ABSTRACT
Multivalent viral epitopes induce rapid, robust and T cell-independent humoral immune responses, but the biochemical basis for such potency remains incompletely understood. We take advantage of a set of liposomes of viral size engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme. Particulate Ag induces potent 'all-or-none' B cell responses that are density dependent but affinity independent. Unlike soluble Ag, particulate Ag induces signal amplification downstream of the B cell receptor by selectively evading LYN-dependent inhibitory pathways and maximally activates NF-κB in a manner that mimics T cell help. Such signaling induces MYC expression and enables even low doses of particulate Ag to trigger robust B cell proliferation in vivo in the absence of adjuvant. We uncover a molecular basis for highly sensitive B cell responses to viral Ag display that is independent of encapsulated nucleic acids and is not merely accounted for by avidity and B cell receptor cross-linking.
Subject(s)
Antigens , B-Lymphocytes , Receptors, Antigen, B-Cell/metabolism , Lymphocyte Activation , Epitopes/metabolismABSTRACT
Antigen stimulation (signal 1) triggers B cell proliferation and primes B cells to recruit, engage and respond to T cell help (signal 2). Failure to receive signal 2 within a defined time window results in B cell apoptosis, yet the mechanisms that enforce dependence on co-stimulation are incompletely understood. Nr4a1-3 encode a small family of orphan nuclear receptors that are rapidly induced by B cell antigen receptor stimulation. Here, we show that Nr4a1 and Nr4a3 play partially redundant roles to restrain B cell responses to antigen in the absence of co-stimulation and do so, in part, by repressing the expression of BATF and, consequently, MYC. The NR4A family also restrains B cell access to T cell help by repressing expression of the T cell chemokines CCL3 and CCL4, as well as CD86 and ICAM1. Such NR4A-mediated regulation plays a role specifically under conditions of competition for limiting T cell help.
Subject(s)
B-Lymphocytes/immunology , Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Cell Communication , Cell Proliferation , Cells, Cultured , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Immunity, Humoral , Immunomodulation , Lymphocyte Activation , Mice , Mice, Knockout , Nuclear Receptor Subfamily 4, Group A, Member 1/genetics , Receptors, Antigen, B-Cell/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/genetics , Receptors, Thyroid Hormone/metabolism , Signal TransductionABSTRACT
DNA nanostructures are a promising tool to deliver molecular payloads to cells. DNA origami structures, where long single-stranded DNA is folded into a compact nanostructure, present an attractive approach to package genes; however, effective delivery of genetic material into cell nuclei has remained a critical challenge. Here, we describe the use of DNA nanostructures encoding an intact human gene and a fluorescent protein encoding gene as compact templates for gene integration by CRISPR-mediated homology-directed repair (HDR). Our design includes CRISPR-Cas9 ribonucleoprotein binding sites on DNA nanostructures to increase shuttling into the nucleus. We demonstrate efficient shuttling and genomic integration of DNA nanostructures using transfection and electroporation. These nanostructured templates display lower toxicity and higher insertion efficiency compared to unstructured double-stranded DNA templates in human primary cells. Furthermore, our study validates virus-like particles as an efficient method of DNA nanostructure delivery, opening the possibility of delivering nanostructures in vivo to specific cell types. Together, these results provide new approaches to gene delivery with DNA nanostructures and establish their use as HDR templates, exploiting both their design features and their ability to encode genetic information. This work also opens a door to translate other DNA nanodevice functions, such as biosensing, into cell nuclei.
Subject(s)
Gene Transfer Techniques , Nanostructures , Active Transport, Cell Nucleus , CRISPR-Cas Systems , DNA/genetics , Gene Editing/methods , Genome , HumansABSTRACT
It has long been appreciated that highly autoreactive BCRs are actively removed from the developing B cell repertoire by Ag-dependent receptor editing and deletion. However, there is persistent debate about whether mild autoreactivity is simply tolerated or positively selected into the mature B cell repertoire as well as at what stage, to what extent, under what conditions, and into which compartments this occurs. In this study, we describe two minor, trackable populations of B cells in B1-8i Ig transgenic mice that express the VH186.2 H chain and recognize a common foreign Ag (the hapten 4-hydroxy-3-nitrophenylacetyl) but differ in L chain expression. We use the Nur77-eGFP reporter of BCR signaling to define their reactivity toward endogenous Ags. The less autoreactive of these two populations is strongly counterselected during the development of mature B1a, follicular, and marginal zone B cells. By genetically manipulating the strength of BCR signal transduction via the titration of surface CD45 expression, we demonstrate that this B cell population is not negatively selected but instead displays characteristics of impaired positive selection. We demonstrate that mild self-reactivity improves the developmental fitness of B cell clones in the context of a diverse population of B cells, and positive selection by endogenous Ags shapes the mature B cell repertoire.
Subject(s)
Antigens/immunology , B-Lymphocytes/immunology , Animals , Cell Differentiation/immunology , Leukocyte Common Antigens/immunology , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nuclear Receptor Subfamily 4, Group A, Member 1/immunology , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunologyABSTRACT
This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
Subject(s)
Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Tumor Microenvironment , Humans , Neoplasms/therapy , Neoplasms/immunology , Immunotherapy, Adoptive/methods , Animals , Tumor Microenvironment/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunologyABSTRACT
Peyer's patches (PPs) are lymphoid structures situated adjacent to the intestinal epithelium that support B cell responses that give rise to many intestinal IgA-secreting cells. Induction of isotype switching to IgA in PPs requires interactions between B cells and TGFß-activating conventional dendritic cells type 2 (cDC2s) in the subepithelial dome (SED). However, the mechanisms promoting cDC2 positioning in the SED are unclear. Here, we found that PP cDC2s express GPR35, a receptor that promotes cell migration in response to various metabolites, including 5-hydroxyindoleacetic acid (5-HIAA). In mice lacking GPR35, fewer cDC2s were found in the SED, and frequencies of IgA+ germinal center (GC) B cells were reduced. IgA plasma cells were reduced in both the PPs and lamina propria. These phenotypes were also observed in chimeric mice that lacked GPR35 selectively in cDCs. GPR35 deficiency led to reduced coating of commensal bacteria with IgA and reduced IgA responses to cholera toxin. Mast cells were present in the SED, and mast cell-deficient mice had reduced PP cDC2s and IgA+ cells. Ablation of tryptophan hydroxylase 1 (Tph1) in mast cells to prevent their production of 5-HIAA similarly led to reduced PP cDC2s and IgA responses. Thus, mast cell-guided positioning of GPR35+ cDC2s in the PP SED supports induction of intestinal IgA responses.
Subject(s)
B-Lymphocytes , Mast Cells , Animals , Mice , Hydroxyindoleacetic Acid , Cell Movement , Immunoglobulin A, Secretory , Peyer's Patches , Receptors, G-Protein-Coupled/geneticsABSTRACT
Multiplexed reprogramming of T cell specificity and function can generate powerful next-generation cellular therapies. However, current manufacturing methods produce heterogenous mixtures of partially engineered cells. Here, we develop a one-step process to enrich for unlabeled cells with knock-ins at multiple target loci using a family of repair templates named Synthetic Exon/Expression Disruptors (SEEDs). SEED engineering associates transgene integration with the disruption of a paired endogenous surface protein, allowing non-modified and partially edited cells to be immunomagnetically depleted (SEED-Selection). We design SEEDs to fully reprogram three critical loci encoding T cell specificity, co-receptor expression, and MHC expression, with up to 98% purity after selection for individual modifications and up to 90% purity for six simultaneous edits (three knock-ins and three knockouts). These methods are simple, compatible with existing clinical manufacturing workflows, and can be readily adapted to other loci to facilitate production of complex gene-edited cell therapies.
ABSTRACT
Although it has long been appreciated that multivalent antigens - and particularly viral epitope display - produce extremely rapid, robust, and T-independent humoral immune responses, the biochemical basis for such potency has been incompletely understood. Here we take advantage of a set of neutral liposomes of viral size that are engineered to display affinity mutants of the model antigen (Ag) hen egg lysozyme at precisely varied density. We show that particulate Ag display by liposomes induces highly potent B cell responses that are dose-and density-dependent but affinity-independent. Titrating dose of particulate, but not soluble, Ag reveals bimodal Erk phosphorylation and cytosolic calcium increases. Particulate Ag induces signal amplification downstream of the B cell receptor (BCR) by selectively evading LYN-dependent inhibitory pathways, but in vitro potency is independent of CD19. Importantly, Ag display on viral-sized particles signals independently of MYD88 and IRAK1/4, but activates NF- κ B robustly in a manner that mimics T cell help. Together, such biased signaling by particulate Ag promotes MYC expression and reduces the threshold required for B cell proliferation relative to soluble Ag. These findings uncover a molecular basis for highly sensitive B cell response to viral Ag display and remarkable potency of virus-like particle vaccines that is not merely accounted for by avidity and BCR cross-linking, and is independent of the contribution of B cell nucleic acid-sensing machinery.
ABSTRACT
Initiation of B-cell receptor (BCR) 1 signaling, and subsequent antigen-encounter in germinal centers 2,3 represent milestones of B-lymphocyte development that are both marked by sharp increases of CD25 surface-expression. Oncogenic signaling in B-cell leukemia (B-ALL) 4 and lymphoma 5 also induced CD25-surface expression. While CD25 is known as an IL2-receptor chain on T- and NK-cells 6-9 , the significance of its expression on B-cells was unclear. Our experiments based on genetic mouse models and engineered patient-derived xenografts revealed that, rather than functioning as an IL2-receptor chain, CD25 expressed on B-cells assembled an inhibitory complex including PKCδ and SHIP1 and SHP1 phosphatases for feedback control of BCR-signaling or its oncogenic mimics. Recapitulating phenotypes of genetic ablation of PKCδ 10 - 12 , SHIP1 13,14 and SHP1 14, 15,16 , conditional CD25-deletion decimated early B-cell subsets but expanded mature B-cell populations and induced autoimmunity. In B-cell malignancies arising from early (B-ALL) and late (lymphoma) stages of B-cell development, CD25-loss induced cell death in the former and accelerated proliferation in the latter. Clinical outcome annotations mirrored opposite effects of CD25-deletion: high CD25 expression levels predicted poor clinical outcomes for patients with B-ALL, in contrast to favorable outcomes for lymphoma-patients. Biochemical and interactome studies revealed a critical role of CD25 in BCR-feedback regulation: BCR-signaling induced PKCδ-mediated phosphorylation of CD25 on its cytoplasmic tail (S 268 ). Genetic rescue experiments identified CD25-S 268 tail-phosphorylation as central structural requirement to recruit SHIP1 and SHP1 phosphatases to curb BCR-signaling. A single point mutation CD25 S268A abolished recruitment and activation of SHIP1 and SHP1 to limit duration and strength of BCR-signaling. Loss of phosphatase-function, autonomous BCR-signaling and Ca 2+ -oscillations induced anergy and negative selection during early B-cell development, as opposed to excessive proliferation and autoantibody production in mature B-cells. These findings highlight the previously unrecognized role of CD25 in assembling inhibitory phosphatases to control oncogenic signaling in B-cell malignancies and negative selection to prevent autoimmune disease.
ABSTRACT
CRISPR-mediated genome editing of primary human lymphocytes is typically carried out via electroporation, which can be cytotoxic, cumbersome and costly. Here we show that the yields of edited primary human lymphocytes can be increased substantially by delivering a CRISPR ribonucleoprotein mixed with an amphiphilic peptide identified through screening. We evaluated the performance of this simple delivery method by knocking out genes in T cells, B cells and natural killer cells via the delivery of Cas9 or Cas12a ribonucleoproteins or an adenine base editor. We also show that peptide-mediated ribonucleoprotein delivery paired with an adeno-associated-virus-mediated homology-directed repair template can introduce a chimaeric antigen receptor gene at the T-cell receptor α constant locus, and that the engineered cells display antitumour potency in mice. The method is minimally perturbative, does not require dedicated hardware, and is compatible with multiplexed editing via sequential delivery, which minimizes the risk of genotoxicity. The peptide-mediated intracellular delivery of ribonucleoproteins may facilitate the manufacturing of engineered T cells.
Subject(s)
CRISPR-Cas Systems , Gene Editing , Humans , Mice , Animals , Gene Editing/methods , T-Lymphocytes/metabolism , Peptides/genetics , RibonucleoproteinsABSTRACT
Enhancing CRISPR-mediated site-specific transgene insertion efficiency by homology-directed repair (HDR) using high concentrations of double-stranded DNA (dsDNA) with Cas9 target sequences (CTSs) can be toxic to primary cells. Here, we develop single-stranded DNA (ssDNA) HDR templates (HDRTs) incorporating CTSs with reduced toxicity that boost knock-in efficiency and yield by an average of around two- to threefold relative to dsDNA CTSs. Using small-molecule combinations that enhance HDR, we could further increase knock-in efficiencies by an additional roughly two- to threefold on average. Our method works across a variety of target loci, knock-in constructs and primary human cell types, reaching HDR efficiencies of >80-90%. We demonstrate application of this approach for both pathogenic gene variant modeling and gene-replacement strategies for IL2RA and CTLA4 mutations associated with Mendelian disorders. Finally, we develop a good manufacturing practice (GMP)-compatible process for nonviral chimeric antigen receptor-T cell manufacturing, with knock-in efficiencies (46-62%) and yields (>1.5 × 109 modified cells) exceeding those of conventional approaches.
Subject(s)
CRISPR-Cas Systems , DNA, Single-Stranded , Humans , CRISPR-Cas Systems/genetics , DNA, Single-Stranded/genetics , Genome , Recombinational DNA Repair , Mutation , DNA , Gene Editing , DNA End-Joining RepairABSTRACT
Chimeric antigen receptors (CARs) repurpose natural signaling components to retarget T cells to refractory cancers but have shown limited efficacy in persistent, recurrent malignancies. Here, we introduce "CAR Pooling," a multiplexed approach to rapidly identify CAR designs with clinical potential. Forty CARs with signaling domains derived from a range of immune cell lineages were evaluated in pooled assays for their ability to stimulate critical T cell effector functions during repetitive stimulation that mimics long-term tumor antigen exposure. Several domains were identified from the tumor necrosis factor (TNF) receptor family that have been primarily associated with B cells. CD40 enhanced proliferation, whereas B cell-activating factor receptor (BAFF-R) and transmembrane activator and CAML interactor (TACI) promoted cytotoxicity. These functions were enhanced relative to clinical benchmarks after prolonged antigen stimulation, and CAR T cell signaling through these domains fell into distinct states of memory, cytotoxicity, and metabolism. BAFF-R CAR T cells were enriched for a highly cytotoxic transcriptional signature previously associated with positive clinical outcomes. We also observed that replacing the 4-1BB intracellular signaling domain with the BAFF-R signaling domain in a clinically validated B cell maturation antigen (BCMA)-specific CAR resulted in enhanced activity in a xenotransplant model of multiple myeloma. Together, these results show that CAR Pooling is a general approach for rapid exploration of CAR architecture and activity to improve the efficacy of CAR T cell therapies.
Subject(s)
Neoplasm Recurrence, Local , Receptors, Chimeric Antigen , Humans , Neoplasm Recurrence, Local/metabolism , B-Cell Maturation Antigen , Receptors, Chimeric Antigen/metabolism , Immunotherapy, Adoptive/methods , T-Lymphocytes , Immunotherapy , Signal TransductionABSTRACT
B cell clones compete for entry into and dominance within germinal centers (GCs), where the highest-affinity B cell receptors (BCRs) are selected. However, diverse and low-affinity B cells can enter and reside in GCs for extended periods. To reconcile these observations, we hypothesize that a negative feedback loop may operate within B cells to preferentially restrain high-affinity clones from monopolizing the early GC niche. Here, we report a role for the nuclear receptor NUR77/Nr4a1 in this process. We show that NUR77 expression scales with antigen stimulation and restrains B cell expansion. Although NUR77 is dispensable for regulating GC size when GCs are elicited in a largely clonal manner, it serves to curb immunodominance under conditions where diverse clonal populations must compete for a constrained niche. We propose that this is important to preserve early clonal diversity in order to limit holes in the post-immune repertoire and to optimize GC selection.