Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
J Biol Chem ; 298(11): 102546, 2022 11.
Article in English | MEDLINE | ID: mdl-36181793

ABSTRACT

Heparan sulfate (HS) proteoglycans (HSPGs) are abundant glycoconjugates in cells' glycocalyx and extracellular matrix. By acting as scaffolds for protein-protein interactions, HSPGs modulate extracellular ligand gradients, cell signaling networks, and cell-extracellular matrix crosstalk. Aberrant expression of HSPGs and enzymes involved in HSPG biosynthesis and processing has been reported in tumors, with impact in cancer cell behavior and tumor microenvironment properties. However, the roles of specific glycosyltransferases in the deregulated biosynthesis of HSPGs are not fully understood. In this study, we established glycoengineered gastric cancer cell models lacking either exostosin-like glycosyltransferase 2 (EXTL2) or EXTL3 and revealed their regulatory roles in both HS and chondroitin sulfate (CS) biosynthesis and structural features. We showed that EXTL3 is key for initiating the synthesis of HS chains in detriment of CS biosynthesis, intervening in the fine-tuned balance of the HS/CS ratio in cells, while EXTL2 functions as a negative regulator of HS biosynthesis, with impact over the glycoproteome of gastric cancer cells. We demonstrated that KO of EXTL2 enhanced HS levels along with concomitant upregulation of Syndecan-4, which is a major cell surface carrier of HS. This aberrant HS expression profile promoted a more aggressive phenotype, characterized by higher cellular motility and invasion, and impaired activation of Ephrin type-A 4 cell surface receptor tyrosine kinase. Our findings uncover the biosynthetic roles of EXTL2 and EXTL3 in the regulation of cancer cell GAGosylation and proteoglycans expression and unravel the functional consequences of aberrant HS/CS balance in cellular malignant features.


Subject(s)
Heparitin Sulfate , Stomach Neoplasms , Humans , Heparitin Sulfate/metabolism , Stomach Neoplasms/genetics , Glycosyltransferases/genetics , Heparan Sulfate Proteoglycans , Cell Movement , Tumor Microenvironment , N-Acetylglucosaminyltransferases/genetics , Membrane Proteins
2.
Proc Natl Acad Sci U S A ; 116(14): 6760-6765, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30872481

ABSTRACT

Heparan sulfate (HS) is a linear, complex polysaccharide that modulates the biological activities of proteins through binding sites made by a series of Golgi-localized enzymes. Of these, glucuronyl C5-epimerase (Glce) catalyzes C5-epimerization of the HS component, d-glucuronic acid (GlcA), into l-iduronic acid (IdoA), which provides internal flexibility to the polymer and forges protein-binding sites to ensure polymer function. Here we report crystal structures of human Glce in the unbound state and of an inactive mutant, as assessed by real-time NMR spectroscopy, bound with a (GlcA-GlcNS)n substrate or a (IdoA-GlcNS)n product. Deep infiltration of the oligosaccharides into the active site cleft imposes a sharp kink within the central GlcNS-GlcA/IdoA-GlcNS trisaccharide motif. An extensive network of specific interactions illustrates the absolute requirement of N-sulfate groups vicinal to the epimerization site for substrate binding. At the epimerization site, the GlcA/IdoA rings are highly constrained in two closely related boat conformations, highlighting ring-puckering signatures during catalysis. The structure-based mechanism involves the two invariant acid/base residues, Glu499 and Tyr578, poised on each side of the target uronic acid residue, thus allowing reversible abstraction and readdition of a proton at the C5 position through a neutral enol intermediate, reminiscent of mandelate racemase. These structures also shed light on a convergent mechanism of action between HS epimerases and lyases and provide molecular frameworks for the chemoenzymatic synthesis of heparin or HS analogs.


Subject(s)
Carbohydrate Epimerases/chemistry , Glucuronic Acid/chemistry , Heparin/chemistry , Oligosaccharides/chemistry , Binding Sites , Carbohydrate Epimerases/genetics , Catalysis , Crystallography, X-Ray , HEK293 Cells , Humans , Structure-Activity Relationship , Substrate Specificity
3.
J Am Soc Nephrol ; 32(6): 1371-1388, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33758009

ABSTRACT

BACKGROUND: Dyslipidemia is an important risk factor in CKD. The liver clears triglyceride-rich lipoproteins (TRL) via LDL receptor (LDLR), LDLR-related protein-1 (LRP-1), and heparan sulfate proteoglycans (HSPGs), mostly syndecan-1. HSPGs also facilitate LDLR degradation by proprotein convertase subtilisin/kexin type 9 (PCSK9). Progressive renal failure affects the structure and activity of hepatic lipoprotein receptors, PCSK9, and plasma cholesterol. METHODS: Uninephrectomy- and aging-induced CKD in normotensive Wistar rats and hypertensive Munich-Wistar-Frömter (MWF) rats. RESULTS: Compared with 22-week-old sex- and strain-matched rats, 48-week-old uninephrectomized Wistar-CKD and MWF-CKD rats showed proteinuria, increased plasma creatinine, and hypercholesterolemia (all P<0.05), which were most apparent in hypertensive MWF-CKD rats. Hepatic PCSK9 expression increased in both CKD groups (P<0.05), with unusual sinusoidal localization, which was not seen in 22-week-old rats. Heparan sulfate (HS) disaccharide analysis, staining with anti-HS mAbs, and mRNA expression of HS polymerase exostosin-1 (Ext-1), revealed elongated HS chains in both CKD groups. Solid-phase competition assays showed that the PCSK9 interaction with heparin-albumin (HS-proteoglycan analogue) was critically dependent on polysaccharide chain length. VLDL binding to HS from CKD livers was reduced (P<0.05). Proteinuria and plasma creatinine strongly associated with plasma cholesterol, PCSK9, and HS changes. CONCLUSIONS: Progressive CKD induces hepatic HS elongation, leading to increased interaction with PCSK9. This might reduce hepatic lipoprotein uptake and thereby induce dyslipidemia in CKD. Therefore, PCSK9/HS may be a novel target to control dyslipidemia.


Subject(s)
Aging , Heparan Sulfate Proteoglycans/metabolism , Hypercholesterolemia/metabolism , Liver/metabolism , Proprotein Convertase 9/metabolism , Renal Insufficiency, Chronic/metabolism , Animals , Cholesterol/blood , Creatinine/blood , Disaccharides/metabolism , Disease Models, Animal , Disease Progression , Heparan Sulfate Proteoglycans/analogs & derivatives , Hypercholesterolemia/complications , Hypertension/complications , Hypertension/metabolism , Lipoproteins, VLDL/metabolism , Male , N-Acetylglucosaminyltransferases/genetics , Nephrectomy , Proprotein Convertase 9/genetics , Rats, Wistar , Renal Insufficiency, Chronic/complications , Renal Insufficiency, Chronic/physiopathology , Syndecan-1/genetics , Syndecan-1/metabolism
4.
Glycobiology ; 31(11): 1531-1542, 2021 12 18.
Article in English | MEDLINE | ID: mdl-34324645

ABSTRACT

Fractones, specialized extracellular matrix structures found in the subventricular zone (SVZ) neurogenic niche, can capture growth factors, such as basic fibroblast growth factor, from the extracellular milieu through a heparin-binding mechanism for neural stem cell (NSC) presentation, which promotes neurogenesis. During aging, a decline in neurogenesis correlates with a change in the composition of heparan sulfate (HS) within fractones. In this study, we used antibodies that recognize specific short oligosaccharides with varying sulfation to evaluate the HS composition in fractones in young and aged brains. To further understand the conditions that regulate 6-O sulfation levels and its impact on neurogenesis, we used endosulfatase Sulf1 and Sulf2 double knockout (DKO) mice. Fractones in the SVZ of Sulf1/2 DKO mice showed immunoreactivity for the HS epitope, suggesting higher 6-O sulfation. While neurogenesis declined in the aged SVZ of both wild-type and Sulf1/2 DKO mice, we observed a larger number of neuroblasts in the young and aged SVZ of Sulf1/2 DKO mice. Together, these results show that the removal of 6-O-sulfation in fractones HS by endosulfatases inhibits neurogenesis in the SVZ. Our findings advance the current understanding regarding the extracellular environment that is best suited for NSCs to thrive, which is critical for the design of future stem cell therapies.


Subject(s)
Heparitin Sulfate/metabolism , Lateral Ventricles/metabolism , Sulfatases/metabolism , Sulfotransferases/metabolism , Animals , Extracellular Matrix , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Mice, Knockout , Neurogenesis , Stem Cell Niche , Sulfatases/deficiency , Sulfotransferases/deficiency
5.
Kidney Int ; 99(6): 1369-1381, 2021 06.
Article in English | MEDLINE | ID: mdl-33609572

ABSTRACT

Hepatic uptake of triglyceride-rich remnant lipoproteins is mediated by the low-density lipoprotein receptor, a low-density lipoprotein receptor related protein and the heparan sulfate proteoglycan, syndecan-1. Heparan sulfate proteoglycan also mediates low-density lipoprotein receptor degradation by a regulator of cholesterol homeostasis, proprotein convertase subtilisin kexin type 9 (PCSK9), thereby hampering triglyceride-rich remnant lipoproteins uptake. In this study, we investigated the effects of proteinuria on PCSK9, hepatic heparan sulfate proteoglycan and plasma triglyceride-rich remnant lipoproteins. Adriamycin-injected rats developed proteinuria, elevated triglycerides and total cholesterol (all significantly increased). Proteinuria associated with triglycerides and total cholesterol and serum PCSK9 (all significant associations) without loss of the low-density lipoprotein receptor as evidenced by immunofluorescence staining and western blotting. In proteinuric rats, PCSK9 accumulated in sinusoids, whereas in control rats PCSK9 was localized in the cytoplasm of hepatocytes. Molecular profiling revealed that the heparan sulfate side chains of heparan sulfate proteoglycan to be hypersulfated in proteinuric rats. Competition assays revealed sulfation to be a major determinant for PCSK9 binding. PCSK9 partly colocalized with hypersulfated heparan sulfate in proteinuric rats, but not in control rats. Hence, proteinuria induces hypersulfated hepatic heparan sulfate proteoglycans, increasing their affinity to PCSK9. This might impair hepatic triglyceride-rich remnant lipoproteins uptake, causing proteinuria-associated dyslipidemia. Thus, our study reveals PCSK9/heparan sulfate may be a novel target to control dyslipidemia.


Subject(s)
Liver/enzymology , Proprotein Convertase 9 , Proteinuria , Receptors, LDL , Animals , Heparitin Sulfate , Proteinuria/chemically induced , Rats , Receptors, LDL/genetics , Subtilisins
6.
Ann Neurol ; 85(3): 406-420, 2019 03.
Article in English | MEDLINE | ID: mdl-30635946

ABSTRACT

OBJECTIVE: The two related tumor necrosis factor members a proliferation-inducing ligand (APRIL) and B-cell activation factor (BAFF) are currently targeted in autoimmune diseases as B-cell regulators. In multiple sclerosis (MS), combined APRIL/BAFF blockade led to unexpected exacerbated inflammation in the central nervous system (CNS) of patients. Here, we investigate the role of the APRIL/BAFF axis in the CNS. METHODS: APRIL expression was analyzed in MS lesions by immunohistochemistry. The in vivo role of APRIL was assessed in the murine MS model, experimental autoimmune encephalitis (EAE). Functional in vitro studies were performed with human and mouse astrocytes. RESULTS: APRIL was expressed in lesions from EAE. In its absence, the disease was worst. Lesions from MS patients also showed APRIL expression upon infiltration of macrophages. Notably, all the APRIL secreted by these macrophages specifically targeted astrocytes. The upregulation of chondroitin sulfate proteoglycan, sometimes bearing chondroitin sulfate of type E sugar moieties, binding APRIL, in reactive astrocytes explained the latter selectivity. Astrocytes responded to APRIL by producing a sufficient amount of IL-10 to dampen antigen-specific T-cell proliferation and pathogenic cytokine secretion. Finally, an intraspinal delivery of recombinant APRIL before disease onset, shortly reduced EAE symptoms. Repeated intravenous injections of recombinant APRIL before and even at disease onset also had an effect. INTERPRETATION: Our data show that APRIL mediates an anti-inflammatory response from astrocytes in MS lesions. This protective activity is not shared with BAFF. ANN NEUROL 2019;85:406-420.


Subject(s)
Astrocytes/metabolism , B-Cell Activating Factor/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Multiple Sclerosis/metabolism , Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism , Adult , Aged , Animals , Astrocytes/immunology , Astrocytes/pathology , Cell Proliferation , Chondroitin Sulfate Proteoglycans/metabolism , Chondroitin Sulfates/metabolism , Cytokines/immunology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/immunology , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Humans , Immunohistochemistry , Interleukin-10/immunology , Macrophages/pathology , Male , Mice , Mice, Knockout , Middle Aged , Multiple Sclerosis/immunology , Multiple Sclerosis/pathology , Reverse Transcriptase Polymerase Chain Reaction , T-Lymphocytes/immunology , Tumor Necrosis Factor Ligand Superfamily Member 13/genetics , Tumor Necrosis Factor Ligand Superfamily Member 13/pharmacology
7.
Cell Mol Life Sci ; 76(9): 1807-1819, 2019 May.
Article in English | MEDLINE | ID: mdl-30788513

ABSTRACT

Through their ability to edit 6-O-sulfation pattern of Heparan sulfate (HS) polysaccharides, Sulf extracellular endosulfatases have emerged as critical regulators of many biological processes, including tumor progression. However, study of Sulfs remains extremely intricate and progress in characterizing their functional and structural features has been hampered by limited access to recombinant enzyme. In this study, we unlock this critical bottleneck, by reporting an efficient expression and purification system of recombinant HSulf-2 in mammalian HEK293 cells. This novel source of enzyme enabled us to investigate the way the enzyme domain organization dictates its functional properties. By generating mutants, we confirmed previous studies that HSulf-2 catalytic (CAT) domain was sufficient to elicit arylsulfatase activity and that its hydrophilic (HD) domain was necessary for the enzyme 6-O-endosulfatase activity. However, we demonstrated for the first time that high-affinity binding of HS substrates occurred through the coordinated action of both domains, and we identified and characterized 2 novel HS binding sites within the CAT domain. Altogether, our findings contribute to better understand the molecular mechanism governing HSulf-2 substrate recognition and processing. Furthermore, access to purified recombinant protein opens new perspectives for the resolution of HSulf structure and molecular features, as well as for the development of Sulf-specific inhibitors.


Subject(s)
Catalytic Domain/genetics , Heparitin Sulfate/chemistry , Sulfotransferases/genetics , Sulfotransferases/metabolism , Binding Sites/genetics , Cell Line , HEK293 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Protein Binding/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Substrate Specificity/genetics , Sulfatases , Sulfotransferases/biosynthesis
8.
Molecules ; 25(18)2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32937952

ABSTRACT

Glycosylation is a common and widespread post-translational modification that affects a large majority of proteins. Of these, a small minority, about 20, are specifically modified by the addition of heparan sulfate, a linear polysaccharide from the glycosaminoglycan family. The resulting molecules, heparan sulfate proteoglycans, nevertheless play a fundamental role in most biological functions by interacting with a myriad of proteins. This large functional repertoire stems from the ubiquitous presence of these molecules within the tissue and a tremendous structural variety of the heparan sulfate chains, generated through both biosynthesis and post synthesis mechanisms. The present review focusses on how proteoglycans are "gagosylated" and acquire structural complexity through the concerted action of Golgi-localized biosynthesis enzymes and extracellular modifying enzymes. It examines, in particular, the possibility that these enzymes form complexes of different modes of organization, leading to the synthesis of various oligosaccharide sequences.


Subject(s)
Golgi Apparatus/metabolism , Heparan Sulfate Proteoglycans/biosynthesis , Heparitin Sulfate/metabolism , Animals , Cell Membrane/metabolism , Extracellular Matrix/metabolism , Glycosaminoglycans/metabolism , Glycosylation , Heparan Sulfate Proteoglycans/chemistry , Humans , Mutation , Oligosaccharides/chemistry , Protein Biosynthesis , Protein Domains , Protein Processing, Post-Translational
9.
Am J Physiol Lung Cell Mol Physiol ; 317(5): L667-L677, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31461325

ABSTRACT

Sepsis patients are at increased risk for hospital-acquired pulmonary infections, potentially due to postseptic immunosuppression known as the compensatory anti-inflammatory response syndrome (CARS). CARS has been attributed to leukocyte dysfunction, with an unclear role for endothelial cells. The pulmonary circulation is lined by an endothelial glycocalyx, a heparan sulfate-rich layer essential to pulmonary homeostasis. Heparan sulfate degradation occurs early in sepsis, leading to lung injury. Endothelial synthesis of new heparan sulfates subsequently allows for glycocalyx reconstitution and endothelial recovery. We hypothesized that remodeling of the reconstituted endothelial glycocalyx, mediated by alterations in the endothelial machinery responsible for heparan sulfate synthesis, contributes to CARS. Seventy-two hours after experimental sepsis, coincident with glycocalyx reconstitution, mice demonstrated impaired neutrophil and protein influx in response to intratracheal lipopolysaccharide (LPS). The postseptic reconstituted glycocalyx was structurally remodeled, with enrichment of heparan sulfate disaccharides sulfated at the 6-O position of glucosamine. Increased 6-O-sulfation coincided with loss of endothelial sulfatase-1 (Sulf-1), an enzyme that specifically removes 6-O-sulfates from heparan sulfate. Intravenous administration of Sulf-1 to postseptic mice restored the pulmonary response to LPS, suggesting that loss of Sulf-1 was necessary for postseptic suppression of pulmonary inflammation. Endothelial-specific knockout mice demonstrated that loss of Sulf-1 was not sufficient to induce immunosuppression in non-septic mice. Knockdown of Sulf-1 in human pulmonary microvascular endothelial cells resulted in downregulation of the adhesion molecule ICAM-1. Taken together, our study indicates that loss of endothelial Sulf-1 is necessary for postseptic suppression of pulmonary inflammation, representing a novel endothelial contributor to CARS.


Subject(s)
Endothelial Cells/enzymology , Lung/immunology , Pneumonia/prevention & control , Sepsis/complications , Sulfotransferases/deficiency , Animals , Female , Glycocalyx/metabolism , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Pneumonia/etiology , Pneumonia/metabolism , Sepsis/chemically induced , Sepsis/pathology
10.
Glycobiology ; 28(7): 534-541, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29718295

ABSTRACT

The HS3ST3A1/B1 genes encode two homologous 3-O-sulfotransferases involved in the late modification step during heparan sulfate (HS) biosynthesis. In addition to the single nucleotide polymorphisms (SNPs) rs28470223 (C > T) in the promoter region of both HS3ST3A1 and rs62636623 (Gly/Arg) in the stem region of HS3ST3B1, three missense mutations (rs62056073, rs61729712 and rs9906590) located within the catalytic sulfotransferase domain of 3-OST-B1 are linked and associated to Plasmodium falciparum parasitaemia. To ascertain the functional effects of these SNP associations, we investigated the regulatory effect of rs28470223 and characterized the enzymatic activity of the missense SNP rs61729712 (Ser279Asn) localized at proximity of the substrate binding cleft. The SNP rs28470223 results in decreased promoter activity of HS3ST3A1 in K562 cells, suggesting a reduced in vivo transcription activity of the target gene. A comparative kinetic analysis of wt HS3ST3B1 and the Ser269Asn variant (rs61729712) using a HS-derived oligosaccharide substrate reveals a slightly higher catalytic activity for the SNP variant. These genetic and enzymatic studies suggest that genetic variations in enzymes responsible of HS 3-O-sulfation can modulate their promoter and enzymatic activities and may influence P. falciparum parasitaemia.


Subject(s)
Parasitemia/genetics , Plasmodium falciparum , Polymorphism, Single Nucleotide , Sulfotransferases/genetics , Binding Sites , Cell Line, Tumor , Heparitin Sulfate/metabolism , Humans , Mutation, Missense , Protein Binding , Sulfotransferases/chemistry , Sulfotransferases/metabolism
11.
Glycoconj J ; 34(3): 285-298, 2017 06.
Article in English | MEDLINE | ID: mdl-27812771

ABSTRACT

The biological properties of Heparan sulfate (HS) polysaccharides essentially rely on their ability to bind and modulate a multitude of protein ligands. These interactions involve internal oligosaccharide sequences defined by their sulfation patterns. Amongst these, the 6-O-sulfation of HS contributes significantly to the polysaccharide structural diversity and is critically involved in the binding of many proteins. HS 6-O-sulfation is catalyzed by 6-O-sulfotransferases (6OSTs) during biosynthesis, and it is further modified by the post-synthetic action of 6-O-endosulfatases (Sulfs), two enzyme families that remain poorly characterized. The aim of the present review is to summarize the contribution of 6-O-sulfates in HS structure/function relationships and to discuss the present knowledge on the complex mechanisms regulating HS 6-O-sulfation.


Subject(s)
Cytokines/chemistry , Glucosamine/analogs & derivatives , Heparitin Sulfate/chemistry , Intercellular Signaling Peptides and Proteins/chemistry , Nerve Tissue Proteins/chemistry , Sulfates/chemistry , Animals , Carbohydrate Conformation , Carbohydrate Sequence , Cytokines/metabolism , Glucosamine/chemistry , Glucosamine/metabolism , Heparitin Sulfate/metabolism , Humans , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Binding , Structure-Activity Relationship , Sulfates/metabolism , Sulfotransferases/chemistry , Sulfotransferases/metabolism
12.
Biochim Biophys Acta Gen Subj ; 1861(9): 2250-2260, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28602514

ABSTRACT

BACKGROUND: Jasmonates are plant hormones that exhibit anti-cancer and anti-inflammatory properties and have therefore raised interest for human health applications. The molecular basis of these activities remains poorly understood, although increasing evidence suggests that a variety of mechanisms may be involved. Recently, we have reported that a jasmonate derivative (JAD) displayed anti-aging effects on human skin by inducing extracellular matrix (ECM) remodeling. Based on this observation, we have investigated here the effects of JAD on proteoglycans and glycosaminoglycan (GAG) polysaccharides, which are major cell-surface/ECM components and are involved in a multitude of biological processes. In parallel, we have examined the ability of JAD to promote growth factor activities and improve skin wound healing. METHODS: Proteoglycan expression was analyzed on epidermal primary keratinocytes and reconstituted skin epidermis, using electron/immunofluorescence microscopy, western blotting and flow cytometry. GAG composition was determined by disaccharide analysis. Finally, biological activities of JAD were assessed in cellulo, in FGF-7 induced migration/proliferation assays, as well as in vivo, using a suction blister model performed on 24 healthy volunteers. RESULTS: JAD was found to induce expression of major skin proteoglycans and to induce subtle changes in GAG structure. In parallel, we showed that JAD promoted FGF-7 and improved skin healing by accelerating epithelial repair in vivo. CONCLUSION: This study highlights JAD as a promising compound for investigating GAG structure-function relationships and for applications in skin cosmetic /corrective strategies. GENERAL SIGNIFICANCE: We propose here a novel mechanism, by which jasmonate derivatives may elicit biological activities in mammals.


Subject(s)
Cyclopentanes/pharmacology , Glycosaminoglycans/chemistry , Oxylipins/pharmacology , Plant Growth Regulators/pharmacology , Proteoglycans/analysis , Skin/drug effects , Wound Healing/drug effects , Adult , Cells, Cultured , Fibroblast Growth Factor 7/pharmacology , Glycosaminoglycans/biosynthesis , Humans , Skin/metabolism , Skin Aging/drug effects , Structure-Activity Relationship
13.
J Am Chem Soc ; 137(12): 4100-10, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25747117

ABSTRACT

Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca(2+)-independent way, resulting in the proposal of a new binding site for GAGs. On the basis of those results, we have conducted a structural study of the interactions of small heparin (HEP)-like oligosaccharides with langerin in solution. Heparin bead cross-linking experiments, an approach specifically designed to identify HEP/heparan sulfate binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of langerin extracellular domain with 6 kDa HEP. High-resolution NMR studies of a set of eight synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca(2+)-dependent way. The binding epitopes were determined by saturation transfer difference NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups, OH3 and OH4, at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. This epitope is shared by all eight ligands, explaining the absence of any impact on binding from differences in their substitution patterns. Finally, in contrast to the small trisaccharides, we demonstrated that a longer HEP-like hexasaccharide, bearing an additional O-sulfate group at the non-reducing end, which precludes binding to the Ca(2+) site, interacts with langerin in the previously identified Ca(2+)-independent binding site.


Subject(s)
Antigens, CD/metabolism , Calcium/metabolism , Heparin/analogs & derivatives , Heparin/metabolism , Lectins, C-Type/metabolism , Mannose-Binding Lectins/metabolism , Oligosaccharides/metabolism , Amino Acid Sequence , Antigens, CD/chemistry , Binding Sites , Cations, Divalent/metabolism , Heparin/chemistry , Humans , Lectins, C-Type/chemistry , Mannose-Binding Lectins/chemistry , Molecular Docking Simulation , Molecular Sequence Data , Nuclear Magnetic Resonance, Biomolecular/methods , Oligosaccharides/chemistry , Trisaccharides/chemistry , Trisaccharides/metabolism
14.
FASEB J ; 27(6): 2431-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23457216

ABSTRACT

Sulfs are extracellular sulfatases that have emerged recently as critical regulators of heparan sulfate (HS) activities through their ability to catalyze specific 6-O-desulfation of the polysaccharide. Consequently, Sulfs have been involved in many physiological and pathological processes, and notably for Sulf-2, in the development of cancers with poor prognosis. Despite growing interest, little is known about the structure and activity of these enzymes and the way they induce dynamic remodeling of HS 6-O-sulfation status. Here, we have combined an array of analytical approaches, including mass spectrometry, NMR, HS oligosaccharide sequencing, and FACS, to dissect HSulf-2 sulfatase activity, either on a purified octasaccharide used as a mimic of HS functional domains, or on intact cell-surface HS chains. In parallel, we have studied the functional consequences of HSulf-2 activity on fibroblast growth factor (FGF)-induced mitogenesis and found that the enzyme could differentially regulate FGF1 and FGF2 activities. Notably, these data supported the existence of precise 6-O-sulfation patterns for FGF activation and provided new insights into the saccharide structures involved. Altogether, our data bring to light an original processive enzymatic mechanism, by which HSulfs catalyze oriented alteration of HS 6-O-desulfation patterns and direct fine and differential regulation of HS functions.


Subject(s)
Fibroblast Growth Factor 1/metabolism , Fibroblast Growth Factor 2/metabolism , Heparitin Sulfate/metabolism , Sulfotransferases/metabolism , Catalysis , Cell Line , Heparitin Sulfate/chemistry , Humans , Oligosaccharides/chemistry , Oligosaccharides/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Substrate Specificity , Sulfatases , Sulfotransferases/chemistry
15.
Adv Mater ; 36(11): e2312154, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38011916

ABSTRACT

Glycosaminoglycans (GAGs) play a crucial role in tissue homeostasis by regulating the activity and diffusion of bioactive molecules. Incorporating GAGs into biomaterials has emerged as a widely adopted strategy in medical applications, owing to their biocompatibility and ability to control the release of bioactive molecules. Nevertheless, immobilized GAGs on biomaterials can elicit distinct cellular responses compared to their soluble forms, underscoring the need to understand the interactions between GAG and bioactive molecules within engineered functional biomaterials. By controlling critical parameters such as GAG type, density, and sulfation, it becomes possible to precisely delineate GAG functions within a biomaterial context and to better mimic specific tissue properties, enabling tailored design of GAG-based biomaterials for specific medical applications. However, this requires access to pure and well-characterized GAG compounds, which remains challenging. This review focuses on different strategies for producing well-defined GAGs and explores high-throughput approaches employed to investigate GAG-growth factor interactions and to quantify cellular responses on GAG-based biomaterials. These automated methods hold considerable promise for improving the understanding of the diverse functions of GAGs. In perspective, the scientific community is encouraged to adopt a rational approach in designing GAG-based biomaterials, taking into account the in vivo properties of the targeted tissue for medical applications.


Subject(s)
Biocompatible Materials , Glycosaminoglycans
16.
Macromol Biosci ; : e2400169, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215622

ABSTRACT

Biomaterials are widely employed across diverse biomedical applications and represent an attractive strategy to explore how extracellular matrix components influence cellular response. In this study, the previously developed streptavidin platforms is aimed to use to investigate the role of glycosaminoglycans (GAGs) in bone morphogenetic protein 2 (BMP2) signaling. However, it is observed that the interpretation of findings is skewed due to the GAG-unrelated, non-specific binding of BMP2 on components of biomaterials. Non-specific adsorption of proteins is a recurrent and challenging issue for biomaterial studies. Despite the initial incorporation of anti-fouling polyethylene glycol (PEG) chains within biomaterials, the residual non-specific BMP2 adsorption still triggered BMP2 signaling within the same range as conditions of interest. The various options are explored to prevent BMP2 non-specific adsorption and a successful blocking condition involving a combination of bovine serum albumin and trehalose are identified. Furthermore, the effect of this blocking step improved when using gold platforms instead of glass, particularly with Chinese hamster ovary (CHO) cells. With this specific example, it is suggested that non-specific adsorption of BMPs on biomaterials may be a general concern - often undetected by classical surface-sensitive techniques - that needs to be addressed to better interpret cellular responses.

17.
Chem Commun (Camb) ; 60(4): 436-439, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38086706

ABSTRACT

Sulf-2 has been identified as a putative target for anticancer therapies. Here we report the design and synthesis of sulfated disaccharide inhibitors based on IdoA(2S)-GlcNS(6S). Trisulfated disaccharide inhibitor IdoA(2S)-GlcNS(6Sulfamate) demonstrated potent Sulf-2 inhibition. The IC50 value was determined to be 39.8 µM ± 18.3, which is comparable to a tetrasaccharide inhibitor of HSulf-1 reported in the literature. We propose that the disaccharide IdoA(2S)-GlcNS(6S) is the shortest fragment size required for effective inhibition of the Sulfs.


Subject(s)
Heparitin Sulfate , Oligosaccharides , Heparitin Sulfate/pharmacology , Oligosaccharides/pharmacology , Disaccharides/pharmacology , Sulfotransferases
18.
Chem Commun (Camb) ; 60(34): 4617, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38602132

ABSTRACT

Correction for 'Modified minimal-size fragments of heparan sulfate as inhibitors of endosulfatase-2 (Sulf-2)' by Alice Kennett et al., Chem. Commun., 2024, 60, 436-439, https://doi.org/10.1039/D3CC02565A.

19.
Carbohydr Polym ; 341: 122294, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38876708

ABSTRACT

The role of glycosaminoglycans (GAGs) in modulating bone morphogenetic protein (BMP) signaling represents a recent and underexplored area. Conflicting reports suggest a dual effect: some indicate a positive influence, while others demonstrate a negative impact. This duality suggests that the localization of GAGs (either at the cell surface or within the extracellular matrix) or the specific type of GAG may dictate their signaling role. The precise sulfation patterns of heparan sulfate (HS) responsible for BMP2 binding remain elusive. BMP2 exhibits a preference for binding to HS over other GAGs. Using well-characterized biomaterials mimicking the extracellular matrix, our research reveals that HS promotes BMP2 signaling in the extracellular space, contrary to chondroitin sulfate (CS), which enhances BMP2 bioactivity at the cell surface. Further observations indicate that a central IdoA (2S)-GlcNS (6S) tri-sulfated motif within HS hexasaccharides enhances binding. Nevertheless, BMP2 exhibits a degree of adaptability to various HS sulfation types and sequences. Molecular dynamic simulations attribute this adaptability to the BMP2 N-terminal end flexibility. Our findings illustrate the complex interplay between GAGs and BMP signaling, highlighting the importance of localization and specific sulfation patterns. This understanding has implications for the development of biomaterials with tailored properties for therapeutic applications targeting BMP signaling pathways.


Subject(s)
Bone Morphogenetic Protein 2 , Glycosaminoglycans , Heparitin Sulfate , Signal Transduction , Bone Morphogenetic Protein 2/metabolism , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry , Humans , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Chondroitin Sulfates/chemistry , Chondroitin Sulfates/metabolism , Molecular Dynamics Simulation , Animals , Protein Binding
20.
FEBS J ; 291(15): 3331-3366, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38500384

ABSTRACT

Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.


Subject(s)
Glycosaminoglycans , Humans , Glycosaminoglycans/metabolism , Glycosaminoglycans/chemistry , Animals , Heparitin Sulfate/metabolism , Heparitin Sulfate/chemistry , Proteoglycans/metabolism , Dermatan Sulfate/metabolism , Dermatan Sulfate/chemistry , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/pathology , Hyaluronic Acid/metabolism , Hyaluronic Acid/chemistry , Keratan Sulfate/metabolism , Keratan Sulfate/chemistry , Chondroitin Sulfates/metabolism , Chondroitin Sulfates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL