Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Development ; 151(2)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38112206

ABSTRACT

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade the uterus, where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome-editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 (Prl7b1) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their roles in trophoblast-guided uterine spiral artery remodeling.


Subject(s)
Placenta , Placentation , Pregnancy , Rats , Female , Animals , Humans , Placenta/metabolism , Placentation/genetics , Trophoblasts , Uterus , Cell Lineage/genetics , Models, Animal
2.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33649217

ABSTRACT

Invasive trophoblast cells are critical to spiral artery remodeling in hemochorial placentation. Insufficient trophoblast cell invasion and vascular remodeling can lead to pregnancy disorders including preeclampsia, preterm birth, and intrauterine growth restriction. Previous studies in mice identified achaete-scute homolog 2 (ASCL2) as essential to extraembryonic development. We hypothesized that ASCL2 is a critical and conserved regulator of invasive trophoblast cell lineage development. In contrast to the mouse, the rat possesses deep intrauterine trophoblast cell invasion and spiral artery remodeling similar to human placentation. In this study, we investigated invasive/extravillous trophoblast (EVT) cell differentiation using human trophoblast stem (TS) cells and a loss-of-function mutant Ascl2 rat model. ASCL2 transcripts are expressed in the EVT column and junctional zone, which represent tissue sources of invasive trophoblast progenitor cells within human and rat placentation sites, respectively. Differentiation of human TS cells into EVT cells resulted in significant up-regulation of ASCL2 and several other transcripts indicative of EVT cell differentiation. Disruption of ASCL2 impaired EVT cell differentiation, as indicated by cell morphology and transcript profiles. RNA sequencing analysis of ASCL2-deficient trophoblast cells identified both down-regulation of EVT cell-associated transcripts and up-regulation of syncytiotrophoblast-associated transcripts, indicative of dual activating and repressing functions. ASCL2 deficiency in the rat impacted placental morphogenesis, resulting in junctional zone dysgenesis and failed intrauterine trophoblast cell invasion. ASCL2 acts as a critical and conserved regulator of invasive trophoblast cell lineage development and a modulator of the syncytiotrophoblast lineage.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Lineage/physiology , Placentation/physiology , Pregnancy/metabolism , Trophoblasts/metabolism , Animals , Cell Differentiation/physiology , Female , Humans , Rats , Rats, Sprague-Dawley , Stem Cells/metabolism
3.
Kidney Int ; 102(5): 1103-1114, 2022 11.
Article in English | MEDLINE | ID: mdl-35760151

ABSTRACT

Polycystic kidney disease (PKD) is characterized by the formation and progressive enlargement of fluid-filled cysts due to abnormal cell proliferation. Cyclic AMP agonists, including arginine vasopressin, stimulate ERK-dependent proliferation of cystic cells, but not normal kidney cells. Previously, B-Raf proto-oncogene (BRAF), a MAPK kinase kinase that activates MEK-ERK signaling, was shown to be a central intermediate in the cAMP mitogenic response. However, the role of BRAF on cyst formation and enlargement in vivo had not been demonstrated. To determine if active BRAF induces kidney cyst formation, we generated transgenic mice that conditionally express BRAFV600E, a common activating mutation, and bred them with Pkhd1-Cre mice to express active BRAF in the collecting ducts, a predominant site for cyst formation. Collecting duct expression of BRAFV600E (BRafCD) caused kidney cyst formation as early as three weeks of age. There were increased levels of phosphorylated ERK (p-ERK) and proliferating cell nuclear antigen, a marker for cell proliferation. BRafCD mice developed extensive kidney fibrosis and elevated blood urea nitrogen, indicating a decline in kidney function, by ten weeks of age. BRAFV600E transgenic mice were also bred to Pkd1RC/RC and pcy/pcy mice, well-characterized slowly progressive PKD models. Collecting duct expression of active BRAF markedly increased kidney weight/body weight, cyst number and size, and total cystic area. There were increased p-ERK levels and proliferating cells, immune cell infiltration, interstitial fibrosis, and a decline in kidney function in both these models. Thus, our findings demonstrate that active BRAF is sufficient to induce kidney cyst formation in normal mice and accelerate cystic disease in PKD mice.


Subject(s)
Cysts , Kidney Tubules, Collecting , Polycystic Kidney, Autosomal Dominant , Polycystic Kidney, Autosomal Recessive , Mice , Animals , Kidney Tubules, Collecting/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Polycystic Kidney, Autosomal Dominant/complications , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Cyclic AMP/metabolism , Fibrosis , Polycystic Kidney, Autosomal Recessive/genetics , Mice, Transgenic , Cysts/genetics , Cysts/pathology , Arginine Vasopressin/genetics , Arginine Vasopressin/metabolism , Proto-Oncogenes , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Receptors, Cell Surface/metabolism
4.
Int J Mol Sci ; 23(9)2022 May 05.
Article in English | MEDLINE | ID: mdl-35563527

ABSTRACT

Erythropoietin (EPO) signaling plays a vital role in erythropoiesis by regulating proliferation and lineage-specific differentiation of murine hematopoietic progenitor cells (HPCs). An important downstream response of EPO signaling is calcium (Ca2+) influx, which is regulated by transient receptor potential channel (TRPC) proteins, particularly TRPC2 and TRPC6. While EPO induces Ca2+ influx through TRPC2, TRPC6 inhibits the function of TRPC2. Thus, interactions between TRPC2 and TRPC6 regulate the rate of Ca2+ influx in EPO-induced erythropoiesis. In this study, we observed that the expression of TRPC6 in KIT-positive erythroid progenitor cells was regulated by DOT1L. DOT1L is a methyltransferase that plays an important role in many biological processes during embryonic development including early erythropoiesis. We previously reported that Dot1l knockout (Dot1lKO) HPCs in the yolk sac failed to develop properly, which resulted in lethal anemia. In this study, we detected a marked downregulation of Trpc6 gene expression in Dot1lKO progenitor cells in the yolk sac compared to the wild type (WT). The promoter and the proximal regions of the Trpc6 gene locus exhibited an enrichment of H3K79 methylation, which is mediated solely by DOT1L. However, the expression of Trpc2, the positive regulator of Ca2+ influx, remained unchanged, resulting in an increased TRPC2/TRPC6 ratio. As the loss of DOT1L decreased TRPC6, which inhibited Ca2+ influx by TRPC2, Dot1lKO HPCs in the yolk sac exhibited accelerated and sustained elevated levels of Ca2+ influx. Such heightened Ca2+ levels might have detrimental effects on the growth and proliferation of HPCs in response to EPO.


Subject(s)
Calcium , Erythropoietin , Histone-Lysine N-Methyltransferase , Animals , Calcium/metabolism , Calcium, Dietary , Epoetin Alfa , Erythroid Precursor Cells/metabolism , Erythropoiesis , Erythropoietin/metabolism , Erythropoietin/pharmacology , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Mice , Receptors, Erythropoietin/metabolism , TRPC Cation Channels/genetics , TRPC Cation Channels/metabolism , TRPC6 Cation Channel
5.
FASEB J ; 34(5): 6369-6381, 2020 05.
Article in English | MEDLINE | ID: mdl-32167205

ABSTRACT

Primary cilia are sensory organelles that are essential for eukaryotic development and health. These antenna-like structures are synthesized by intraflagellar transport protein complexes, IFT-B and IFT-A, which mediate bidirectional protein trafficking along the ciliary axoneme. Here using mouse embryonic fibroblasts (MEF), we investigate the ciliary roles of two mammalian orthologues of Chlamydomonas IFT-A gene, IFT139, namely Thm1 (also known as Ttc21b) and Thm2 (Ttc21a). Thm1 loss causes perinatal lethality, and Thm2 loss allows survival into adulthood. At E14.5, the number of Thm1;Thm2 double mutant embryos is lower than that for a Mendelian ratio, indicating deletion of Thm1 and Thm2 causes mid-gestational lethality. We examined the ciliary phenotypes of mutant MEF. Thm1-mutant MEF show decreased cilia assembly, increased cilia disassembly, shortened primary cilia, a retrograde IFT defect for IFT and BBS proteins, and reduced ciliary entry of membrane-associated proteins. Thm1-mutant cilia also show a retrograde transport defect for the Hedgehog transducer, Smoothened, and an impaired response to Smoothened agonist, SAG. Thm2-null MEF show normal ciliary dynamics and Hedgehog signaling, but additional loss of a Thm1 allele impairs response to SAG. Further, Thm1;Thm2 double-mutant MEF show enhanced cilia disassembly, and increased impairment of INPP5E ciliary import. Thus, Thm1 and Thm2 have unique and redundant roles in MEF. Thm1 regulates cilia assembly, and alone and together with Thm2, regulates cilia disassembly, ciliary entry of membrane-associated protein, Hedgehog signaling, and embryogenesis. These findings shed light on mechanisms underlying Thm1-, Thm2- or IFT-A-mediated ciliopathies.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Cilia/physiology , Embryonic Development , Flagella/physiology , Hedgehog Proteins/metabolism , Membrane Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Transport
6.
Proc Natl Acad Sci U S A ; 113(15): 4212-7, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27035990

ABSTRACT

The progesterone receptor (PGR) is a ligand-activated transcription factor with key roles in the regulation of female fertility. Much has been learned of the actions of PGR signaling through the use of pharmacologic inhibitors and genetic manipulation, using mouse mutagenesis. Characterization of rats with a null mutation at the Pgr locus has forced a reexamination of the role of progesterone in the regulation of the female reproductive cycle. We generated two Pgr mutant rat models, using genome editing. In both cases, deletions yielded a null mutation resulting from a nonsense frame-shift and the emergence of a stop codon. Similar to Pgr null mice, Pgr null rats were infertile because of deficits in sexual behavior, ovulation, and uterine endometrial differentiation. However, in contrast to the reported phenotype of female mice with disruptions in Pgr signaling, Pgr null female rats exhibit robust estrous cycles. Cyclic changes in vaginal cytology, uterine histology, serum hormone levels, and wheel running activity were evident in Pgr null female rats, similar to wild-type controls. Furthermore, exogenous progesterone treatment inhibited estrous cycles in wild-type female rats but not in Pgr-null female rats. As previously reported, pharmacologic antagonism supports a role for PGR signaling in the regulation of the ovulatory gonadotropin surge, a result at variance with experimentation using genetic ablation of PGR signaling. To conclude, our findings in the Pgr null rat challenge current assumptions and prompt a reevaluation of the hormonal control of reproductive cyclicity.


Subject(s)
Progesterone/physiology , Reproduction/physiology , Animals , Exons , Female , Luteinizing Hormone/antagonists & inhibitors , Mifepristone/pharmacology , Mutation , Progesterone/genetics , Rats
7.
Am J Physiol Renal Physiol ; 315(6): F1695-F1707, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30332313

ABSTRACT

In polycystic kidney disease (PKD), persistent activation of cell proliferation and matrix production contributes to cyst growth and fibrosis, leading to progressive deterioration of renal function. Previously, we showed that periostin, a matricellular protein involved in tissue repair, is overexpressed by cystic epithelial cells of PKD kidneys. Periostin binds αVß3-integrins and activates integrin-linked kinase (ILK), leading to Akt/mammalian target of rapamycin (mTOR)-mediated proliferation of human PKD cells. By contrast, periostin does not stimulate the proliferation of normal human kidney cells. This difference in the response to periostin is due to elevated expression of αVß3-integrins by cystic cells. To determine whether periostin accelerates cyst growth and fibrosis, we generated mice with conditional overexpression of periostin in the collecting ducts (CDs). Ectopic CD expression of periostin was not sufficient to induce cyst formation or fibrosis in wild-type mice. However, periostin overexpression in pcy/pcy ( pcy) kidneys significantly increased mTOR activity, cell proliferation, cyst growth, and interstitial fibrosis; and accelerated the decline in renal function. Moreover, CD-specific overexpression of periostin caused a decrease in the survival of pcy mice. These pathological changes were accompanied by increased renal expression of vimentin, α-smooth muscle actin, and type I collagen. We also found that periostin increased gene expression of pathways involved in repair, including integrin and growth factor signaling and ECM production, and it stimulated focal adhesion kinase, Rho GTPase, cytoskeletal reorganization, and migration of PKD cells. These results suggest that periostin stimulates signaling pathways involved in an abnormal tissue repair process that contributes to cyst growth and fibrosis in PKD.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Proliferation , Epithelial Cells/metabolism , Kidney Tubules, Collecting/metabolism , Polycystic Kidney, Autosomal Dominant/metabolism , Adult , Aged , Animals , Case-Control Studies , Cell Adhesion Molecules/genetics , Cell Movement , Cells, Cultured , Disease Models, Animal , Disease Progression , Epithelial Cells/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Female , Fibrosis , Gene Expression Regulation , Genetic Predisposition to Disease , Humans , Kidney Tubules, Collecting/pathology , Male , Mice, Transgenic , Middle Aged , Phenotype , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney, Autosomal Dominant/pathology , Receptors, Cell Surface/genetics , Signal Transduction , Time Factors , Up-Regulation
8.
Proc Natl Acad Sci U S A ; 112(45): E6175-84, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26504231

ABSTRACT

Epithelial barrier integrity is dependent on progenitor cells that either divide to replenish themselves or differentiate into a specialized epithelium. This paradigm exists in human placenta, where cytotrophoblast cells either propagate or undergo a unique differentiation program: fusion into an overlying syncytiotrophoblast. Syncytiotrophoblast is the primary barrier regulating the exchange of nutrients and gases between maternal and fetal blood and is the principal site for synthesizing hormones vital for human pregnancy. How trophoblast cells regulate their differentiation into a syncytium is not well understood. In this study, we show that the transcription factor OVO-like 1 (OVOL1), a homolog of Drosophila ovo, regulates the transition from progenitor to differentiated trophoblast cells. OVOL1 is expressed in human placenta and was robustly induced following stimulation of trophoblast differentiation. Disruption of OVOL1 abrogated cytotrophoblast fusion and inhibited the expression of a broad set of genes required for trophoblast cell fusion and hormonogenesis. OVOL1 was required to suppress genes that maintain cytotrophoblast cells in a progenitor state, including MYC, ID1, TP63, and ASCL2, and bound specifically to regions upstream of each of these genes. Our results reveal an important function of OVOL1 as a regulator of trophoblast progenitor cell fate during human trophoblast development.


Subject(s)
Cell Differentiation/physiology , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Developmental/physiology , Stem Cells/physiology , Transcription Factors/metabolism , Trophoblasts/physiology , Analysis of Variance , Animals , Base Sequence , Blotting, Western , Chromatin Immunoprecipitation , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Microarray Analysis , Molecular Sequence Data , Pregnancy , RNA, Small Interfering/genetics , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, RNA , Trophoblasts/cytology
9.
Biol Reprod ; 94(5): 107, 2016 05.
Article in English | MEDLINE | ID: mdl-26985002

ABSTRACT

The prolactin (PRL) family of hormones and cytokines participates in the regulation of optimal reproductive performance in the mouse and rat. Members of the PRL family are expressed in the anterior pituitary, uterus, and/or placenta. In the present study, we investigated the ontogeny of PRL family 7, subfamily b, member 1 (PRL7B1; also called PRL-like protein-N, PLP-N) expression in the developing mouse placenta and established a mouse model for investigating the biological function of PRL7B1. Transcripts for Prl7b1 were first detected on Gestation Day (d) 8.5. From gestation d8.5 through d14.5, Prl7b1 was expressed in trophoblast cells residing at the interface between maternal mesometrial decidua and the developing placenta. On gestation d17.5, the predominant cellular source of Prl7b1 mRNA was migratory trophoblast cells invading into the uterine mesometrial decidua. The Prl7b1 null mutant allele was generated via replacement of the endogenous Prl7b1 coding sequence with beta-galactosidase (LacZ) reporter and neomycin cassettes. The mutant Prl7b1 allele was successfully passed through the germline. Homozygous Prl7b1 mutant mice were viable and fertile. Under standard animal housing conditions, Prl7b1 had undetectable effects on placentation and pregnancy. Hypoxia exposure during pregnancy evoked adaptations in the organization of the wild-type placenta that were not observed in Prl7b1 null placentation sites. In summary, PRL7B1 is viewed as a part of a pathway regulating placental adaptations to physiological stressors.


Subject(s)
Adaptation, Physiological/genetics , Gonadotropins/physiology , Placenta/physiology , Prolactin/analogs & derivatives , Stress, Physiological/physiology , Animals , Female , Gonadotropins/genetics , Hypoxia/complications , Hypoxia/genetics , Hypoxia/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Placentation/genetics , Pregnancy , Pregnancy Proteins/genetics , Pregnancy Proteins/physiology , Prolactin/physiology , Stress, Physiological/genetics
10.
Proc Natl Acad Sci U S A ; 109(19): 7362-7, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22529382

ABSTRACT

In the preimplantation mouse embryo, TEAD4 is critical to establishing the trophectoderm (TE)-specific transcriptional program and segregating TE from the inner cell mass (ICM). However, TEAD4 is expressed in the TE and the ICM. Thus, differential function of TEAD4 rather than expression itself regulates specification of the first two cell lineages. We used ChIP sequencing to define genomewide TEAD4 target genes and asked how transcription of TEAD4 target genes is specifically maintained in the TE. Our analyses revealed an evolutionarily conserved mechanism, in which lack of nuclear localization of TEAD4 impairs the TE-specific transcriptional program in inner blastomeres, thereby allowing their maturation toward the ICM lineage. Restoration of TEAD4 nuclear localization maintains the TE-specific transcriptional program in the inner blastomeres and prevents segregation of the TE and ICM lineages and blastocyst formation. We propose that altered subcellular localization of TEAD4 in blastomeres dictates first mammalian cell fate specification.


Subject(s)
Cell Lineage , DNA-Binding Proteins/metabolism , Muscle Proteins/metabolism , Transcription Factors/metabolism , Animals , Blastocyst/cytology , Blastocyst/metabolism , Blastocyst Inner Cell Mass/cytology , Blastocyst Inner Cell Mass/metabolism , Blastomeres/cytology , Blastomeres/metabolism , Blotting, Western , CDX2 Transcription Factor , Cattle , Cell Nucleus/metabolism , Cells, Cultured , DNA-Binding Proteins/genetics , Embryonic Stem Cells/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Macaca mulatta , Mice , Mice, Transgenic , Muscle Proteins/genetics , RNA Interference , Rats , Reverse Transcriptase Polymerase Chain Reaction , TEA Domain Transcription Factors , Transcription Factors/genetics
11.
Stem Cells ; 31(1): 48-58, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23081664

ABSTRACT

Embryonic stem cells dynamically fluctuate between phenotypic states, as defined by expression levels of genes such as Nanog, while remaining pluripotent. The dynamic phenotype of stem cells is in part determined by gene expression control and dictated by various signaling pathways and transcriptional regulators. We sought to define the activities of two TGF-ß-related signaling pathways, bone morphogenetic protein (BMP) and Nodal signaling, in modulating mouse embryonic stem (ES) cell heterogeneity in undifferentiated culture conditions. Both BMP and Nodal signaling pathways were seen to be active in distinct Nanog subpopulations, with subtle quantitative differences in activity. Pharmacological and genetic modulation of BMP or Nodal signaling strongly influenced the heterogeneous state of undifferentiated ES cells, as assessed by dynamic expression of Nanog reporters. Inhibition of Nodal signaling enhanced BMP activity, which through the downstream target Id factors, enhanced the capacity of ES cells to remain in the Nanog-high epigenetic state. The combined inhibition of Nodal and BMP signaling resulted in the accumulation of Nanog-negative cells, even in the presence of LIF, uncovering a shared role for BMP and Nodal signaling in maintaining Nanog expression and repression of differentiation. These results demonstrate a complex requirement for both arms of TGF-ß-related signaling to influence the dynamic cellular phenotype of undifferentiated ES cells in serum-based media, and that differing subpopulations of ES cells in heterogeneous culture have distinct responses to these signaling pathways. Several pathways, including BMP, Nodal, and FGF signaling, have important regulatory function in defining the steady-state distribution of heterogeneity of stem cells.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Embryonic Stem Cells/metabolism , Nodal Protein/metabolism , Pluripotent Stem Cells/metabolism , Transforming Growth Factor beta/metabolism , Animals , Benzamides/pharmacology , Bone Morphogenetic Proteins/genetics , Cell Differentiation , Cell Line , Cell Proliferation , Diphenylamine/analogs & derivatives , Diphenylamine/pharmacology , Fibroblast Growth Factor 4/metabolism , Homeodomain Proteins/metabolism , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , Mice , Nanog Homeobox Protein , Nodal Protein/genetics , Phenotype , Phosphorylation , Signal Transduction , Smad7 Protein/metabolism , Transcription, Genetic/physiology
12.
Proc Natl Acad Sci U S A ; 113(19): 5144-6, 2016 May 10.
Article in English | MEDLINE | ID: mdl-27118838

Subject(s)
Trophoblasts , Humans
13.
Methods Mol Biol ; 2660: 43-59, 2023.
Article in English | MEDLINE | ID: mdl-37191789

ABSTRACT

Understanding the contributions of mitochondrial genetics to disease pathogenesis is facilitated by a new and unique model-the mitochondrial-nuclear exchange mouse. Here we report the rationale for their development, the methods used to create them, and a brief summary of how MNX mice have been used to understand the contributions of mitochondrial DNA in multiple diseases, focusing on cancer metastasis. Polymorphisms in mtDNA which distinguish mouse strains exert intrinsic and extrinsic effects on metastasis efficiency by altering epigenetic marks in the nuclear genome, changing production of reactive oxygen species, altering the microbiota, and influencing immune responses to cancer cells. Although the focus of this report is cancer metastasis, MNX mice have proven to be valuable in studying mitochondrial contributions to other diseases as well.


Subject(s)
Mitochondria , Neoplasms , Mice , Animals , Mitochondria/genetics , Mitochondria/pathology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Polymorphism, Genetic , Reactive Oxygen Species/metabolism , Cell Nucleus/metabolism , Neoplasms/pathology
14.
Cells ; 12(16)2023 08 18.
Article in English | MEDLINE | ID: mdl-37626906

ABSTRACT

The aromatase-Cre recombinase (Cyp19-Cre) transgenic mouse model has been extensively used for placenta-specific gene inactivation. In a pilot study, we observed unexpected phenotypes using this mouse strain, which prompted an extensive characterization of Cyp19-Cre placental phenotypes using ROSAmT/mG transgenic reporter mice. The two strains were mated to generate bi-transgenic Cyp19-Cre;ROSAmT/mG mice following a standard transgenic breeding scheme, and placental and fetal tissues were analyzed on embryonic day 17.5. Both maternal and paternal Cre inheritance were analyzed by mating the respective Cyp19-Cre and ROSAmT/mG males and females. The genotype results showed the expected percentage of Cyp19-Cre;ROSAmT/mG fetuses (73%) and Cre mRNA was expressed in all of the Cyp19-Cre placentas. However, surprisingly, only about 50% of the Cyp19-Cre;ROSAmT/mG placentas showed Cre-mediated recombinase activity as demonstrated by placental enhanced green fluorescent protein (EGFP) expression. Further genetic excision analysis of the placentas revealed consistent results showing the absence of excision of the tdTomato in all of the Cyp19-Cre;ROSAmT/mG placentas lacking EGFP expression. Moreover, among the EGFP-expressing placentas, there was wide variability in recombination efficiency, even in placentas from the same litter, leading to a mosaic pattern of EGFP expression in different zones and cell types of the placentas. In addition, we observed a significantly higher percentage of Cre recombination activity in placentas with maternal Cre inheritance. Our results show frequent mosaicism, inconsistent recombination activity, and parent-of-origin effects in placentas from Cyp19-Cre;ROSAmT/mG mice, suggesting that tail-biopsy genotype results may not necessarily indicate the excision of floxed genes in Cyp19-Cre positive placentas. Thus, placenta-specific mutagenesis studies using the Cyp19-Cre model require extensive characterization and careful interpretation of the placental phenotypes for each floxed allele.


Subject(s)
Rosa , Female , Pregnancy , Male , Mice , Animals , Mice, Transgenic , Aromatase/genetics , Pilot Projects , Placenta , Plant Breeding , Mosaicism
15.
bioRxiv ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37577576

ABSTRACT

Placental development involves coordinated expansion and differentiation of trophoblast cell lineages possessing specialized functions. Among the differentiated trophoblast cell lineages are invasive trophoblast cells, which exit the placenta and invade into the uterus where they restructure the uterine parenchyma and facilitate remodeling of uterine spiral arteries. The rat exhibits deep intrauterine trophoblast cell invasion, a feature shared with human placentation, and is also amenable to gene manipulation using genome editing techniques. In this investigation, we generated a conditional rat model targeting the invasive trophoblast cell lineage. Prolactin family 7, subfamily b, member 1 ( Prl7b1 ) is uniquely and abundantly expressed in the rat invasive trophoblast cell lineage. Disruption of Prl7b1 did not adversely affect placental development. We demonstrated that the Prl7b1 locus could be effectively used to drive the expression of Cre recombinase in invasive trophoblast cells. Our rat model represents a new tool for investigating candidate genes contributing to the regulation of invasive trophoblast cells and their contributions to trophoblast-guided uterine spiral artery remodeling.

16.
Front Mol Neurosci ; 16: 1201015, 2023.
Article in English | MEDLINE | ID: mdl-37614699

ABSTRACT

Introduction: Mitochondrial dysfunction is observed in Alzheimer's disease (AD). Altered mitochondrial respiration, cytochrome oxidase (COX) Vmax, and mitophagy are observed in human subjects and animal models of AD. Models derived from induced pluripotent stem cells (iPSCs) may not recapitulate these phenotypes after reprogramming from differentiated adult cells. Methods: We examined mitochondrial function across iPSC derived models including cerebral organoids, forebrain neurons, and astrocytes. iPSCs were reprogrammed from fibroblasts either from the University of Kansas Alzheimer's Disease Research Center (KU ADRC) cohort or purchased from WiCell. A total of four non-demented and four sporadic AD iPSC lines were examined. Models were subjected to mitochondrial respiration analysis using Seahorse XF technology, spectrophotometric cytochrome oxidase (COX) Vmax assays, fluorescent assays to determine mitochondrial mass, mitochondrial membrane potential, calcium, mitochondrial dynamics, and mitophagy levels. AD pathological hallmarks were also measured. Results: iPSC derived neurons and cerebral organoids showed reduced COX Vmax in AD subjects with more profound defects in the female cohort. These results were not observed in astrocytes. iPSC derived neurons and astrocytes from AD subjects had reduced mitochondrial respiration parameters with increased glycolytic flux. iPSC derived neurons and astrocytes from AD subjects showed sex dependent effects on mitochondrial membrane potential, mitochondrial superoxide production, and mitochondrial calcium. iPSC derived neurons from AD subjects had reduced mitochondrial localization in lysosomes with sex dependent effects on mitochondrial mass, while iPSC derived astrocytes from female AD subjects had increased mitochondrial localization to lysosomes. Both iPSC derived neurons and astrocytes from AD subjects showed altered mitochondrial dynamics. iPSC derived neurons had increased secreted Aß, and sex dependent effects on total APP protein expression. iPSC derived astrocytes showed sex dependent changes in GFAP expression in AD derived cells. Conclusion: Overall, iPSC derived models from AD subjects show mitochondrial phenotypes and AD pathological hallmarks in a cell type and sex dependent manner. These results highlight the importance of sex as a biological variable in cell culture studies.

17.
Blood ; 116(22): 4483-91, 2010 Nov 25.
Article in English | MEDLINE | ID: mdl-20798234

ABSTRACT

Histone methylation is an important regulator of gene expression; its coordinated activity is critical in complex developmental processes such as hematopoiesis. Disruptor of telomere silencing 1-like (DOT1L) is a unique histone methyltransferase that specifically methylates histone H3 at lysine 79. We analyzed Dot1L-mutant mice to determine influence of this enzyme on embryonic hematopoiesis. Mutant mice developed more slowly than wild-type embryos and died between embryonic days 10.5 and 13.5, displaying a striking anemia, especially apparent in small vessels of the yolk sac. Further, a severe, selective defect in erythroid, but not myeloid, differentiation was observed. Erythroid progenitors failed to develop normally, showing retarded progression through the cell cycle, accumulation during G0/G1 stage, and marked increase in apoptosis in response to erythroid growth factors. GATA2, a factor essential for early erythropoiesis, was significantly reduced in Dot1L-deficient cells, whereas expression of PU.1, a transcription factor that inhibits erythropoiesis and promotes myelopoiesis, was increased. These data suggest a model whereby DOT1L-dependent lysine 79 of histone H3 methylation serves as a critical regulator of a differentiation switch during early hematopoiesis, regulating steady-state levels of GATA2 and PU.1 transcription, thus controlling numbers of circulating erythroid and myeloid cells.


Subject(s)
Embryo, Mammalian/pathology , Erythropoiesis , Methyltransferases/genetics , Mutation , Animals , Apoptosis , Cell Cycle , Cells, Cultured , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , GATA2 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Hematopoiesis , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Histone-Lysine N-Methyltransferase , Histones/metabolism , Methylation , Methyltransferases/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Proto-Oncogene Proteins/genetics , Trans-Activators/genetics , Transcription, Genetic , Yolk Sac/cytology , Yolk Sac/metabolism
18.
Cell Transplant ; 31: 9636897221101116, 2022.
Article in English | MEDLINE | ID: mdl-35596532

ABSTRACT

Kernicterus is a permanent condition caused by brain damage from bilirubin toxicity. Dystonia is one of the most debilitating symptoms of kernicterus and results from damage to the globus pallidus (GP). One potential therapeutic strategy to treat dystonia in kernicterus is to replace lost GP neurons and restore basal ganglia circuits through stem cell transplantation. Toward this end, we differentiated human embryonic stem cells (hESCs) into medial ganglion eminence (MGE; the embryological origin of most of the GP neurons)-like neural precursor cells (NPCs). We determined neurochemical phenotype in cell culture and after transplanting into the GP of jaundiced Gunn rats. We also determined grafted cell survival as well as migration, distribution, and morphology after transplantation. As in the GP, most cultured MGE-like NPCs expressed γ-aminobutyric acid (GABA), with some co-expressing markers for parvalbumin (PV) and others expressing markers for pro-enkephalin (PENK). MGE-like NPCs survived in brains at least 7 weeks after transplantation, with most aggregating near the injection site. Grafted cells expressed GABA and PV or PENK as in the normal GP. Although survival was low and the maturity of grafted cells varied, many cells produced neurite outgrowth. While promising, our results suggest the need to further optimize the differentiation protocol for MGE-like NPC for potential use in treating dystonia in kernicterus.


Subject(s)
Dystonia , Jaundice , Kernicterus , Neural Stem Cells , Animals , Enkephalins , Jaundice/therapy , Neural Stem Cells/transplantation , Parvalbumins/metabolism , Protein Precursors , Rats , Rats, Gunn , gamma-Aminobutyric Acid/metabolism
19.
Front Genet ; 13: 828086, 2022.
Article in English | MEDLINE | ID: mdl-35401699

ABSTRACT

DOT1L is essential for embryonic hematopoiesis but the precise mechanisms of its action remain unclear. The only recognized function of DOT1L is histone H3 lysine 79 (H3K79) methylation, which has been implicated in both transcriptional activation and repression. We observed that deletion of the mouse Dot1L gene (Dot1L-KO) or selective mutation of its methyltransferase domain (Dot1L-MM) can differentially affect early embryonic erythropoiesis. However, both mutations result in embryonic lethality by mid-gestation and growth of hematopoietic progenitor cells (HPCs) is similarly affected in extensively self-renewing erythroblast (ESRE) cultures established from yolk sac cells. To understand DOT1L-mediated gene regulation and to clarify the role of H3K79 methylation, we analyzed whole transcriptomes of wildtype and Dot1L-mutant ESRE cells. We observed that more than 80% of the differentially expressed genes (DEGs) were upregulated in the mutant ESRE cells either lacking the DOT1L protein or the DOT1L methyltransferase activity. However, approximately 45% of the DEGs were unique to either mutant group, indicating that DOT1L possesses both methyltransferase-dependent and -independent gene regulatory functions. Analyses of Gene Ontology and signaling pathways for the DEGs were consistent, with DEGs that were found to be common or unique to either mutant group. Genes related to proliferation of HPCs were primarily impacted in Dot1L-KO cells, while genes related to HPC development were affected in the Dot1L-MM cells. A subset of genes related to differentiation of HPCs were affected in both mutant groups of ESREs. Our findings suggest that DOT1L primarily acts to repress gene expression in HPCs, and this function can be independent of its methyltransferase activity.

20.
J Biol Chem ; 285(26): 19747-56, 2010 Jun 25.
Article in English | MEDLINE | ID: mdl-20427282

ABSTRACT

Members of the transforming growth factor-beta superfamily play essential roles in both the pluripotency and differentiation of embryonic stem (ES) cells. Although bone morphogenic proteins (BMPs) maintain pluripotency of undifferentiated mouse ES cells, the role of autocrine Nodal signaling is less clear. Pharmacological, molecular, and genetic methods were used to further understand the roles and potential interactions of these pathways. Treatment of undifferentiated ES cells with SB431542, a pharmacological inhibitor of Smad2 signaling, resulted in a rapid reduction of phosphorylated Smad2 and altered the expression of several putative downstream targets. Unexpectedly, inhibition of the Nodal signaling pathway resulted in enhanced BMP signaling, as assessed by Smad1/5 phosphorylation. SB431542-treated cells also demonstrated significant induction of the Id genes, which are known direct targets of BMP signaling and important factors in ES cell pluripotency. Inhibition of BMP signaling decreased the SB431542-mediated phosphorylation of Smad1/5 and induction of Id genes, suggesting that BMP signaling is necessary for some Smad2-mediated activity. Because Smad7, a known inhibitory factor to both Nodal and BMP signaling, was down-regulated following inhibition of Nodal-Smad2 signaling, the contribution of Smad7 to the cross-talk between the transforming growth factor-beta pathways in ES cells was examined. Biochemical manipulation of Smad7 expression, through shRNA knockdown or inducible gene expression, significantly reduced the SB431542-mediated phosphorylation of Smad1/5 and induction of the Id genes. We conclude that autocrine Nodal signaling in undifferentiated mouse ES cells modulates the vital pluripotency pathway of BMP signaling.


Subject(s)
Bone Morphogenetic Protein 4/pharmacology , Embryonic Stem Cells/metabolism , Nodal Protein/metabolism , Signal Transduction , Animals , Autocrine Communication , Benzamides/pharmacology , Cell Differentiation/drug effects , Cells, Cultured , Dioxoles/pharmacology , Embryonic Stem Cells/cytology , Female , Gene Expression/drug effects , Immunoblotting , Left-Right Determination Factors/genetics , Left-Right Determination Factors/metabolism , Male , Mice , Mice, Knockout , Nodal Protein/genetics , Phosphorylation/drug effects , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction , Smad1 Protein/genetics , Smad1 Protein/metabolism , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad5 Protein/genetics , Smad5 Protein/metabolism , Smad7 Protein/genetics , Smad7 Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL