Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 626
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Hepatology ; 77(4): 1228-1240, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35993369

ABSTRACT

BACKGROUND AND AIMS: Janus kinase 2 (JAK2) signaling is increased in human and experimental liver fibrosis with portal hypertension. JAK2 inhibitors, such as pacritinib, are already in advanced clinical development for other indications and might also be effective in liver fibrosis. Here, we investigated the antifibrotic role of the JAK2 inhibitor pacritinib on activated hepatic stellate cells (HSCs) in vitro and in two animal models of liver fibrosis in vivo . APPROACH AND RESULTS: Transcriptome analyses of JAK2 in human livers and other targets of pacritinib have been shown to correlate with profibrotic factors. Although transcription of JAK2 correlated significantly with type I collagen expression and other profibrotic genes, no correlation was observed for interleukin-1 receptor-associated kinase and colony-stimulating factor 1 receptor. Pacritinib decreased gene expression of fibrosis markers in mouse primary and human-derived HSCs in vitro . Moreover, pacritinib decreased the proliferation, contraction, and migration of HSCs. C 57 BL/6J mice received ethanol in drinking water (16%) or Western diet in combination with carbon tetrachloride intoxication for 7 weeks to induce alcoholic or nonalcoholic fatty liver disease. Pacritinib significantly reduced liver fibrosis assessed by gene expression and Sirius red staining, as well as HSC activation assessed by alpha-smooth muscle actin immunostaining in fibrotic mice. Furthermore, pacritinib decreased the gene expression of hepatic steatosis markers in experimental alcoholic liver disease. Additionally, pacritinib protected against liver injury as assessed by aminotransferase levels. CONCLUSIONS: This study demonstrates that the JAK2 inhibitor pacritinib may be promising for the treatment of alcoholic and nonalcoholic liver fibrosis and may be therefore relevant for human pathology.


Subject(s)
Janus Kinase 2 , Liver Cirrhosis , Humans , Mice , Animals , Janus Kinase 2/metabolism , Liver Cirrhosis/pathology , Liver/pathology , Bridged-Ring Compounds/metabolism , Bridged-Ring Compounds/pharmacology , Bridged-Ring Compounds/therapeutic use , Fibrosis , Hepatic Stellate Cells/metabolism
2.
Eur J Clin Invest ; 54(4): e14139, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38063028

ABSTRACT

BACKGROUND: Technological progress in the acquisition of medical images and the extraction of underlying quantitative imaging data has introduced exciting prospects for the diagnostic assessment of a wide range of conditions. This study aims to investigate the diagnostic utility of a machine learning classifier based on dual-energy computed tomography (DECT) radiomics for classifying pulmonary embolism (PE) severity and assessing the risk for early death. METHODS: Patients who underwent CT pulmonary angiogram (CTPA) between January 2015 and March 2022 were considered for inclusion in this study. Based on DECT imaging, 107 radiomic features were extracted for each patient using standardized image processing. After dividing the dataset into training and test sets, stepwise feature reduction based on reproducibility, variable importance and correlation analyses were performed to select the most relevant features; these were used to train and validate the gradient-boosted tree models. RESULTS: The trained machine learning classifier achieved a classification accuracy of .90 for identifying high-risk PE patients with an area under the receiver operating characteristic curve of .59. This CT-based radiomics signature showed good diagnostic accuracy for risk stratification in individuals presenting with central PE, particularly within higher risk groups. CONCLUSION: Models utilizing DECT-derived radiomics features can accurately stratify patients with pulmonary embolism into established clinical risk scores. This approach holds the potential to enhance patient management and optimize patient flow by assisting in the clinical decision-making process. It also offers the advantage of saving time and resources by leveraging existing imaging to eliminate the necessity for manual clinical scoring.


Subject(s)
Pulmonary Embolism , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Radiomics , Reproducibility of Results , Pulmonary Embolism/diagnostic imaging , Risk Assessment , Retrospective Studies
3.
J Neurooncol ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38960965

ABSTRACT

BACKGROUND: Quantifying tumor growth and treatment response noninvasively poses a challenge to all experimental tumor models. The aim of our study was, to assess the value of quantitative and visual examination and radiomic feature analysis of high-resolution MR images of heterotopic glioblastoma xenografts in mice to determine tumor cell proliferation (TCP). METHODS: Human glioblastoma cells were injected subcutaneously into both flanks of immunodeficient mice and followed up on a 3 T MR scanner. Volumes and signal intensities were calculated. Visual assessment of the internal tumor structure was based on a scoring system. Radiomic feature analysis was performed using MaZda software. The results were correlated with histopathology and immunochemistry. RESULTS: 21 tumors in 14 animals were analyzed. The volumes of xenografts with high TCP (H-TCP) increased, whereas those with low TCP (L-TCP) or no TCP (N-TCP) continued to decrease over time (p < 0.05). A low intensity rim (rim sign) on unenhanced T1-weighted images provided the highest diagnostic accuracy at visual analysis for assessing H-TCP (p < 0.05). Applying radiomic feature analysis, wavelet transform parameters were best for distinguishing between H-TCP and L-TCP / N-TCP (p < 0.05). CONCLUSION: Visual and radiomic feature analysis of the internal structure of heterotopically implanted glioblastomas provide reproducible and quantifiable results to predict the success of transplantation.

4.
AJR Am J Roentgenol ; 222(2): e2329454, 2024 02.
Article in English | MEDLINE | ID: mdl-37377360

ABSTRACT

Minimally invasive locoregional therapies have a growing role in the multidisciplinary treatment of primary and metastatic breast cancer. Factors contributing to the expanding role of ablation for primary breast cancer include earlier diagnosis, when tumors are small, and increased longevity of patients whose condition precludes surgery. Cryoablation has emerged as the leading ablative modality for primary breast cancer owing to its wide availability, the lack of need for sedation, and the ability to monitor the ablation zone. Emerging evidence suggests that in patients with oligometastatic breast cancer, use of locoregional therapies to eradicate all disease sites may confer a survival advantage. Evidence also suggests that transarterial therapies-including chemoembolization, chemoperfusion, and radioembolization-may be helpful to some patients with advanced liver metastases from breast cancer, such as those with hepatic oligoprogression or those who cannot tolerate systemic therapy. However, the optimal modalities for treatment of oligometastatic and advanced metastatic disease remain unknown. Finally, locoregional therapies may produce tumor antigens that in combination with immunotherapy drive anti-tumor immunity. Although key trials are ongoing, additional prospective studies are needed to establish the inclusion of interventional oncology in societal breast cancer guidelines to support further clinical adoption and improved patient outcomes.


Subject(s)
Brachytherapy , Breast Neoplasms , Catheter Ablation , Embolization, Therapeutic , Liver Neoplasms , Humans , Female , Breast Neoplasms/surgery , Liver Neoplasms/therapy
5.
Article in English | MEDLINE | ID: mdl-38762707

ABSTRACT

An accurate diagnosis of venous thromboembolism (VTE) is crucial, given the potential for high mortality in undetected cases. Strategic D-dimer testing may aid in identifying low-risk patients, preventing overdiagnosis and reducing imaging costs. We conducted a retrospective, comparative analysis to assess the potential cost savings that could be achieved by adopting different approaches to determine the most effective D-dimer cut-off value in cancer patients with suspected VTE, compared to the commonly used rule-out cut-off level of 0.5 mg/L. The study included 526 patients (median age 65, IQR 55-75) with a confirmed cancer diagnosis who underwent D-dimer testing. Among these patients, the VTE prevalence was 29% (n = 152). Each diagnostic strategy's sensitivity, specificity, negative likelihood ratio (NLR), as well as positive likelihood ratio (PLR), and the proportion of patients exhibiting a negative D-dimer test result, were calculated. The diagnostic strategy that demonstrated the best balance between specificity, sensitivity, NLR, and PLR, utilized an inverse age-specific cut-off level for D-dimer [0.5 + (66-age) × 0.01 mg/L]. This method yielded a PLR of 2.9 at a very low NLR for the exclusion of VTE. We observed a significant cost reduction of 4.6% and 1.0% for PE and DVT, respectively. The utilization of an age-adjusted cut-off [patient's age × 0.01 mg/L] resulted in the highest cost savings, reaching 8.1% for PE and 3.4% for DVT. Using specified D-dimer cut-offs in the diagnosis of VTE could improve economics, considering the limited occurrence of confirmed cases among patients with suspected VTE.

6.
J Comput Assist Tomogr ; 48(2): 323-333, 2024.
Article in English | MEDLINE | ID: mdl-38013237

ABSTRACT

OBJECTIVE: Our study objective was to explore the additional value of dual-energy CT (DECT) material decomposition for squamous cell carcinoma of the head and neck (SCCHN) survival prognostication. METHODS: A group of 50 SCCHN patients (male, 37; female, 13; mean age, 63.6 ± 10.82 years) with baseline head and neck DECT between September 2014 and August 2020 were retrospectively included. Primary tumors were segmented, radiomics features were extracted, and DECT material decomposition was performed. We used independent train and validation datasets with cross-validation and 100 independent iterations to identify prognostic signatures applying elastic net (EN) and random survival forest (RSF). Features were ranked and intercorrelated according to their prognostic importance. We benchmarked the models against clinical parameters. Intraclass correlation coefficients were used to analyze the interreader variation. RESULTS: The exclusively radiomics-trained models achieved similar ( P = 0.947) prognostic performance of area under the curve (AUC) = 0.784 (95% confidence interval [CI], 0.775-0.812) (EN) and AUC = 0.785 (95% CI, 0.759-0.812) (RSF). The additional application of DECT material decomposition did not improve the model's performance (EN, P = 0.594; RSF, P = 0.198). In the clinical benchmark, the top averaged AUC value of 0.643 (95% CI, 0.611-0.675) was inferior to the quantitative imaging-biomarker models ( P < 0.001). A combined imaging and clinical model did not improve the imaging-based models ( P > 0.101). Shape features revealed high prognostic importance. CONCLUSIONS: Radiomics AI applications may be used for SCCHN survival prognostication, but the spectral information of DECT material decomposition did not improve the model's performance in our preliminary investigation.


Subject(s)
Head and Neck Neoplasms , Radiomics , Humans , Male , Female , Middle Aged , Aged , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods , Head and Neck Neoplasms/diagnostic imaging
7.
BMC Med Imaging ; 24(1): 145, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872126

ABSTRACT

BACKGROUND: To compare the diagnostic value of 120-kV with conventional 96-kV Cone-Beam CT (CBCT) of the temporal bone after cochlear implant (CI) surgery. METHODS: This retrospective study included CBCT scans after CI surgery between 06/17 and 01/18. CBCT allowed examinations with 96-kV or 120-kV; other parameters were the same. Two radiologists independently evaluated following criteria on 5-point Likert scales: osseous spiral lamina, inner and outer cochlear wall, semi-circular canals, mastoid trabecular structure, overall image quality, metal and motion artefacts, depiction of intracochlear electrode position and visualisation of single electrode contacts. Effective radiation dose was assessed. RESULTS: Seventy-five patients (females, n = 39 [52.0%], mean age, 55.8 ± 16.5 years) were scanned with 96-kV (n = 32, 42.7%) and 120-kV (n = 43, 57.3%) protocols including CI models from three vendors (vendor A n = 7; vendor B n = 43; vendor C n = 25). Overall image quality, depiction of anatomical structures, and electrode position were rated significantly better in 120-kV images compared to 96-kV (all p < = 0.018). Anatomical structures and electrode position were rated significantly better in 120-kV CBCT for CI models from vendor A and C, while 120-kV did not provide improved image quality in CI models from vendor B. Radiation doses were significantly higher for 120-kV scans compared to 96-kV (0.15 vs. 0.08 mSv, p < 0.001). CONCLUSIONS: 120-kV and 96-kV CBCT provide good diagnostic images for the postoperative CI evaluation. While 120-kV showed improved depiction of temporal bone and CI electrode position compared to 96-kV in most CI models, the 120-kV protocol should be chosen wisely due to a substantially higher radiation exposure.


Subject(s)
Cochlear Implants , Cone-Beam Computed Tomography , Radiation Dosage , Temporal Bone , Humans , Cone-Beam Computed Tomography/methods , Male , Middle Aged , Female , Retrospective Studies , Temporal Bone/diagnostic imaging , Aged , Adult , Cochlear Implantation/methods
8.
Emerg Radiol ; 31(3): 303-311, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38523224

ABSTRACT

PURPOSE: Recent advancements in medical imaging have transformed diagnostic assessments, offering exciting possibilities for extracting biomarker-based information. This study aims to investigate the capabilities of a machine learning classifier that incorporates dual-energy computed tomography (DECT) radiomics. The primary focus is on discerning and predicting outcomes related to pulmonary embolism (PE). METHODS: The study included 131 participants who underwent pulmonary artery DECT angiography between January 2015 and March 2022. Among them, 104 patients received the final diagnosis of PE and 27 patients served as a control group. A total of 107 radiomic features were extracted for every case based on DECT imaging. The dataset was divided into training and test sets for model development and validation. Stepwise feature reduction identified the most relevant features, which were used to train a gradient-boosted tree model. Receiver operating characteristics analysis and Cox regression tests assessed the association of texture features with overall survival. RESULTS: The trained machine learning classifier achieved a classification accuracy of 0.94 for identifying patients with acute PE with an area under the receiver operating characteristic curve of 0.91. Radiomics features could be valuable for predicting outcomes in patients with PE, demonstrating strong prognostic capabilities in survival prediction (c-index, 0.991 [0.979-1.00], p = 0.0001) with a median follow-up of 130 days (IQR, 38-720). Notably, the inclusion of clinical or DECT parameters did not enhance predictive performance. CONCLUSION: In conclusion, our study underscores the promising potential of leveraging radiomics on DECT imaging for the identification of patients with acute PE and predicting their outcomes. This approach has the potential to improve clinical decision-making and patient management, offering efficiencies in time and resources by utilizing existing DECT imaging without the need for an additional scoring system.


Subject(s)
Computed Tomography Angiography , Machine Learning , Pulmonary Embolism , Humans , Pulmonary Embolism/diagnostic imaging , Male , Female , Prognosis , Middle Aged , Computed Tomography Angiography/methods , Aged , Biomarkers/blood , Predictive Value of Tests , Retrospective Studies
9.
J Clin Ultrasound ; 52(2): 131-143, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37983736

ABSTRACT

PURPOSE: The quality of ultrasound images is degraded by speckle and Gaussian noises. This study aims to develop a deep-learning (DL)-based filter for ultrasound image denoising. METHODS: A novel DL-based filter using adaptive residual (AdaRes) learning was proposed. Five image quality metrics (IQMs) and 27 radiomics features were used to evaluate denoising results. The effect of our proposed filter, AdaRes, on four pre-trained convolutional neural network (CNN) classification models and three radiologists was assessed. RESULTS: AdaRes filter was tested on both natural and ultrasound image databases. IQMs results indicate that AdaRes could remove noises in three different noise levels with the highest performances. In addition, a radiomics study proved that AdaRes did not distort tissue textures and it could preserve most radiomics features. AdaRes could also improve the performance classification using CNNs in different settings. Finally, AdaRes also improved the mean overall performance (AUC) of three radiologists from 0.494 to 0.702 in the classification of benign and malignant lesions. CONCLUSIONS: AdaRes filtered out noises on ultrasound images more effectively and can be used as an auxiliary preprocessing step in computer-aided diagnosis systems. Radiologists may use it to remove unwanted noises and improve the ultrasound image quality before the interpretation.


Subject(s)
Artificial Intelligence , Deep Learning , Humans , Radiomics , Signal-To-Noise Ratio , Ultrasonography
10.
Radiol Med ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935247

ABSTRACT

PURPOSE: To determine the optimal window setting for virtual monoenergetic images (VMI) reconstructed from dual-layer spectral coronary computed tomography angiography (DE-CCTA) datasets. MATERIAL AND METHODS: 50 patients (30 males; mean age 61.1 ± 12.4 years who underwent DE-CCTA from May 2021 to June 2022 for suspected coronary artery disease, were retrospectively included. Image quality assessment was performed on conventional images and VMI reconstructions at 70 and 40 keV. Objective image quality was assessed using contrast-to-noise ratio (CNR). Two independent observers manually identified the best window settings (B-W/L) for VMI 70 and VMI 40 visualization. B-W/L were then normalized with aortic attenuation using linear regression analysis to obtain the optimized W/L (O-W/L) settings. Additionally, subjective image quality was evaluated using a 5-point Likert scale, and vessel diameters were measured to examine any potential impact of different W/L settings. RESULTS: VMI 40 demonstrated higher CNR values compared to conventional and VMI 70. B-W/L settings identified were 1180/280 HU for VMI 70 and 3290/900 HU for VMI 40. Subsequent linear regression analysis yielded O-W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40. VMI 40 O-W/L received the highest scores for each parameter compared to conventional (all p < 0.0027). Using O-W/L settings for VMI 70 and VMI 40 did not result in significant differences in vessel measurements compared to conventional images. CONCLUSION: Optimization of VMI requires adjustments in W/L settings. Our results recommend W/L settings of 1155/270 HU for VMI 70 and 3230/880 HU for VMI 40.

11.
BMC Bioinformatics ; 24(1): 1, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36597019

ABSTRACT

BACKGROUND: Prostate cancer is a major health concern in aging men. Paralleling an aging society, prostate cancer prevalence increases emphasizing the need for efficient diagnostic algorithms. METHODS: Retrospectively, 106 prostate tissue samples from 48 patients (mean age, [Formula: see text] years) were included in the study. Patients suffered from prostate cancer (n = 38) or benign prostatic hyperplasia (n = 10) and were treated with radical prostatectomy or Holmium laser enucleation of the prostate, respectively. We constructed tissue microarrays (TMAs) comprising representative malignant (n = 38) and benign (n = 68) tissue cores. TMAs were processed to histological slides, stained, digitized and assessed for the applicability of machine learning strategies and open-source tools in diagnosis of prostate cancer. We applied the software QuPath to extract features for shape, stain intensity, and texture of TMA cores for three stainings, H&E, ERG, and PIN-4. Three machine learning algorithms, neural network (NN), support vector machines (SVM), and random forest (RF), were trained and cross-validated with 100 Monte Carlo random splits into 70% training set and 30% test set. We determined AUC values for single color channels, with and without optimization of hyperparameters by exhaustive grid search. We applied recursive feature elimination to feature sets of multiple color transforms. RESULTS: Mean AUC was above 0.80. PIN-4 stainings yielded higher AUC than H&E and ERG. For PIN-4 with the color transform saturation, NN, RF, and SVM revealed AUC of [Formula: see text], [Formula: see text], and [Formula: see text], respectively. Optimization of hyperparameters improved the AUC only slightly by 0.01. For H&E, feature selection resulted in no increase of AUC but to an increase of 0.02-0.06 for ERG and PIN-4. CONCLUSIONS: Automated pipelines may be able to discriminate with high accuracy between malignant and benign tissue. We found PIN-4 staining best suited for classification. Further bioinformatic analysis of larger data sets would be crucial to evaluate the reliability of automated classification methods for clinical practice and to evaluate potential discrimination of aggressiveness of cancer to pave the way to automatic precision medicine.


Subject(s)
Prostate , Prostatic Neoplasms , Male , Humans , Retrospective Studies , Reproducibility of Results , Prostatic Neoplasms/pathology , Algorithms
12.
Radiology ; 308(2): e223150, 2023 08.
Article in English | MEDLINE | ID: mdl-37552067

ABSTRACT

Background In patients with distal radius fractures (DRFs), low bone mineral density (BMD) is associated with bone substitute use during surgery and bone nonunion, but BMD information is not regularly available. Purpose To evaluate the feasibility of dual-energy CT (DECT)-based BMD assessment from routine examinations in the distal radius and the relationship between the obtained BMD values, the occurrence of DRFs, bone nonunion, and use of surgical bone substitute. Materials and Methods Scans in patients who underwent routine dual-source DECT in the distal radius between January 2016 and December 2021 were retrospectively acquired. Phantomless BMD assessment was performed using the delineated trabecular bone of a nonfractured segment of the distal radius and both DECT image series. CT images and health records were examined to determine fracture severity, surgical management, and the occurrence of bone nonunion. Associations of BMD with the occurrence of DRFs, bone nonunion, and bone substitute use at surgical treatment were examined with generalized additive models and receiver operating characteristic analysis. Results This study included 263 patients (median age, 52 years; IQR, 36-64 years; 132 female patients), of whom 192 were diagnosed with fractures. Mean volumetric BMD was lower in patients who sustained a DRF (93.9 mg/cm3 vs 135.4 mg/cm3; P < .001), required bone substitutes (79.6 mg/cm3 vs 95.5 mg/cm3; P < .001), and developed bone nonunion (71.1 mg/cm3 vs 96.5 mg/cm3; P < .001). Receiver operating characteristic curve analysis identified these patients with an area under the curve of 0.71-0.91 (P < .001). Lower BMD increased the risk to sustain DRFs, develop bone nonunion, and receive bone substitutes at surgery (P < .001). Conclusion DECT-based BMD assessment at routine examinations is feasible and could help predict surgical bone substitute use and the occurrence of bone nonunion in patients with DRFs. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Carrino in this issue.


Subject(s)
Bone Substitutes , Fractures, Bone , Wrist Fractures , Humans , Female , Middle Aged , Bone Density , Radius/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed/methods , Absorptiometry, Photon
13.
NMR Biomed ; 36(2): e4828, 2023 02.
Article in English | MEDLINE | ID: mdl-36082477

ABSTRACT

Whole-body magnetic resonance imaging (MRI) has become increasingly popular in oncology. However, the long acquisition time might hamper its widespread application. We sought to assess and compare free-breathing sequences with conventional breath-hold examinations in whole-body MRI using an automated workflow process. This prospective study consisted of 20 volunteers and six patients with a variety of pathologies who had undergone whole-body 1.5-T MRI that included T1-weighted radial and Dixon volumetric interpolated breath-hold examination sequences. Free-breathing sequences were operated by using an automated user interface. Image quality, diagnostic confidence, and image noise were evaluated by two experienced radiologists. Additionally, signal-to-noise ratio was measured. Diagnostic performance for the overall detection of pathologies was assessed using the area under the receiver operating characteristics curve (AUC). Study participants were asked to rate their examination experiences in a satisfaction survey. MR free-breathing scans were rated as at least equivalent to conventional MR scans in more than 92% of cases, showing high overall diagnostic accuracy (95% [95% CI 92-100]) and performance (AUC 0.971, 95% CI 0.942-0.988; p < 0.0001) for the assessment of pathologies at simultaneously reduced examination times (25 ± 2 vs. 32 ± 3 min; p < 0.0001). Interrater agreement was excellent for both free-breathing (Ï° = 0.96 [95% CI 0.88-1.00]) and conventional scans (Ï° = 0.93 [95% CI 0.84-1.00]). Qualitative and quantitative assessment for image quality, image noise, and diagnostic confidence did not differ between the two types of MR image acquisition (all p > 0.05). Scores for patient satisfaction were significantly better for free-breathing compared with breath-hold examinations (p = 0.0145), including significant correlations for the grade of noise (r = 0.79, p < 0.0001), tightness (r = 0.71, p < 0.0001), and physical fatigue (r = 0.52, p = 0.0065). In summary, free-breathing whole-body MRI in tandem with an automated user interface yielded similar diagnostic performance at equivalent image quality and shorter acquisition times compared to conventional breath-hold sequences.


Subject(s)
Image Interpretation, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Prospective Studies , Whole Body Imaging , Workflow
14.
Eur J Clin Invest ; 53(12): e14075, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37571983

ABSTRACT

BACKGROUND: To investigate the potential of radiomic features and dual-source dual-energy CT (DECT) parameters in differentiating between benign and malignant mediastinal masses and predicting patient outcomes. METHODS: In this retrospective study, we analysed data from 90 patients (38 females, mean age 51 ± 25 years) with confirmed mediastinal masses who underwent contrast-enhanced DECT. Attenuation, radiomic features and DECT-derived imaging parameters were evaluated by two experienced readers. We performed analysis of variance (ANOVA) and Chi-square statistic tests for data comparison. Receiver operating characteristic curve analysis and Cox regression tests were used to differentiate between mediastinal masses. RESULTS: Of the 90 mediastinal masses, 49 (54%) were benign, including cases of thymic hyperplasia/thymic rebound (n = 10), mediastinitis (n = 16) and thymoma (n = 23). The remaining 41 (46%) lesions were classified as malignant, consisting of lymphoma (n = 28), mediastinal tumour (n = 4) and thymic carcinoma (n = 9). Significant differences were observed between benign and malignant mediastinal masses in all DECT-derived parameters (p ≤ .001) and 38 radiomic features (p ≤ .044) obtained from contrast-enhanced DECT. The combination of these methods achieved an area under the curve of .98 (95% CI, .893-1.000; p < .001) to differentiate between benign and malignant masses, with 100% sensitivity and 91% specificity. Throughout a follow-up of 1800 days, a multiparametric model incorporating radiomic features, DECT parameters and gender showed promising prognostic power in predicting all-cause mortality (c-index = .8 [95% CI, .702-.890], p < .001). CONCLUSIONS: A multiparametric approach combining radiomic features and DECT-derived imaging biomarkers allows for accurate and noninvasive differentiation between benign and malignant masses in the anterior mediastinum.


Subject(s)
Lymphoma , Mediastinal Neoplasms , Thymus Neoplasms , Female , Humans , Adult , Middle Aged , Aged , Tomography, X-Ray Computed/methods , Retrospective Studies , Thymus Neoplasms/diagnostic imaging , Thymus Neoplasms/pathology , Lymphoma/diagnostic imaging , Mediastinal Neoplasms/diagnostic imaging
15.
Eur J Clin Invest ; 53(4): e13914, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36444723

ABSTRACT

BACKGROUND: D-dimer testing is known to have a high sensitivity at simultaneously low specificity, resulting in nonspecific elevations in a variety of conditions. METHODS: This retrospective study sought to assess diagnostic and prognostic features of D-dimers in cancer patients referred to the emergency department for suspected pulmonary embolism (PE) and deep vein thrombosis (DVT). In total, 526 patients with a final adjudicated diagnosis of PE (n = 83) and DVT (n = 69) were enrolled, whereas 374 patients served as the comparative group, in which venous thromboembolism (VTE) has been excluded. RESULTS: For the identification of VTE, D-dimers yielded the highest positive predictive value of 96% (95% confidence interval (CI), 85-99) at concentrations of 9.9 mg/L and a negative predictive value of 100% at .6 mg/L (95% CI, 97-100). At the established rule-out cut-off level of .5 mg/L, D-dimers were found to be very sensitive (100%) at a moderate specificity of nearly 65%. Using an optimised cut-off value of 4.9 mg/L increased the specificity to 95% for the detection of life-threatening VTE at the cost of moderate sensitivities (64%). During a median follow-up of 30 months, D-dimers positively correlated with the reoccurrence of VTE (p = .0299) and mortality in both cancer patients with VTE (p < .0001) and without VTE (p = .0008). CONCLUSIONS: Although D-dimer testing in cancer patients is discouraged by current guidelines, very high concentrations above the 10-fold upper reference limit contain diagnostic and prognostic information and might be helpful in risk assessment, while low concentrations remain useful for ruling out VTE.


Subject(s)
Neoplasms , Venous Thromboembolism , Humans , Venous Thromboembolism/diagnosis , Prognosis , Retrospective Studies , Fibrin Fibrinogen Degradation Products , Predictive Value of Tests
16.
Eur J Clin Invest ; 53(10): e14060, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37409393

ABSTRACT

BACKGROUND: Cancer is a well-known risk factor for venous thromboembolism (VTE). A combined strategy of D-dimer testing and clinical pre-test probability is usually used to exclude VTE. However, its effectiveness is diminished in cancer patients due to reduced specificity, ultimately leading to a decreased clinical utility. This review article seeks to provide a comprehensive summary of how to interpret D-dimer testing in cancer patients. METHODS: In accordance with PRISMA standards, literature pertaining to the diagnostic and prognostic significance of D-dimer testing in cancer patients was carefully chosen from reputable sources such as PubMed and the Cochrane databases. RESULTS: D-dimers have not only a diagnostic value in ruling out VTE but can also serve as an aid for rule-in if their values exceed 10-times the upper limit of normal. This threshold allows a diagnosis of VTE in cancer patients with a positive predictive value of more than 80%. Moreover, elevated D-dimers carry important prognostic information and are associated with VTE reoccurrence. A gradual increase in risk for all-cause death suggests that VTE is also an indicator of biologically more aggressive cancer types and advanced cancer stages. Considering the lack of standardization for D-dimer assays, it is essential for clinicians to carefully consider the variations in assay performance and the specific test characteristics of their institution. CONCLUSIONS: Standardizing D-dimer assays and developing modified pretest probability models specifically for cancer patients, along with adjusted cut-off values for D-dimer testing, could significantly enhance the accuracy and effectiveness of VTE diagnosis in this population.


Subject(s)
Fibrin Fibrinogen Degradation Products , Neoplasms , Humans , Neoplasms/blood , Neoplasms/complications , Neoplasms/diagnosis , Predictive Value of Tests , Risk Factors , Venous Thromboembolism/blood , Venous Thromboembolism/diagnosis , Venous Thromboembolism/prevention & control , Biological Assay/standards , Sensitivity and Specificity
17.
Eur Radiol ; 33(9): 6339-6350, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37000215

ABSTRACT

OBJECTIVES: The purpose of this study was to evaluate the diagnostic accuracy of third-generation dual-source dual-energy CT (DECT) color-coded collagen reconstructions for the assessment of the cruciate ligaments compared to standard grayscale image reconstruction. METHODS: Patients who underwent third-generation dual-source DECT followed by either 3-T MRI or arthroscopy of the knee joint within 14 days between January 2016 and December 2021 were included in this retrospective study. Five radiologists independently evaluated conventional grayscale DECT for the presence of injury to the cruciate ligaments; after 4 weeks, readers re-evaluated the examinations using grayscale images and color-coded collagen reconstructions. A reference standard for MRI was provided by a consensus reading of two experienced readers and arthroscopy. Sensitivity and specificity were the primary metrics of diagnostic performance. RESULTS: Eighty-five patients (mean age, 44 years ± 16; 50 male) with injury to the ACL or PCL (n = 31) were ultimately included. Color-coded collagen reconstructions significantly increased overall sensitivity (94/105 [90%] vs. 67/105 [64%]), specificity (248/320 [78%] vs. 215/320 [67%]), PPV (94/166 [57%] vs. 67/162 [39%]), NPV (248/259 [96%] vs. 215/253 [85%]), and accuracy (342/425 [81%] vs. 282/425 [66%]) for the detection of injury to the anterior cruciate ligament (all parameters, p < .001). For injury to the posterior cruciate ligament, diagnostic accuracy increased for complete tears (p < .001). Color-coded collagen reconstructions achieved superior diagnostic confidence, image quality, and noise scores compared to grayscale CT (all parameters, p < .001) and showed good agreement with MRI examinations. CONCLUSIONS: DECT-derived color-coded collagen reconstructions yield substantially higher diagnostic accuracy and confidence for assessing the integrity of the cruciate ligaments compared to standard grayscale CT in patients with acute trauma. KEY POINTS: • Color-coded collagen reconstructions derived from dual-energy CT yield substantially higher diagnostic accuracy and confidence for the assessment of the cruciate ligaments compared to standard grayscale CT in patients with acute trauma. • Color-coded collagen reconstructions demonstrate good agreement with MRI for the assessment cruciate ligament injury. • Dual-energy CT may serve as a readily available screening approach for patients with acute trauma to the knee when injury to the cruciate ligaments is suspected.


Subject(s)
Anterior Cruciate Ligament Injuries , Tomography, X-Ray Computed , Humans , Male , Adult , Retrospective Studies , Tomography, X-Ray Computed/methods , Knee Joint , Anterior Cruciate Ligament , Collagen , Anterior Cruciate Ligament Injuries/diagnostic imaging , Sensitivity and Specificity , Magnetic Resonance Imaging/methods
18.
Neuroradiology ; 65(2): 275-285, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36184635

ABSTRACT

PURPOSE: Non-invasive prediction of the tumour of origin giving rise to brain metastases (BMs) using MRI measurements obtained in radiological routine and elucidating the biological basis by matched histopathological analysis. METHODS: Preoperative MRI and histological parameters of 95 BM patients (female, 50; mean age 59.6 ± 11.5 years) suffering from different primary tumours were retrospectively analysed. MR features were assessed by region of interest (ROI) measurements of signal intensities on unenhanced T1-, T2-, diffusion-weighted imaging and apparent diffusion coefficient (ADC) normalised to an internal reference ROI. Furthermore, we assessed BM size and oedema as well as cell density, proliferation rate, microvessel density and vessel area as histopathological parameters. RESULTS: Applying recursive partitioning conditional inference trees, only histopathological parameters could stratify the primary tumour entities. We identified two distinct BM growth patterns depending on their proliferative status: Ki67high BMs were larger (p = 0.02), showed less peritumoural oedema (p = 0.02) and showed a trend towards higher cell density (p = 0.05). Furthermore, Ki67high BMs were associated with higher DWI signals (p = 0.03) and reduced ADC values (p = 0.004). Vessel density was strongly reduced in Ki67high BM (p < 0.001). These features differentiated between lung cancer BM entities (p ≤ 0.03 for all features) with SCLCs representing predominantly the Ki67high group, while NSCLCs rather matching with Ki67low features. CONCLUSION: Interpretable and easy to obtain MRI features may not be sufficient to predict directly the primary tumour entity of BM but seem to have the potential to aid differentiating high- and low-proliferative BMs, such as SCLC and NSCLC.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Middle Aged , Aged , Retrospective Studies , Ki-67 Antigen , Magnetic Resonance Imaging , Brain Neoplasms/pathology , Diffusion Magnetic Resonance Imaging/methods , Lung Neoplasms/diagnostic imaging , Cell Proliferation
19.
Int J Hyperthermia ; 40(1): 2200582, 2023.
Article in English | MEDLINE | ID: mdl-37121606

ABSTRACT

The purpose of the study is to retrospectively evaluate the development and technological progress in local oncological treatments of patients with breast cancer liver metastasis (BCLM) using LITT (laser interstitial thermotherapy), MWA (microwave ablation) and TACE (transarterial chemoembolization) ablation techniques in a multimodal application. The study uses data generated between 1993 and 2020. Therapy results were evaluated using the Kaplan-Meier survival estimate, Cox proportional hazard regression and log-rank test. Cox regression analysis showed that the different treatment methods are statistically significant predictors of survival of patients. Median survival times for groups treated with LITT (212 patients) and LITT + TACE (215 patients) were 2.2 years and 2.1 years respectively; median survival times for groups treated with MWA (17 patients) and MWA + TACE (143 patients) were 5.6 and 2.4 years respectively. For LITT only treatments, the 1-, 3- and 5-year survival probability scored 80%, 37%, 22%. Results for combined LITT + TACE treatments were 76%, 34% and 15%. In group MWA, the 1-/3-/5-year survival probability rates were calculated as 89%, 89%, 89% (however, they should be interpreted carefully due to a relatively small sample size of n = 17 patients). Group MWA + TACE offered values of 77%, 38% and 22%. A separate group of 549 patients was analyzed with TACE monotherapy treatment. The estimated median survival time in this group was 0.8 years. The 1-/3-/5-year survival probability rates were 37%, 8% and 4%. Treatments with combined MWA and MWA + TACE resulted in the best median survival time estimations in this study.


Subject(s)
Breast Neoplasms , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Female , Liver Neoplasms/pathology , Carcinoma, Hepatocellular/surgery , Breast Neoplasms/therapy , Retrospective Studies , Chemoembolization, Therapeutic/methods , Combined Modality Therapy , Treatment Outcome , Melanoma, Cutaneous Malignant
20.
BMC Med Imaging ; 23(1): 71, 2023 06 02.
Article in English | MEDLINE | ID: mdl-37268876

ABSTRACT

BACKGROUND: Treatment plans for squamous cell carcinoma of the head and neck (SCCHN) are individually decided in tumor board meetings but some treatment decision-steps lack objective prognostic estimates. Our purpose was to explore the potential of radiomics for SCCHN therapy-specific survival prognostication and to increase the models' interpretability by ranking the features based on their predictive importance. METHODS: We included 157 SCCHN patients (male, 119; female, 38; mean age, 64.39 ± 10.71 years) with baseline head and neck CT between 09/2014 and 08/2020 in this retrospective study. Patients were stratified according to their treatment. Using independent training and test datasets with cross-validation and 100 iterations, we identified, ranked and inter-correlated prognostic signatures using elastic net (EN) and random survival forest (RSF). We benchmarked the models against clinical parameters. Inter-reader variation was analyzed using intraclass-correlation coefficients (ICC). RESULTS: EN and RSF achieved top prognostication performances of AUC = 0.795 (95% CI 0.767-0.822) and AUC = 0.811 (95% CI 0.782-0.839). RSF prognostication slightly outperformed the EN for the complete (ΔAUC 0.035, p = 0.002) and radiochemotherapy (ΔAUC 0.092, p < 0.001) cohort. RSF was superior to most clinical benchmarking (p ≤ 0.006). The inter-reader correlation was moderate or high for all features classes (ICC ≥ 0.77 (± 0.19)). Shape features had the highest prognostic importance, followed by texture features. CONCLUSIONS: EN and RSF built on radiomics features may be used for survival prognostication. The prognostically leading features may vary between treatment subgroups. This warrants further validation to potentially aid clinical treatment decision making in the future.


Subject(s)
Head and Neck Neoplasms , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Aged , Squamous Cell Carcinoma of Head and Neck/diagnostic imaging , Squamous Cell Carcinoma of Head and Neck/therapy , Retrospective Studies , Prognosis , Head and Neck Neoplasms/diagnostic imaging , Head and Neck Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL