Expression Regulation, Plant/genetics , Host-Pathogen Interactions/genetics , Oomycetes/pathogenicity , Plant Diseases/microbiology , Plant Proteins/genetics , Transcriptome/genetics
9.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32630002

ABSTRACT

Cytoplasmic male sterility (CMS) has always aroused interest among researchers and breeders, being a valuable resource widely exploited not only to breed F1 hybrid varieties but also to investigate genes that control stamen and pollen development. With the aim of identifying candidate genes for CMS in fennel, we adopted an effective strategy relying on the comparison between mitochondrial genomes (mtDNA) of both fertile and sterile genotypes. mtDNA raw reads derived from a CMS genotype were assembled in a single molecule (296,483 bp), while a draft mtDNA assembly (166,124 nucleotides, 94 contigs) was performed using male fertile sample (MF) sequences. From their annotation and alignment, two atp6-like sequences were identified. atp6-, the putative mutant copy with a 300 bp truncation at the 5'-end, was found only in the mtDNA of CMS samples, while the wild type copy (atp6+) was detected only in the MF mtDNA. Further analyses (i.e., reads mapping and Sanger sequencing), revealed an atp6+ copy also in CMS samples, probably in the nuclear DNA. However, qPCRs performed on different tissues proved that, despite its availability, atp6+ is expressed only in MF samples, while apt6- mRNA was always detected in CMS individuals. In the light of these findings, the energy deficiency model could explain the pollen deficiency observed in male sterile flower. atp6- could represent a gene whose mRNA is translated into a not-fully functional protein leading to suboptimal ATP production that guarantees essential cellular processes but not a high energy demand process such as pollen development. Our study provides novel insights into the fennel mtDNA genome and its atp6 genes, and paves the way for further studies aimed at understanding their functional roles in the determination of male sterility.


Subject(s)
Foeniculum/genetics , Genome, Mitochondrial , Mitochondrial Proton-Translocating ATPases/genetics , Plant Infertility/genetics , Base Sequence , Foeniculum/enzymology , Genes, Plant , Mitochondrial Proton-Translocating ATPases/metabolism , Polymorphism, Single Nucleotide
10.
Plant Physiol ; 178(3): 1187-1206, 2018 11.
Article in English | MEDLINE | ID: mdl-30224433

ABSTRACT

Grapevine (Vitis vinifera) is a model for the investigation of physiological and biochemical changes during the formation and ripening of nonclimacteric fleshy fruits. However, the order and complexity of the molecular events during fruit development remain poorly understood. To identify the key molecular events controlling berry formation and ripening, we created a highly detailed transcriptomic and metabolomic map of berry development, based on samples collected every week from fruit set to maturity in two grapevine genotypes for three consecutive years, resulting in 219 samples. Major transcriptomic changes were represented by coordinated waves of gene expression associated with early development, veraison (onset of ripening)/midripening, and late-ripening and were consistent across vintages. The two genotypes were clearly distinguished by metabolite profiles and transcriptional changes occurring primarily at the veraison/midripening phase. Coexpression analysis identified a core network of transcripts as well as variations in the within-module connections representing varietal differences. By focusing on transcriptome rearrangements close to veraison, we identified two rapid and successive shared transitions involving genes whose expression profiles precisely locate the timing of the molecular reprogramming of berry development. Functional analyses of two transcription factors, markers of the first transition, suggested that they participate in a hierarchical cascade of gene activation at the onset of ripening. This study defined the initial transcriptional events that mark and trigger the onset of ripening and the molecular network that characterizes the whole process of berry development, providing a framework to model fruit development and maturation in grapevine.


Subject(s)
Fruit/genetics , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Transcriptome , Vitis/genetics , Fruit/growth & development , Gene Expression Regulation, Developmental , Plant Proteins/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Vitis/growth & development
11.
BMC Bioinformatics ; 19(Suppl 15): 435, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30497367

ABSTRACT

BACKGROUND: "Omics" approaches may provide useful information for a deeper understanding of speciation events, diversification and function innovation. This can be achieved by investigating the molecular similarities at sequence level between species, allowing the definition of ortholog and paralog genes. However, the spreading of sequenced genome, often endowed with still preliminary annotations, requires suitable bioinformatics to be appropriately exploited in this framework. RESULTS: We presented here a multilevel comparative approach to investigate on genome evolutionary relationships and peculiarities of two fleshy fruit species of relevant agronomic interest, Solanum lycopersicum (tomato) and Vitis vinifera (grapevine). We defined 17,823 orthology relationships between tomato and grapevine reference gene annotations. The resulting orthologs are associated with the detected paralogs in each species, permitting the definition of gene networks, useful to investigate the different relationships. The reconciliation of the compared collections in terms of an updating of the functional descriptions was also exploited. All the results were made accessible in ComParaLogs, a dedicated bioinformatics platform available at http://biosrv.cab.unina.it/comparalogs/gene/search . CONCLUSIONS: The aim of the work was to suggest a reliable approach to detect all similarities of gene loci between two species based on the integration of results from different levels of information, such as the gene, the transcript and the protein sequences, overcoming possible limits due to exclusive protein versus protein comparisons. This to define reliable ortholog and paralog genes, as well as species specific gene loci in the two species, overcoming limits due to the possible draft nature of preliminary gene annotations. Moreover, reconciled functional descriptions, as well as common or peculiar enzymatic classes and protein domains from tomato and grapevine, together with the definition of species-specific gene sets after the pairwise comparisons, contributed a comprehensive set of information useful to comparatively exploit the two species gene annotations and investigate on differences between species with climacteric and non-climacteric fruits. In addition, the definition of networks of ortholog genes and of associated paralogs, and the organization of web-based interfaces for the exploration of the results, defined a friendly computational bench-work in support of comparative analyses between two species.


Subject(s)
Biological Evolution , Computational Biology/methods , Molecular Sequence Annotation , Multilevel Analysis , Solanum lycopersicum/genetics , Vitis/genetics , Gene Expression Regulation, Plant , Gene Regulatory Networks , Genome, Plant , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
12.
BMC Microbiol ; 18(1): 133, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30326838

ABSTRACT

BACKGROUND: Bacillus licheniformis GL174 is a culturable endophytic strain isolated from Vitis vinifera cultivar Glera, the grapevine mainly cultivated for the Prosecco wine production. This strain was previously demonstrated to possess some specific plant growth promoting traits but its endophytic attitude and its role in biocontrol was only partially explored. In this study, the potential biocontrol action of the strain was investigated in vitro and in vivo and, by genome sequence analyses, putative functions involved in biocontrol and plant-bacteria interaction were assessed. RESULTS: Firstly, to confirm the endophytic behavior of the strain, its ability to colonize grapevine tissues was demonstrated and its biocontrol properties were analyzed. Antagonism test results showed that the strain could reduce and inhibit the mycelium growth of diverse plant pathogens in vitro and in vivo. The strain was demonstrated to produce different molecules of the lipopeptide class; moreover, its genome was sequenced, and analysis of the sequences revealed the presence of many protein-coding genes involved in the biocontrol process, such as transporters, plant-cell lytic enzymes, siderophores and other secondary metabolites. CONCLUSIONS: This step-by-step analysis shows that Bacillus licheniformis GL174 may be a good biocontrol agent candidate, and describes some distinguished traits and possible key elements involved in this process. The use of this strain could potentially help grapevine plants to cope with pathogen attacks and reduce the amount of chemicals used in the vineyard.


Subject(s)
Bacillus licheniformis/physiology , Biological Control Agents , Vitis/microbiology , Bacillus licheniformis/genetics , Biodiversity , Endophytes/genetics , Endophytes/physiology , Genome, Bacterial , Phylogeny , Plant Diseases/microbiology , Plant Leaves/microbiology , Plant Roots/microbiology , Sequence Analysis, DNA , Whole Genome Sequencing
13.
Plant Physiol ; 173(4): 2180-2195, 2017 04.
Article in English | MEDLINE | ID: mdl-28235889

ABSTRACT

Grapevine (Vitis vinifera) is routinely grafted, and rootstocks inducing drought tolerance represent a source for adapting vineyards to climate change in temperate areas. Our goal was to investigate drought stress effects on microRNA (miRNA) abundance in a drought-resistant grapevine rootstock, M4 (Vitis vinifera × Vitis berlandieri), compared with a commercial cultivar, Cabernet Sauvignon, using their autografts and reciprocal grafts. RNA extracted from roots and leaves of droughted and irrigated plants of different graft combinations was used to prepare cDNA libraries for small RNA sequencing and to analyze miRNAs by quantitative real-time polymerase chain reaction (RT-qPCR). Measurements of leaf water potential, leaf gas exchange, and root hydraulic conductance attested that, under irrigation, M4 reduced water loss in comparison with cultivar Cabernet Sauvignon mostly through nonhydraulic, root-specific mechanisms. Under drought, stomatal conductance decreased at similar levels in the two genotypes. Small RNA sequencing allowed the identification of 70 conserved miRNAs and the prediction of 28 novel miRNAs. Different accumulation trends of miRNAs, observed upon drought and in different genotypes and organs, were confirmed by RT-qPCR Corresponding target transcripts, predicted in silico and validated by RT-qPCR, often showed opposite expression profiles than the related miRNAs. Drought effects on miRNA abundance differed between the two genotypes. Furthermore, the concentration of drought-responsive miRNAs in each genotype was affected by reciprocal grafting, suggesting either the movement of signals inducing miRNA expression in the graft partner or, possibly, miRNA transport between scion and rootstock. These results open new perspectives in the selection of rootstocks for improving grapevine adaptation to drought.


Subject(s)
Droughts , Gene Expression Regulation, Plant , MicroRNAs/genetics , Vitis/genetics , Adaptation, Physiological , Agriculture/methods , Carbon Dioxide/metabolism , Gene Expression Profiling/methods , Genotype , MicroRNAs/metabolism , Oxygen/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Species Specificity , Stress, Physiological , Vitis/classification , Vitis/metabolism , Water/metabolism
14.
Int J Mol Sci ; 19(5)2018 May 08.
Article in English | MEDLINE | ID: mdl-29738455

ABSTRACT

The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.


Subject(s)
Biomarkers , Glucocorticoids/adverse effects , Inflammatory Bowel Diseases/drug therapy , MicroRNAs/genetics , Adolescent , Child , Female , Gene Expression Regulation/drug effects , Glucocorticoids/administration & dosage , High-Throughput Nucleotide Sequencing , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/pathology , Male , Receptors, Glucocorticoid/genetics , Transcriptome/drug effects
15.
Dev Dyn ; 246(2): 116-134, 2017 02.
Article in English | MEDLINE | ID: mdl-27870483

ABSTRACT

BACKGROUND: Lizards are amniotes regenerating the tail but not the limb, and no information on their different gene expression is available. RESULTS: Transcriptomes of regenerating tail and limb blastemas show differences in gene expression between the two organs. In tail blastemal, snoRNAs and Wnt signals appear up-regulated probably in association with the apical epidermal peg (AEP), an epithelial region that sustains tail regeneration but is absent in the limb. A balance between pro-oncogenes and tumor suppressors is likely present in tail blastema allowing a regulated proliferation. Small collagens, protease inhibitors, embryonic keratins are up-regulated in the regenerating tail blastema but not in the limb where Wnt inhibitors, inflammation-immune and extracellular matrix proteins depress cell growth. CONCLUSIONS: The AEP and the spinal cord in the tail maintains Wnt and fibroblast growth signaling that stimulate blastema cell proliferation and growth while these signals are absent in the limb as a consequence of the intense inflammation. Regeneration of amniote appendages requires a control of cell proliferation and inflammatory-immune reactions to form an apical epidermal cap. Genes that control cell proliferation and inflammation, addressing regeneration and not tumor formation in the tail and scarring in the limb are discussed for future studies. Developmental Dynamics 246:116-134, 2017. © 2016 Wiley Periodicals, Inc.


Subject(s)
Extremities/physiology , Gene Expression Profiling , Lizards/physiology , Regeneration/genetics , Tail/physiology , Animals , Cell Proliferation/genetics , Cicatrix , Gene Expression Regulation , Inflammation/genetics , Organogenesis , Wound Healing/genetics
16.
BMC Bioinformatics ; 18(1): 225, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28454514

ABSTRACT

BACKGROUND: Whole genome and exome sequencing are contributing to the extraordinary progress in the study of human genetic variants. In this fast developing field, appropriate and easily accessible tools are required to facilitate data analysis. RESULTS: Here we describe QueryOR, a web platform suitable for searching among known candidate genes as well as for finding novel gene-disease associations. QueryOR combines several innovative features that make it comprehensive, flexible and easy to use. Instead of being designed on specific datasets, it works on a general XML schema specifying formats and criteria of each data source. Thanks to this flexibility, new criteria can be easily added for future expansion. Currently, up to 70 user-selectable criteria are available, including a wide range of gene and variant features. Moreover, rather than progressively discarding variants taking one criterion at a time, the prioritization is achieved by a global positive selection process that considers all transcript isoforms, thus producing reliable results. QueryOR is easy to use and its intuitive interface allows to handle different kinds of inheritance as well as features related to sharing variants in different patients. QueryOR is suitable for investigating single patients, families or cohorts. CONCLUSIONS: QueryOR is a comprehensive and flexible web platform eligible for an easy user-driven variant prioritization. It is freely available for academic institutions at http://queryor.cribi.unipd.it/ .


Subject(s)
Databases, Genetic , Genetic Variation , Software , Disease/genetics , Exome , Genome, Human , Humans , Internet
17.
Plant Physiol ; 171(4): 2468-82, 2016 08.
Article in English | MEDLINE | ID: mdl-27325666

ABSTRACT

The seawater microalga Nannochloropsis gaditana is capable of accumulating a large fraction of reduced carbon as lipids. To clarify the molecular bases of this metabolic feature, we investigated light-driven lipid biosynthesis in Nannochloropsis gaditana cultures combining the analysis of photosynthetic functionality with transcriptomic, lipidomic and metabolomic approaches. Light-dependent alterations are observed in amino acid, isoprenoid, nucleic acid, and vitamin biosynthesis, suggesting a deep remodeling in the microalgal metabolism triggered by photoadaptation. In particular, high light intensity is shown to affect lipid biosynthesis, inducing the accumulation of diacylglyceryl-N,N,N-trimethylhomo-Ser and triacylglycerols, together with the up-regulation of genes involved in their biosynthesis. Chloroplast polar lipids are instead decreased. This situation correlates with the induction of genes coding for a putative cytosolic fatty acid synthase of type 1 (FAS1) and polyketide synthase (PKS) and the down-regulation of the chloroplast fatty acid synthase of type 2 (FAS2). Lipid accumulation is accompanied by the regulation of triose phosphate/inorganic phosphate transport across the chloroplast membranes, tuning the carbon metabolic allocation between cell compartments, favoring the cytoplasm, mitochondrion, and endoplasmic reticulum at the expense of the chloroplast. These results highlight the high flexibility of lipid biosynthesis in N. gaditana and lay the foundations for a hypothetical mechanism of regulation of primary carbon partitioning by controlling metabolite allocation at the subcellular level.


Subject(s)
Carbon/metabolism , Gene Expression Regulation/radiation effects , Lipid Metabolism/radiation effects , Photosynthesis/radiation effects , Stramenopiles/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , Down-Regulation/radiation effects , Light , Microalgae , Stramenopiles/radiation effects , Triglycerides/metabolism , Up-Regulation/radiation effects
18.
BMC Genomics ; 17: 275, 2016 Apr 02.
Article in English | MEDLINE | ID: mdl-27038623

ABSTRACT

BACKGROUND: We performed an analysis of the transcriptome during the blastogenesis of the chordate Botryllus schlosseri, focusing in particular on genes involved in cell death by apoptosis. The tunicate B. schlosseri is an ascidian forming colonies characterized by the coexistence of three blastogenetic generations: filter-feeding adults, buds on adults, and budlets on buds. Cyclically, adult tissues undergo apoptosis and are progressively resorbed and replaced by their buds originated by asexual reproduction. This is a feature of colonial tunicates, the only known chordates that can reproduce asexually. RESULTS: Thanks to a newly developed web-based platform ( http://botryllus.cribi.unipd.it ), we compared the transcriptomes of the mid-cycle, the pre-take-over, and the take-over phases of the colonial blastogenetic cycle. The platform is equipped with programs for comparative analysis and allows to select the statistical stringency. We enriched the genome annotation with 11,337 new genes; 581 transcripts were resolved as complete open reading frames, translated in silico into amino acid sequences and then aligned onto the non-redundant sequence database. Significant differentially expressed genes were classified within the gene ontology categories. Among them, we recognized genes involved in apoptosis activation, de-activation, and regulation. CONCLUSIONS: With the current work, we contributed to the improvement of the first released B. schlosseri genome assembly and offer an overview of the transcriptome changes during the blastogenetic cycle, showing up- and down-regulated genes. These results are important for the comprehension of the events underlying colony growth and regression, cell proliferation, colony homeostasis, and competition among different generations.


Subject(s)
Reproduction, Asexual/genetics , Transcriptome , Urochordata/genetics , Animals , Apoptosis/genetics , Cell Death , Chromosome Mapping , Gene Library , Genome , Molecular Sequence Annotation , Open Reading Frames , Urochordata/growth & development
19.
Histochem Cell Biol ; 143(6): 583-97, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25585647

ABSTRACT

Muscle-specific mechanosensors Ankrd2/Arpp (ankyrin repeat protein 2) and Ankrd1/CARP (cardiac ankyrin repeat protein) have an important role in transcriptional regulation, myofibrillar assembly, cardiogenesis and myogenesis. In skeletal muscle myofibrils, Ankrd2 has a structural role as a component of a titin associated stretch-sensing complex, while in the nucleus it exerts regulatory function as transcriptional co-factor. It is also involved in myogenic differentiation and coordination of myoblast proliferation. Although expressed in the heart, the role of Ankrd2 in the cardiac muscle is completely unknown. Recently, we have shown that hypertrophic and dilated cardiomyopathy pathways are altered upon Ankrd2 silencing suggesting the importance of this protein in cardiac tissue. Here we provide the underlying basis for the functional investigation of Ankrd2 in the heart. We confirmed reduced Ankrd2 expression levels in human heart in comparison with Ankrd1 using RNAseq and Western blot. For the first time we demonstrated that, apart from the sarcomere and nucleus, both proteins are localized to the intercalated disks of human cardiomyocytes. We further tested the expression and localization of endogenous Ankrd2 in rat neonatal cardiomyocytes, a well-established model for studying cardiac-specific proteins. Ankrd2 was found to be expressed in both the cytoplasm and nucleus, independently from maturation status of cardiomyocytes. In contrast to Ankrd1, it is not responsive to the cardiotoxic drug Doxorubicin, suggesting that different mechanisms govern their expression in cardiac cells.


Subject(s)
Muscle Proteins/analysis , Muscle, Skeletal/chemistry , Myocardium/chemistry , Myocytes, Cardiac/chemistry , Myocytes, Cardiac/metabolism , Nuclear Proteins/analysis , Repressor Proteins/analysis , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Humans , Immunohistochemistry , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Myocardium/cytology , Myocardium/metabolism , Myocytes, Cardiac/cytology , Nuclear Proteins/metabolism , Rats , Rats, Wistar , Repressor Proteins/metabolism
20.
J Exp Bot ; 66(19): 5739-52, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26038306

ABSTRACT

In light of ongoing climate changes in wine-growing regions, the selection of drought-tolerant rootstocks is becoming a crucial factor for developing a sustainable viticulture. In this study, M4, a new rootstock genotype that shows tolerance to drought, was compared from a genomic and transcriptomic point of view with the less drought-tolerant genotype 101.14. The root and leaf transcriptome of both 101.14 and the M4 rootstock genotype was analysed, following exposure to progressive drought conditions. Multifactorial analyses indicated that stress treatment represents the main factor driving differential gene expression in roots, whereas in leaves the genotype is the prominent factor. Upon stress, M4 roots and leaves showed a higher induction of resveratrol and flavonoid biosynthetic genes, respectively. The higher expression of VvSTS genes in M4, confirmed by the accumulation of higher levels of resveratrol in M4 roots compared with 101.14, was coupled to an up-regulation of several VvWRKY transcription factors. Interestingly, VvSTS promoter analyses performed on both the resequenced genomes highlighted a significantly higher number of W-BOX elements in the tolerant genotype. It is proposed that the elevated synthesis of resveratrol in M4 roots upon water stress could enhance the plant's ability to cope with the oxidative stress usually associated with water deficit.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Genome, Plant , Plant Proteins/genetics , Transcriptome , Vitis/physiology , Climate Change , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Stress, Physiological , Vitis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL