Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nano Lett ; 16(8): 5291-7, 2016 08 10.
Article in English | MEDLINE | ID: mdl-27398653

ABSTRACT

For spintronic devices excited by a sudden magnetic or optical perturbation, the torque acting on the magnetization plays a key role in its precession and damping. However, the torque itself can be a dynamical quantity via the time-dependent anisotropies of the system. A challenging problem for applications is then to disentangle the relative importance of various sources of anisotropies in the dynamical torque, such as the dipolar field, the crystal structure or the shape of the particular interacting magnetic nanostructures. Here, we take advantage of a range of colloidal cobalt ferrite nanocubes assembled in 2D thin films under controlled magnetic fields to demonstrate that the phase, ϕPrec, of the precession carries a strong signature of the dynamical anisotropies. Performing femtosecond magneto-optics, we show that ϕPrec displays a π-shift for a particular angle θH of an external static magnetic field, H. θH is controlled with the cobalt concentration, the laser intensity, as well as the interparticle interactions. Importantly, it is shown that the shape anisotropy, which strongly departs from those of equivalent bulk thin films or individual noninteracting nanoparticles, reveals the essential role played by the interparticle collective effects. This work shows the reliability of a noninvasive optical approach to characterize the dynamical torque in high density magnetic recording media made of organized and interacting nanoparticles.

2.
Phys Rev Lett ; 109(16): 166601, 2012 Oct 19.
Article in English | MEDLINE | ID: mdl-23215104

ABSTRACT

We report about the magnetization dynamics of a ferromagnetic nickel film at room temperature excited by acoustic pulses generated with femtosecond laser pulses. The ultrafast change of magnetization is detected from both the front and back sides of the nickel film. The propagating strain associated with the acoustic pulses modifies the magnetic anisotropy and induces a precession of the magnetization. We model the time-dependent magnetoacoustic response of the metallic film by combining a three temperature model for the temperatures of the charges, the spins, and the lattice, the wave equation for the strain, and the Landau-Lifshitz-Gilbert equation for the magnetization. It is shown that the precession dynamics can be controlled by matching the precession period with the round trip time of the acoustic echoes. The calculation of the time-dependent precession torque τ=|M×H(eff)| allows understanding the underlying physics.

3.
Sci Rep ; 5: 8511, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25687970

ABSTRACT

Controlling the angular momentum of spins with very short external perturbations is a key issue in modern magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the angular momentum of the magnetization which precesses around the resultant effective magnetic field. That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the magnetic vector perturbed by the acoustic pulses.

4.
Nanoscale ; 6(20): 12080-8, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25195770

ABSTRACT

The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices.

SELECTION OF CITATIONS
SEARCH DETAIL