Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters

Publication year range
1.
Int J Mol Sci ; 25(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38542374

ABSTRACT

In this short review, we presented and discussed studies on the expression of globin genes in ß-thalassemia, focusing on the impact of α-globin gene expression and α-globin modifiers on the phenotype and clinical severity of ß-thalassemia. We first discussed the impact of the excess of free α-globin on the phenotype of ß-thalassemia. We then reviewed studies focusing on the expression of α-globin-stabilizing protein (AHSP), as a potential strategy of counteracting the effects of the excess of free α-globin on erythroid cells. Alternative processes controlling α-globin excess were also considered, including the activation of autophagy by ß-thalassemia erythroid cells. Altogether, the studies reviewed herein are expected to have a potential impact on the management of patients with ß-thalassemia and other hemoglobinopathies for which reduction in α-globin excess is clinically beneficial.


Subject(s)
Hemoglobinopathies , beta-Thalassemia , Humans , beta-Thalassemia/genetics , alpha-Globins/genetics , alpha-Globins/metabolism , Hemoglobinopathies/genetics , Phenotype , Gene Expression , Blood Proteins/genetics , Molecular Chaperones/genetics
2.
Int J Mol Sci ; 25(16)2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39201615

ABSTRACT

It is well known that modifiers play a role in ameliorating or exacerbating disease phenotypes in patients and carriers of recessively inherited disorders such as sickle cell disease and thalassemia. Here, we give an overview of the literature concerning a recently described association in carriers of SUPT5H Loss-of-Function variants with a beta-thalassemia-like phenotype including the characteristic elevated levels of HbA2. That SUPT5H acts as modifier in beta-thalassemia carriers became evident from three reported cases in whom combined heterozygosity of SUPT5H and HBB gene variants was observed to resemble a mild beta-thalassemia intermedia phenotype. The different SUPT5H variants and hematologic parameters reported are collected and reviewed to provide insight into the possible effects on hematologic expression, as well as potential disease mechanisms in carriers and patients.


Subject(s)
Nuclear Proteins , Transcriptional Elongation Factors , beta-Thalassemia , Humans , beta-Thalassemia/genetics , Heterozygote , Loss of Function Mutation , Phenotype , Nuclear Proteins/genetics , Transcriptional Elongation Factors/genetics
3.
Curr Genomics ; 23(5): 337-352, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36778192

ABSTRACT

Preimplantation Genetic Testing (PGT) aims to reduce the chance of an affected pregnancy or improve success in an assisted reproduction cycle. Since the first established pregnancies in 1990, methodological approaches have greatly evolved, combined with significant advances in the embryological laboratory. The application of preimplantation testing has expanded, while the accuracy and reliability of monogenic and chromosomal analysis have improved. The procedure traditionally employs an invasive approach to assess the nucleic acid content of embryos. All biopsy procedures require high technical skill, and costly equipment, and may impact both the accuracy of genetic testing and embryo viability. To overcome these limitations, many researchers have focused on the analysis of cell-free DNA (cfDNA) at the preimplantation stage, sampled either from the blastocoel or embryo culture media, to determine the genetic status of the embryo non-invasively. Studies have assessed the origin of cfDNA and its application in non-invasive testing for monogenic disease and chromosomal aneuploidies. Herein, we discuss the state-of-the-art for modern non-invasive embryonic genetic material assessment in the context of PGT. The results are difficult to integrate due to numerous methodological differences between the studies, while further work is required to assess the suitability of cfDNA analysis for clinical application.

4.
Am J Hum Genet ; 101(3): 326-339, 2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28844486

ABSTRACT

During pregnancy, cell-free DNA (cfDNA) in maternal blood encompasses a small percentage of cell-free fetal DNA (cffDNA), an easily accessible source for determination of fetal disease status in risk families through non-invasive procedures. In case of monogenic heritable disease, background maternal cfDNA prohibits direct observation of the maternally inherited allele. Non-invasive prenatal diagnostics (NIPD) of monogenic diseases therefore relies on parental haplotyping and statistical assessment of inherited alleles from cffDNA, techniques currently unavailable for routine clinical practice. Here, we present monogenic NIPD (MG-NIPD), which requires a blood sample from both parents, for targeted locus amplification (TLA)-based phasing of heterozygous variants selectively at a gene of interest. Capture probes-based targeted sequencing of cfDNA from the pregnant mother and a tailored statistical analysis enables predicting fetal gene inheritance. MG-NIPD was validated for 18 pregnancies, focusing on CFTR, CYP21A2, and HBB. In all cases we could predict the inherited alleles with >98% confidence, even at relatively early stages (8 weeks) of pregnancy. This prediction and the accuracy of parental haplotyping was confirmed by sequencing of fetal material obtained by parallel invasive procedures. MG-NIPD is a robust method that requires standard instrumentation and can be implemented in any clinic to provide families carrying a severe monogenic disease with a prenatal diagnostic test based on a simple blood draw.


Subject(s)
Adrenal Hyperplasia, Congenital/diagnosis , Biomarkers/blood , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/diagnosis , Polymorphism, Single Nucleotide , Prenatal Diagnosis/methods , Steroid 21-Hydroxylase/genetics , Adrenal Hyperplasia, Congenital/blood , Adrenal Hyperplasia, Congenital/genetics , Cells, Cultured , Cystic Fibrosis/blood , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/blood , DNA/blood , DNA/genetics , Female , Haplotypes , Humans , Pregnancy , Steroid 21-Hydroxylase/blood
5.
BMC Genomics ; 20(1): 20, 2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30621582

ABSTRACT

BACKGROUND: Salmonella enterica subspecies enterica is an animal and zoonotic pathogen of global importance. Cattle are a significant reservoir of human non-typhoidal salmonellosis and can suffer enteric and systemic disease owing to the ability of Salmonella to survive within the bovine lymphatic system and intestines. Contamination of food can occur due to the incorporation of contaminated peripheral lymph nodes or by direct contamination of carcasses with gut contents. It is essential to understand the mechanisms used by Salmonella to enter and persist within the bovine lymphatic system and how they differ from those required for intestinal colonization to minimize zoonotic infections. RESULTS: Transposon-directed insertion site sequencing (TraDIS) was applied to pools of mutants recovered from mesenteric lymph nodes (MLNs) draining the distal ileum of calves after oral inoculation with a library of 8550 random S. Typhimurium mini-Tn5Km2 mutants in pools of 475 mutants per calf. A total of 8315 mutants representing 2852 different genes were detected in MLNs and their in vivo fitness was calculated. Using the same improved algorithm for analysis of transposon-flanking sequences, the identity and phenotype of mutants recovered from the distal ileal mucosa of the same calves was also defined, enabling comparison with previously published data and of mutant phenotypes across the tissues. Phenotypes observed for the majority of mutants were highly significantly correlated in the two tissues. However, 32 genes were identified in which transposon insertions consistently resulted in differential fitness in the ileal wall and MLNs, suggesting niche-specific roles for these genes in pathogenesis. Defined null mutations affecting ptsN and spvC were confirmed to result in tissue-specific phenotypes in calves, thus validating the TraDIS dataset. CONCLUSIONS: This validation of the role of thousands of Salmonella genes and identification of genes with niche-specific roles in a key target species will inform the design of control strategies for bovine salmonellosis and zoonotic infections, for which efficacious and cross-protective vaccines are currently lacking.


Subject(s)
DNA Transposable Elements/genetics , Salmonella Infections/genetics , Salmonella enterica/genetics , Salmonella typhimurium/genetics , Animals , Carbon-Oxygen Lyases/genetics , Cattle , Cattle Diseases/genetics , Cattle Diseases/microbiology , Disease Reservoirs/microbiology , Humans , Ileum/microbiology , Intestines/microbiology , Lymph Nodes/microbiology , Mutation , Salmonella Infections/microbiology , Salmonella Infections/transmission , Salmonella enterica/pathogenicity , Salmonella typhimurium/pathogenicity
6.
Vet Res ; 50(1): 99, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31771636

ABSTRACT

Salmonella enterica is a veterinary and zoonotic pathogen of global importance. While murine and cell-based models of infection have provided considerable knowledge about the molecular basis of virulence of Salmonella, relatively little is known about salmonellosis in naturally-affected large animal hosts such as cattle, which are a reservoir of human salmonellosis. As in humans, Salmonella causes bovine disease ranging from self-limiting enteritis to systemic typhoid-like disease and exerts significant economic and welfare costs. Understanding the nature and consequences of Salmonella interactions with bovine cells will inform the design of effective vaccines and interventions to control animal and zoonotic infections. In calves challenged orally with S. Dublin expressing green fluorescent protein (GFP) we observed that the bacteria were predominantly extracellular in the distal ileal mucosa and within gut-associated lymph nodes 48 h post-infection. Intracellular bacteria, identified by flow cytometry using the GFP signal, were predominantly within MHCII+ macrophage-like cells. In contrast to observations from murine models, these S. Dublin-infected cells had elevated levels of MHCII and CD40 compared to both uninfected cells from the same tissue and cells from the cognate tissue of uninfected animals. Moreover, no gross changes of the architecture of infected lymph nodes were observed as was described previously in a mouse model. In order to further investigate Salmonella-macrophage interactions, net replication of S. enterica serovars that differ in virulence in cattle was measured in bovine blood-derived macrophages by enumeration of gentamicin-protected bacteria and fluorescence dilution, but did not correlate with host-specificity.


Subject(s)
Cattle Diseases/physiopathology , Salmonella Infections, Animal/physiopathology , Salmonella enterica/physiology , Animals , Cattle , Cattle Diseases/microbiology , Histocompatibility Antigens Class II/analysis , Salmonella Infections, Animal/microbiology , Serogroup
7.
Immunogenetics ; 70(9): 585-597, 2018 09.
Article in English | MEDLINE | ID: mdl-29947943

ABSTRACT

Granzymes are a family of serine proteases found in the lytic granules of cytotoxic T lymphocytes and natural killer (NK) cells, which are involved in killing of susceptible target cells. Most information on granzymes and their enzymatic specificities derive from studies in humans and mice. Although granzymes shared by both species show a high level of conservation, the complement of granzyme genes differs between the species. The aim of this study was to identify granzyme genes expressed in cattle, determine their genomic locations and analyse their sequences to predict likely functional specificities. Orthologues of the five granzyme genes found in humans (A, B, H, K and M) were identified, as well a novel gene designated granzyme O, most closely related to granzyme A. An orthologue of granzyme O was found in pigs and a non-function version was detected in the human genome. Use of specific PCRs demonstrated that all of these genes, including granzyme O, are expressed in activated subsets of bovine lymphocytes, with particularly high levels in CD8 T cells. Consistent with findings in humans and mice, the granzyme-encoding genes were located on three distinct genomic loci, which correspond to different proteolytic enzymatic activities, namely trypsin-like, chymotrypsin-like and metase-like. Analysis of amino acid sequences indicated that the granzyme proteins have broadly similar enzymatic specificities to their human and murine counterparts but indicated that granzyme B has a different secondary specificity. These findings provide the basis for further work to examine their role in the cytotoxic activity of bovine CD8 T cells.


Subject(s)
Granzymes/genetics , Lymphocytes/enzymology , Phylogeny , Animals , Cattle , Chromosome Mapping , Granzymes/chemistry , Granzymes/metabolism , Lymphocyte Activation , Molecular Sequence Annotation , Perforin/genetics , Reproducibility of Results , Reverse Transcriptase Polymerase Chain Reaction , Trypsin/genetics
9.
Clin Chem Lab Med ; 53(12): 1951-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26035111

ABSTRACT

BACKGROUND: Screening for "non-deletion" α-chain haemoglobin variants resulting from point mutations or short deletions/insertions has attracted an increased interest during recent years, especially in areas where α-thalassaemia is prevalent. We describe a method utilising high resolution melting analysis for detecting the 13 most common "non-deletion" α-thalassaemia mutations in populations around the Mediterranean and Middle East. METHODS: The method comprises: (1) amplification of a 1087 bp fragment for each of the duplicated α-globin genes (HBA1 and HBA2) flanking all 13 mutations using a common forward primer and different reverse primers specific for HBA1 and HBA2, respectively; (2) nested amplification of three fragments in HBA2 flanking 10 mutations and two fragments in HBA1 flanking 5 mutations; (3) High resolution melting analysis of the amplicons using a LightScanner Instrument and LC Green. RESULTS: All 13 "non-deletion" α-chain haemoglobin variants were successfully detected by high resolution melting analysis. All heterozygote samples and eight out of 10 available homozygotes were clearly differentiated from each other and from wild type in the same amplicon. Although not all homozygote samples were distinguishable from wild type samples, this should not present a problem in a clinical setting since all DNA results should be evaluated alongside the haematological and (if relevant) clinical findings in each case. CONCLUSIONS: The 13 "non-deletion" α-chain haemoglobin variants were successfully genotyped by high resolution melting analysis using LightScanner instrument and LCGreen Plus saturating dye. High resolution melting analysis is an accurate mutation scanning tool, advantageous as a closed-tube method, involving no post-PCR manipulations and requiring only around 5 min post-PCR analysis.


Subject(s)
DNA Mutational Analysis/methods , Glycated Hemoglobin/genetics , Hemoglobin A2/genetics , Mutation , Nucleic Acid Denaturation , alpha-Thalassemia/genetics , DNA/blood , DNA/genetics , Genotype , Humans , Polymerase Chain Reaction
10.
Hemoglobin ; 39(1): 55-7, 2015.
Article in English | MEDLINE | ID: mdl-25476779

ABSTRACT

We report the case of a 5-year-old child with clinical and hematological findings consistent with the diagnosis of α-thalassemia intermedia (α-TI). Molecular analysis disclosed the common 3.7 kb deletion in the α-globin gene cluster in trans to a novel in-frame 6 bp deletion in the HBA2 gene. It removes the sequence CCTGGG (or GCCTGG) that normally encodes for alanine (codon 13) and tryptophan (codon 14). Even though several hemoglobin (Hb) variants with mutations affecting codons 13 or 14 have been described, Hb Souli (HBA2: c.[41-46delCCTGGG]) is, to the best of our knowledge, the first variant to be reported where both amino acid residues, α13Ala and α14Trp, are deleted, leading to unstable and rapidly degraded α-globin chains.


Subject(s)
Hemoglobin A2/genetics , Hemoglobins, Abnormal/genetics , alpha-Globins/genetics , alpha-Thalassemia/genetics , Adult , Base Sequence , Child, Preschool , Female , Humans , Male , Sequence Deletion , alpha-Thalassemia/blood
12.
Vet Res ; 45: 112, 2014 Oct 29.
Article in English | MEDLINE | ID: mdl-25480162

ABSTRACT

Vaccination is the most cost effective control measure for Johne's disease caused by Mycobacterium avium subspecies paratuberculosis (MAP) but currently available whole cell killed formulations have limited efficacy and are incompatible with the diagnosis of bovine tuberculosis by tuberculin skin test. We have evaluated the utility of a viral delivery regimen of non-replicative human Adenovirus 5 and Modified Vaccinia virus Ankara recombinant for early entry MAP specific antigens (HAV) to show protection against challenge in a calf model and extensively screened for differential immunological markers associated with protection. We have shown that HAV vaccination was well tolerated, could be detected using a differentiation of infected and vaccinated animals (DIVA) test, showed no cross-reactivity with tuberculin and provided a degree of protection against challenge evidenced by a lack of faecal shedding in vaccinated animals that persisted throughout the 7 month infection period. Calves given HAV vaccination had significant priming and boosting of MAP derived antigen (PPD-J) specific CD4+, CD8+ IFN-γ producing T-cell populations and, upon challenge, developed early specific Th17 related immune responses, enhanced IFN-γ responses and retained a high MAP killing capacity in blood. During later phases post MAP challenge, PPD-J antigen specific IFN-γ and Th17 responses in HAV vaccinated animals corresponded with improvements in peripheral bacteraemia. By contrast a lack of IFN-γ, induction of FoxP3+ T cells and increased IL-1ß and IL-10 secretion were indicative of progressive infection in Sham vaccinated animals. We conclude that HAV vaccination shows excellent promise as a new tool for improving control of MAP infection in cattle.


Subject(s)
Bacterial Vaccines/immunology , Cattle Diseases/immunology , Mycobacterium avium subsp. paratuberculosis/immunology , Paratuberculosis/immunology , Adenoviruses, Human/genetics , Animals , Antigens, Bacterial/immunology , Bacterial Vaccines/administration & dosage , Cattle , Cattle Diseases/microbiology , Male , Paratuberculosis/microbiology , Vaccination/veterinary , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Vaccinia virus/genetics
13.
Hemoglobin ; 38(1): 49-55, 2014.
Article in English | MEDLINE | ID: mdl-24131134

ABSTRACT

Human leukocyte antigen (HLA) typing of in vitro fertilization (IVF) embryos, aims to establish a pregnancy that is HLA compatible with an affected sibling who requires hematopoietic stem cell transplantation (HSCT). It can be performed with or without preimplantation genetic diagnosis (PGD) for exclusion of a single-gene disorder (SGD) and it is a multistep, technically challenging procedure at every stage. Our purpose was to address the difficulties of genetic analysis by developing a fast, reliable and accurate PGD-HLA protocol, to simplify patient work-up and PGD application, while providing high flexibility for combination with any SGD. Requests included PGD-HLA for ß-thalassemia (ß-thal)/sickle cell disease (most common request), Diamond-Blackfan anemia (DBA), chronic granulomatous disease (CGD) and preimplantation-HLA typing only. For HLA haplotyping, we selected a panel of 26 short tandem repeats (STRs) distributed across the entire HLA locus, following PGD guidelines. When required, mutation detection was performed by both a direct and indirect approach. To support concurrent SGD exclusion and HLA typing, a one-step, single-tube, multiplex fluorescent touchdown-polymerase chain reaction (PCR) was optimized. The described touchdown-PCR was successfully applied for all PGD-HLA protocols. Eight clinical cycles were performed with a diagnosis achieved for 94.7% of amplified biopsied blastomeres. Embryo transfer took place in six cycles, with two pregnancies achieved and two healthy female infants (from a twin pregnancy) born so far. Our protocol enables HLA typing in a single PCR, reducing the risk of contamination and the cost, and providing faster results. It requires minimum optimization before clinical application, irrespective of the SGD involved, decreasing the waiting time from referral to treatment for all PGD-HLA cases.


Subject(s)
Fertilization in Vitro , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Histocompatibility Testing , Preimplantation Diagnosis , Female , Genetic Testing , Humans , Molecular Typing , Pregnancy , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics
14.
Expert Rev Mol Diagn ; 24(9): 767-775, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39107971

ABSTRACT

INTRODUCTION: Preimplantation Genetic Testing (PGT) is a cutting-edge test used to detect genetic abnormalities in embryos fertilized through Medically Assisted Reproduction (MAR). PGT aims to ensure that embryos selected for transfer are free of specific genetic conditions or chromosome abnormalities, thereby reducing chances for unsuccessful MAR cycles, complicated pregnancies, and genetic diseases in future children. AREAS COVERED: In PGT, genetics, embryology, and technology progress and evolve together. Biological and technological limitations are described and addressed to highlight complexity and knowledge constraints and draw attention to concerns regarding safety of procedures, clinical validity, and utility, extent of applications and overall ethical implications for future families and society. EXPERT OPINION: Understanding the genetic basis of diseases along with advanced technologies applied in embryology and genetics contribute to faster, cost-effective, and more efficient PGT. Next Generation Sequencing-based techniques, enhanced by improved bioinformatics, are expected to upgrade diagnostic accuracy. Complicating findings such as mosaicism, mt-DNA variants, variants of unknown significance, or variants related to late-onset or polygenic diseases will however need further appraisal. Emphasis on monitoring such emerging data is crucial for evidence-based counseling while standardized protocols and guidelines are essential to ensure clinical value and respect of Ethical, Legal and Societal Issues.


Subject(s)
Genetic Testing , Preimplantation Diagnosis , Humans , Preimplantation Diagnosis/methods , Preimplantation Diagnosis/ethics , Genetic Testing/methods , Genetic Testing/ethics , Genetic Testing/standards , Female , Pregnancy , High-Throughput Nucleotide Sequencing/methods , Reproductive Techniques, Assisted
15.
J Med Chem ; 67(5): 3542-3570, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38381650

ABSTRACT

GPR84 is a putative medium-chain fatty acid receptor that is implicated in regulation of inflammation and fibrogenesis. Studies have indicated that GPR84 agonists may have therapeutic potential in diseases such as Alzheimer's disease, atherosclerosis, and cancer, but there is a lack of quality tool compounds to explore this potential. The fatty acid analogue LY237 (4a) is the most potent GPR84 agonist disclosed to date but has unfavorable physicochemical properties. We here present a SAR study of 4a. Several highly potent agonists were identified with EC50 down to 28 pM, and with SAR generally in excellent agreement with structure-based modeling. Proper incorporation of rings and polar groups resulted in the identification of TUG-2099 (4s) and TUG-2208 (42a), both highly potent GPR84 agonists with lowered lipophilicity and good to excellent solubility, in vitro permeability, and microsomal stability, which will be valuable tools for exploring the pharmacology and therapeutic prospects of GPR84.


Subject(s)
Inflammation , Receptors, G-Protein-Coupled , Humans , Receptors, G-Protein-Coupled/metabolism , Inflammation/metabolism , Fatty Acids/metabolism , Structure-Activity Relationship
16.
Sci Rep ; 14(1): 4158, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378867

ABSTRACT

Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.


Subject(s)
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Trypanosomiasis, African , Humans , Cattle , Animals , Trypanosoma brucei brucei/genetics , Trypanosoma congolense/genetics , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/veterinary , Trypanosomiasis, African/epidemiology , Trypanosoma/genetics , DNA , Feces
17.
HLA ; 101(5): 458-483, 2023 05.
Article in English | MEDLINE | ID: mdl-36680506

ABSTRACT

The classical MHC class I and class II molecules play key roles in determining the antigenic-specificity of CD8+ and CD4+ T-cell responses-as such characterisation of the repertoire of MHCI and MHCII allelic diversity is fundamental to our ability to understand, and potentially, exploit how genetic diversity influences the outcome of immune responses. Cattle remain one of the most economically livestock species, with particular importance to many small-holder farmers in low-and-middle income countries (LMICs). However, our knowledge of MHC (BoLA) diversity in the indigenous breeds that form the mainstay of cattle populations in many LMICs remains very limited. In this study we develop a MiSeq-based platform to enable the rapid analysis of BoLA-DQA and BoLA-DQB, and combine this with similar platforms to analyse BoLA-I and BoLA-DRB repertoires, to study a large cohort of cattle (~800 animals) representing the 3 major indigenous breeds (Angoni, Barotse, Tonga) in Zambia. The data presented confirms the capacity of this high-throughput and high-resolution approach to provide a full characterisation of the MHCI-MHCII genotypes of cattle for which little previous MHC sequence data has been obtained. The cattle in Zambia were found to express a diverse range of MHCI, MHCII and extended MHCI-MHCII haplotypes. The combined MHCI-MHCII genotyping now possible opens new opportunities to rapidly expand our knowledge of MHC diversity in cattle that could find applications in a related translational disciplines such as vaccine development.


Subject(s)
Genes, MHC Class I , Cattle , Animals , Zambia , Alleles , Genotype , Haplotypes
18.
Hemoglobin ; 36(3): 253-64, 2012.
Article in English | MEDLINE | ID: mdl-22452522

ABSTRACT

In this study we report the development of a generic protocol for preimplantation genetic diagnosis (PGD) of severe α-thalassemia (α-thal) syndromes in α-thal carrier couples of Mediterranean origin. The in silico identification and design of primers for multiplex analysis of short tandem repeats (STRs), was followed by the optimization of polymerase chain reaction (PCR) conditions for multiplexed STR analysis within the α-globin gene cluster (16p3.3) and subsequent optimization and validation of a single-cell multiplex reaction including the selected STRs. Three simple dinucleotide repeats were selected based on their rate of heterozygosity, multiplex PCR efficiency and product size, and location within the α-globin gene cluster. The multiplex PCR was optimized in single lymphocytes with PCR efficiency ranging from 92.5 to 98% and an allele drop-out (ADO) rate of 0 to 9.0% for the three loci. The optimized method was applied in two clinical PGD cycles and genotypes were achieved in 17 out of 18 blastomeres (94%). Transfer of unaffected embryos led to a singleton pregnancy in one of the two couples. The triplex PCR validated for Greek and Cypriot populations is a robust generic method for α-thal PGD.


Subject(s)
Microsatellite Repeats/genetics , Multigene Family , Preimplantation Diagnosis/methods , alpha-Globins/genetics , alpha-Thalassemia/diagnosis , alpha-Thalassemia/genetics , Cyprus , Female , Greece , Humans , Male , Multiplex Polymerase Chain Reaction/methods , Pregnancy , Pregnancy Complications, Hematologic/diagnosis , Pregnancy Complications, Hematologic/genetics , Reproducibility of Results , Sensitivity and Specificity , Syndrome
19.
Hemoglobin ; 36(3): 230-43, 2012.
Article in English | MEDLINE | ID: mdl-22524255

ABSTRACT

Hemoglobinopathies, especially ß-thalassemia (ß-thal), represent an important health burden in Mediterranean countries like Turkey. Some couples prefer the option of preimplantation genetic diagnosis (PGD). However, clinical application of PGD, especially for the monogenic disorders is technically demanding. To ensure reliable results, protocols need to be robust and well standardized. Ideally PGD-PCR (polymerase chain reaction) protocols should be based on multiplex and fluorescent PCR for analysis of the disease-causing mutation(s) along with linked markers across the disease-associated locus. In this study, we aimed to constitute a protocol in single cells involving first round multiplex PCR with primers to amplify the region of the ß-globin gene containing the most common mutations. Two microsatellites linked to the ß-globin gene cluster (D11S4891, D11S2362) and two unlinked (D13S314, GABRB3) microsatellite markers, were used to rule out allele dropout (ADO) and contamination; followed by nested real-time PCR for genotyping the ß-globin mutations. We also investigated the allele frequencies and heterozygote rates of these microsatellites in the Turkish population that have not been reported to date. This protocol was tested in 100 single lymphocytes from heterozygotes with known ß-globin mutations. Amplification failure was detected in one lymphocyte (1%) and ADO was observed in two lymphocytes (2%). No contamination was detected. All results were concordant with the genotypes of the patients. Overall, this protocol was demonstrated to be sensitive, accurate, reliable and rapid for the detection of ß-globin mutations in single cells and shows potential for the clinical application of PGD for hemoglobinopathies in the Turkish population.


Subject(s)
Genotyping Techniques/methods , Lymphocytes/metabolism , Mutation , beta-Globins/genetics , Adolescent , Adult , Alleles , Child , DNA Mutational Analysis/methods , Female , Gene Frequency , Genotype , Humans , Infant , Lymphocytes/cytology , Male , Microsatellite Repeats , Polymerase Chain Reaction/methods , Pregnancy , Pregnancy Complications, Hematologic/diagnosis , Pregnancy Complications, Hematologic/genetics , Preimplantation Diagnosis/methods , Reproducibility of Results , Sensitivity and Specificity , Single-Cell Analysis/methods , Turkey , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics
20.
Int J Lab Hematol ; 44 Suppl 1: 21-27, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35443077

ABSTRACT

Hemoglobinopathies constitute some of the most common inherited disorders worldwide. Manifestations are very severe, patient management is difficult and treatment is not easily accessible. Preimplantation genetic testing for monogenic disorders (PGT-M) is a valuable reproductive option for hemoglobinopathy carrier-couples as it precludes the initiation of an affected pregnancy. PGT-M is performed on embryos generated by assisted reproductive technologies and only those found to be free of the monogenic disorder are transferred to the uterus. PGT-M has been applied for 30 years now and ß-thalassemia is one of the most common indications. PGT may also be applied for human leukocyte antigen typing to identify embryos that are unaffected and also compatible with an affected sibling in need of hemopoietic stem cell transplantation. PGT-M protocols have evolved from PCR amplification-based, where a small number of loci were analysed, to whole genome amplification-based, the latter increasing diagnostic accuracy, enabling the development of more generic strategies and facilitating multiple diagnoses in one embryo. Currently, numerous PGT-M cycles are performed for the simultaneous diagnosis of hemoglobinopathies and screening for chromosomal abnormalities in the embryo in an attempt to further improve success rates and increase deliveries of unaffected babies.


Subject(s)
Hemoglobinopathies , Preimplantation Diagnosis , beta-Thalassemia , Embryo Transfer/methods , Female , Genetic Testing/methods , Hemoglobinopathies/diagnosis , Hemoglobinopathies/genetics , Humans , Pregnancy , Preimplantation Diagnosis/methods , beta-Thalassemia/genetics
SELECTION OF CITATIONS
SEARCH DETAIL