Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Am J Respir Cell Mol Biol ; 70(6): 493-506, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38386777

ABSTRACT

Lung inflammation, caused by acute exposure to ozone (O3), one of the six criteria air pollutants, is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung, and their number increases after O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. In this study, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage-tracing experiments showed that 12, 24, and 72 hours after exposure to O3 (2 ppm) for 3 hours, all AMØs were of tissue-resident origin. Similarly, in humans exposed to filtered air and O3 (200 ppb) for 135 minutes, we did not observe at ∼21 hours postexposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØs demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK (MER proto-oncogene, tyrosine kinase), a key receptor involved in efferocytosis, also resulted in impaired clearance of apoptotic neutrophils after O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.


Subject(s)
Macrophages, Alveolar , Ozone , Phagocytosis , Proto-Oncogene Mas , c-Mer Tyrosine Kinase , Ozone/pharmacology , c-Mer Tyrosine Kinase/metabolism , c-Mer Tyrosine Kinase/genetics , Animals , Macrophages, Alveolar/metabolism , Macrophages, Alveolar/drug effects , Humans , Phagocytosis/drug effects , Mice , Mice, Inbred C57BL , Pneumonia/metabolism , Pneumonia/chemically induced , Pneumonia/pathology , Mice, Knockout , Male , Inflammation/metabolism , Inflammation/pathology , Inflammation/chemically induced , Apoptosis/drug effects , Lung/pathology , Lung/metabolism , Lung/drug effects , Efferocytosis
2.
Toxicol Appl Pharmacol ; 426: 115645, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34271066

ABSTRACT

Elevated ambient temperatures and extreme weather events have increased the incidence of wildfires world-wide resulting in increased wood smoke particle (WSP). Epidemiologic data suggests that WSP exposure associates with exacerbations of respiratory diseases, and with increased respiratory viral infections. To assess the impact of WSP exposure on host response to viral pneumonia, we performed WSP exposures in rodents followed by infection with mouse adapted influenza (HINI-PR8). C57BL/6 male mice aged 6-8 weeks were challenged with WSP or PBS by oropharyngeal aspiration in acute (single dose) or sub-acute exposures (day 1, 3, 5, 7 and 10). Additional groups underwent sub-acute exposure followed by infection by influenza or heat-inactivated (HI) virus. Following exposures/infection, bronchoalveolar lavage (BAL) was performed to assess for total cell counts/differentials, total protein, protein carbonyls and hyaluronan. Lung tissue was assessed for viral counts by real time PCR. When compared to PBS, acute WSP exposure associated with an increase in airspace macrophages. Alternatively, sub-acute exposure resulted in a dose dependent increase in airspace neutrophils. Sub-acute WSP exposure followed by influenza infection was associated with improved respiratory viral outcomes including reduced weight loss and increased blood oxygen saturation, and decreased protein carbonyls and viral titers. Flow cytometry demonstrated dynamic changes in pulmonary macrophage and T cell subsets based on challenge with WSP and influenza. This data suggests that sub-acute WSP exposure can improve host response to acute influenza infection.


Subject(s)
Influenza A Virus, H1N1 Subtype , Orthomyxoviridae Infections , Pneumonia, Viral , Smoke , Wildfires , Administration, Inhalation , Animals , Influenza A Virus, H1N1 Subtype/physiology , Lung/immunology , Lung/metabolism , Lung/virology , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Orthomyxoviridae Infections/immunology , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Pneumonia, Viral/immunology , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Severity of Illness Index , Transcriptome , Virus Replication , Wood
3.
Curr Allergy Asthma Rep ; 21(5): 34, 2021 05 10.
Article in English | MEDLINE | ID: mdl-33970346

ABSTRACT

The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.


Subject(s)
Air Pollutants , Immunity, Innate/immunology , Lung Diseases , Respiratory Mucosa/immunology , Air Pollutants/adverse effects , Air Pollutants/immunology , Humans , Lung/immunology , Lung/physiopathology , Lung Diseases/etiology , Lung Diseases/immunology , Lung Diseases/physiopathology , Ozone/adverse effects , Ozone/immunology , Particulate Matter/adverse effects , Particulate Matter/immunology , Respiratory Mucosa/physiopathology
4.
Crit Care Med ; 47(12): e948-e952, 2019 12.
Article in English | MEDLINE | ID: mdl-31569139

ABSTRACT

OBJECTIVES: To identify the time at which point of care ultrasound static image recognition and image acquisition skills decay in novice learners. SETTING: The University of Iowa Hospitals and Clinics. SUBJECTS: Twenty-four subjects (23 first-year medical students and one first-year physician assistant student). DESIGN: The subjects completed an initial didactic and hands-on session with immediate testing of learned image acquisition and static image identification skills. INTERVENTIONS: Retesting occurred at 1, 4, and 8 weeks after the initial training session with no retraining in between. Image acquisition skills were obtained on the same healthy male volunteers, and the students were given no immediate feedback on their performance. The image identification skills were assessed with a 10 question test at each follow-up session. MEASUREMENTS AND MAIN RESULTS: For pleural ultrasound by 4 weeks, there was a significant decline of the ability to identify A-lines (p = 0.0065). For pleural image acquisition, there was no significant decline in the ability to demonstrate lung sliding. Conversely, cardiac image recognition did not significantly decline throughout the study, while the ability to demonstrate cardiac images at 4 weeks (parasternal short axis view) did (p = 0.0008). CONCLUSIONS: Motor and cognitive skills decay at different times for pleural and cardiac images. Future ultrasound curricula should retrain skills at a maximum of 8 weeks from initial training. They should focus more on didactic sessions related to image identification for pleural images, and more hands-on image acquisition training for cardiac images, which represents a novel finding.


Subject(s)
Cognition , Education, Medical, Undergraduate/methods , Motor Skills , Point-of-Care Systems , Ultrasonography , Educational Measurement , Humans , Male , Prospective Studies
6.
Thromb Haemost ; 124(7): 656-668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38519039

ABSTRACT

BACKGROUND: Increased adhesivity of red blood cells (RBCs) to endothelial cells (ECs) may contribute to organ dysfunction in malaria, sickle cell disease, and diabetes. RBCs normally export nitric oxide (NO)-derived vascular signals, facilitating blood flow. S-nitrosothiols (SNOs) are thiol adducts formed in RBCs from precursor NO upon the oxygenation-linked allosteric transition in hemoglobin. RBCs export these vasoregulatory SNOs on demand, thereby regulating regional blood flow and preventing RBC-EC adhesion, and the large (system L) neutral amino acid transporter 1 (LAT1; SLC7A5) appears to mediate SNO export by RBCs. METHODS: To determine the role of LAT1-mediated SNO import by ECs generally and of LAT1-mediated SNO import by ECs in RBC SNO-dependent modulation of RBC sequestration and blood oxygenation in vivo, we engineered LAT1fl/fl; Cdh5-Cre+ mice, in which the putative SNO transporter LAT1 can be inducibly depleted (knocked down, KD) specifically in ECs ("LAT1ECKD"). RESULTS: We show that LAT1 in mouse lung ECs mediates cellular SNO uptake. ECs from LAT1ECKD mice (tamoxifen-induced LAT1fl/fl; Cdh5-Cre+) import SNOs poorly ex vivo compared with ECs from wild-type (tamoxifen-treated LAT1fl/fl; Cdh5-Cre-) mice. In vivo, endothelial depletion of LAT1 increased RBC sequestration in the lung and decreased blood oxygenation after RBC transfusion. CONCLUSION: This is the first study showing a role for SNO transport by LAT1 in ECs in a genetic mouse model. We provide the first direct evidence for the coordination of RBC SNO export with EC SNO import via LAT1. SNO flux via LAT1 modulates RBC-EC sequestration in lungs after transfusion, and its disruption impairs blood oxygenation by the lung.


Subject(s)
Endothelial Cells , Erythrocyte Transfusion , Erythrocytes , Large Neutral Amino Acid-Transporter 1 , S-Nitrosothiols , Animals , Erythrocytes/metabolism , Large Neutral Amino Acid-Transporter 1/metabolism , Large Neutral Amino Acid-Transporter 1/genetics , Endothelial Cells/metabolism , S-Nitrosothiols/metabolism , Mice , Humans , Lung/metabolism , Nitric Oxide/metabolism , Mice, Inbred C57BL , Cell Adhesion
7.
bioRxiv ; 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36824904

ABSTRACT

The ontogenetic composition of tissue-resident macrophages following injury, environmental exposure, or experimental depletion can be altered upon re-establishment of homeostasis. However, the impact of altered resident macrophage ontogenetic milieu on subsequent immune responses is poorly understood. Hence, we assessed the effect of macrophage ontogeny alteration following return to homeostasis on subsequent allergic airway responses to house dust mites (HDM). Using lineage tracing, we confirmed alveolar and interstitial macrophage ontogeny and their replacement by bone marrow-derived macrophages following LPS exposure. This alteration in macrophage ontogenetic milieu reduced allergic airway responses to HDM challenge. In addition, we defined a distinct population of resident-derived interstitial macrophages expressing allergic airway disease genes, located adjacent to terminal bronchi, and reduced by prior LPS exposure. These findings support that the ontogenetic milieu of pulmonary macrophages is a central factor in allergic airway responses and has implications for how prior environmental exposures impact subsequent immune responses and the development of allergy.

8.
Am Nat ; 179(1): 1-21, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22173457

ABSTRACT

The exact nature of the relationship among species range sizes, speciation, and extinction events is not well understood. The factors that promote larger ranges, such as broad niche widths and high dispersal abilities, could increase the likelihood of encountering new habitats but also prevent local adaptation due to high gene flow. Similarly, low dispersal abilities or narrower niche widths could cause populations to be isolated, but such populations may lack advantageous mutations due to low population sizes. Here we present a large-scale, spatially explicit, individual-based model addressing the relationships between species ranges, speciation, and extinction. We followed the evolutionary dynamics of hundreds of thousands of diploid individuals for 200,000 generations. Individuals adapted to multiple resources and formed ecological species in a multidimensional trait space. These species varied in niche widths, and we observed the coexistence of generalists and specialists on a few resources. Our model shows that species ranges correlate with dispersal abilities but do not change with the strength of fitness trade-offs; however, high dispersal abilities and low resource utilization costs, which favored broad niche widths, have a strong negative effect on speciation rates. An unexpected result of our model is the strong effect of underlying resource distributions on speciation: in highly fragmented landscapes, speciation rates are reduced.


Subject(s)
Biological Evolution , Extinction, Biological , Genetic Speciation , Models, Biological , Adaptation, Physiological , Geography , Population Density , Population Dynamics
9.
Environ Health Perspect ; 128(11): 117009, 2020 11.
Article in English | MEDLINE | ID: mdl-33253011

ABSTRACT

BACKGROUND: Epidemiological studies support the hypothesis that diabetes alters pulmonary responses to air pollutants like ozone (O3). The mechanism(s) underlying these associations and potential links among diabetes, O3, and lung inflammation and remodeling are currently unknown. OBJECTIVES: The goal was to determine whether pulmonary responses to repetitive ozone exposures are exacerbated in murine strains that are hyperglycemic and insulin resistant. METHODS: Normoglycemic and insulin-sensitive C57BL/6J mice; hyperglycemic, but mildly insulin-resistant, KK mice; and hyperglycemic and markedly insulin-resistant KKAy mice were used for ozone exposure studies. All animals were exposed to filtered air (FA) or repetitive ozone (0.5 ppm O3, 4 h/d, for 13 consecutive weekdays). Tissue analysis was performed 24 h following the final exposure. This analysis included bronchoalveolar lavage (BAL) for cell and fluid analysis, and tissue for pathology, immunohistology, mRNA, and hydroxyproline. RESULTS: Following repetitive O3 exposure, higher bronchoalveolar lavage fluid inflammatory cells were observed in all mice (KKAy>KK>C57BL/6), with a notable influx of neutrophils and eosinophils in KK and KKAy mice. Although the lungs of O3-exposed C57BL/6J and KK mice had minimal centriacinar histological changes without fibrosis, the lungs of O3-exposed KKAy mice contained marked epithelial hyperplasia in proximal alveolar ducts and adjacent alveoli with associated centriacinar fibrosis. Fibrosis in O3-exposed KKAy lungs was confirmed with immunohistochemistry, tissue hydroxyproline content, and tissue mRNA expression of fibrosis-associated genes (Ccl11, Il13, and Mmp12). Immunofluorescence staining and confocal microscopy revealed alterations in the structure and composition of the airway and alveolar epithelium in regions of fibrosis. DISCUSSION: Our results demonstrate that in diabetic animal strains repetitive ambient ozone exposure led to early and exaggerated pulmonary inflammation and remodeling. Changes in distal and interstitial airspaces and the activation of Th2 inflammatory and profibrotic pathways in experimental animals provide a preliminary, mechanistic framework to support the emerging epidemiological associations among air pollution, diabetes, and lung disease. https://doi.org/10.1289/EHP7255.


Subject(s)
Air Pollutants/toxicity , Ozone/toxicity , Pneumonia/chemically induced , Animals , Bronchoalveolar Lavage Fluid , Diabetes Mellitus, Experimental , Male , Mice , Mice, Inbred C57BL , Neutrophils , Pneumonia/veterinary , Toxicity Tests
10.
IDCases ; 8: 6-8, 2017.
Article in English | MEDLINE | ID: mdl-28239557

ABSTRACT

Hemolytic uremic syndrome (HUS) is a well-described process that is known to cause severe renal dysfunction, thrombocytopenia, and anemia. HUS is typically associated with toxins (shiga-like and shigella toxin) found in strains of E. coli and Shigella spp [1], [2], [3]. We present a case of a 27 year-old man with jaundice, thrombocytopenia, and renal dysfunction who was found to have HUS in the setting of Shigella sonnei infection. Outside of developing countries, cases of HUS related to S. sonnei are largely unreported.

11.
PLoS One ; 9(2): e87681, 2014.
Article in English | MEDLINE | ID: mdl-24558372

ABSTRACT

In human airways diseases, including cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD), host defense is compromised and airways inflammation and infection often result. Mucus clearance and trapping of inhaled pathogens constitute key elements of host defense. Clearance rates are governed by mucus viscous and elastic moduli at physiological driving frequencies, whereas transport of trapped pathogens in mucus layers is governed by diffusivity. There is a clear need for simple and effective clinical biomarkers of airways disease that correlate with these properties. We tested the hypothesis that mucus solids concentration, indexed as weight percent solids (wt%), is such a biomarker. Passive microbead rheology was employed to determine both diffusive and viscoelastic properties of mucus harvested from human bronchial epithelial (HBE) cultures. Guided by sputum from healthy (1.5-2.5 wt%) and diseased (COPD, CF; 5 wt%) subjects, mucus samples were generated in vitro to mimic in vivo physiology, including intermediate range wt% to represent disease progression. Analyses of microbead datasets showed mucus diffusive properties and viscoelastic moduli scale robustly with wt%. Importantly, prominent changes in both biophysical properties arose at ∼4 wt%, consistent with a gel transition (from a more viscous-dominated solution to a more elastic-dominated gel). These findings have significant implications for: (1) penetration of cilia into the mucus layer and effectiveness of mucus transport; and (2) diffusion vs. immobilization of micro-scale particles relevant to mucus barrier properties. These data provide compelling evidence for mucus solids concentration as a baseline clinical biomarker of mucus barrier and clearance functions.


Subject(s)
Biomarkers/metabolism , Cystic Fibrosis/diagnosis , Mucus/physiology , Pulmonary Disease, Chronic Obstructive/diagnosis , Adult , Aged , Cystic Fibrosis/metabolism , Diffusion , Disease Progression , Elasticity , Fourier Analysis , Gels , Humans , Middle Aged , Models, Statistical , Pulmonary Disease, Chronic Obstructive/metabolism , Reproducibility of Results , Respiratory System/physiopathology , Rheology , Sputum , Viscosity , Young Adult
12.
Mol Ecol ; 16(14): 2910-21, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17614906

ABSTRACT

A recent study of a pair of sympatric species of palms on the Lord Howe Island is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here we describe and study a stochastic, individual-based, explicit genetic model tailored for this palms system. Overall, our results show that relatively rapid (<50,000 generations) colonization of a new ecological niche, and sympatric or parapatric speciation via local adaptation and divergence in flowering periods are theoretically plausible if (i) the number of loci controlling the ecological and flowering period traits is small; (ii) the strength of selection for local adaptation is intermediate; and (iii) an acceleration of flowering by a direct environmental effect associated with the new ecological niche is present. We discuss patterns and time-scales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically in order to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.


Subject(s)
Arecaceae/classification , Ecosystem , Geography , Models, Biological , Arecaceae/physiology , Oceans and Seas , Species Specificity , Time Factors
13.
Mol Ecol ; 16(14): 2893-909, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17614905

ABSTRACT

A recent study of a pair of sympatric species of cichlids in Lake Apoyo in Nicaragua is viewed as providing probably one of the most convincing examples of sympatric speciation to date. Here, we describe and study a stochastic, individual-based, explicit genetic model tailored for this cichlid system. Our results show that relatively rapid (<20,000 generations) colonization of a new ecological niche and (sympatric or parapatric) speciation via local adaptation and divergence in habitat and mating preferences are theoretically plausible if: (i) the number of loci underlying the traits controlling local adaptation, and habitat and mating preferences is small; (ii) the strength of selection for local adaptation is intermediate; (iii) the carrying capacity of the population is intermediate; and (iv) the effects of the loci influencing nonrandom mating are strong. We discuss patterns and timescales of ecological speciation identified by our model, and we highlight important parameters and features that need to be studied empirically to provide information that can be used to improve the biological realism and power of mathematical models of ecological speciation.


Subject(s)
Cichlids/classification , Ecosystem , Fresh Water , Models, Biological , Adaptation, Biological , Animals , Cichlids/physiology , Species Specificity , Time Factors
14.
Proc Natl Acad Sci U S A ; 103(45): 16823-8, 2006 Nov 07.
Article in English | MEDLINE | ID: mdl-17075072

ABSTRACT

The "Machiavellian intelligence" hypothesis (or the "social brain" hypothesis) posits that large brains and distinctive cognitive abilities of humans have evolved via intense social competition in which social competitors developed increasingly sophisticated "Machiavellian" strategies as a means to achieve higher social and reproductive success. Here we build a mathematical model aiming to explore this hypothesis. In the model, genes control brains which invent and learn strategies (memes) which are used by males to gain advantage in competition for mates. We show that the dynamics of intelligence has three distinct phases. During the dormant phase only newly invented memes are present in the population. During the cognitive explosion phase the population's meme count and the learning ability, cerebral capacity (controlling the number of different memes that the brain can learn and use), and Machiavellian fitness of individuals increase in a runaway fashion. During the saturation phase natural selection resulting from the costs of having large brains checks further increases in cognitive abilities. Overall, our results suggest that the mechanisms underlying the "Machiavellian intelligence" hypothesis can indeed result in the evolution of significant cognitive abilities on the time scale of 10 to 20 thousand generations. We show that cerebral capacity evolves faster and to a larger degree than learning ability. Our model suggests that there may be a tendency toward a reduction in cognitive abilities (driven by the costs of having a large brain) as the reproductive advantage of having a large brain decreases and the exposure to memes increases in modern societies.


Subject(s)
Biological Evolution , Intelligence , Brain/physiology , Cognition , Competitive Behavior , Female , Humans , Male , Models, Psychological , Time Factors
15.
Proc Natl Acad Sci U S A ; 102(50): 18040-5, 2005 Dec 13.
Article in English | MEDLINE | ID: mdl-16330783

ABSTRACT

Adaptive radiation is defined as the evolution of ecological and phenotypic diversity within a rapidly multiplying lineage. When it occurs, adaptive radiation typically follows the colonization of a new environment or the establishment of a "key innovation," which opens new ecological niches and/or new paths for evolution. Here, we take advantage of recent developments in speciation theory and modern computing power to build and explore a large-scale, stochastic, spatially explicit, individual-based model of adaptive radiation driven by adaptation to multidimensional ecological niches. We are able to model evolutionary dynamics of populations with hundreds of thousands of sexual diploid individuals over a time span of 100,000 generations assuming realistic mutation rates and allowing for genetic variation in a large number of both selected and neutral loci. Our results provide theoretical support and explanation for a number of empirical patterns including "area effect," "overshooting effect," and "least action effect," as well as for the idea of a "porous genome." Our findings suggest that the genetic architecture of traits involved in the most spectacular radiations might be rather simple. We show that a great majority of speciation events are concentrated early in the phylogeny. Our results emphasize the importance of ecological opportunity and genetic constraints in controlling the dynamics of adaptive radiation.


Subject(s)
Adaptation, Biological/genetics , Environment , Genetics, Population , Models, Theoretical , Phylogeny , Computer Simulation , Demography , Genetic Variation , Mutation/genetics , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL